c ****************************************************************************** c c TRIQS: a Toolbox for Research in Interacting Quantum Systems c c Copyright (C) 2011 by L. Pourovskii, V. Vildosola, C. Martins, M. Aichhorn c c TRIQS is free software: you can redistribute it and/or modify it under the c terms of the GNU General Public License as published by the Free Software c Foundation, either version 3 of the License, or (at your option) any later c version. c c TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY c WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS c FOR A PARTICULAR PURPOSE. See the GNU General Public License for more c details. c c You should have received a copy of the GNU General Public License along with c TRIQS. If not, see <http://www.gnu.org/licenses/>. c c *****************************************************************************/ SUBROUTINE set_rotloc C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C %% %% C %% This subroutine sets up the Global->local coordinates %% C %% rotational matrices for each atom of the system. %% C %% These matrices will be used to create the projectors. %% C %% (They are the SR matrices defined in the tutorial file.) %% C %% %% C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C Definiton of the variables : C ---------------------------- USE common_data USE reps USE symm USE prnt IMPLICIT NONE COMPLEX(KIND=8), DIMENSION(:,:), ALLOCATABLE :: tmp_rot, spinrot REAL(KIND=8) :: alpha, beta, gama, factor INTEGER :: iatom, jatom, imu, isrt INTEGER :: is, is1, isym, l, lm INTEGER :: ind1, ind2, inof1, inof2 COMPLEX(KIND=8) :: ephase C C ==================================================== C Multiplication by an S matrix for equivalent sites : C ==================================================== C Up to now, rotloc is the rotloc matrix (from Global to local coordinates rotation : (rotloc)_ij = <x_global_i | x_local_j >) C The matrix S to go from the representative atom of the sort to another one must be introduced. That's what is done here-after. DO isrt=1,nsort iatom=SUM(nmult(0:isrt-1))+1 DO imu=1,nmult(isrt) jatom=iatom+imu-1 DO isym=1,nsym C If the symmetry operation isym transforms the representative atom iatom in the jatom, C the matrix rotloc is multiplied by the corresponding srot matrix, for each orbital number l. C if R[isym](iatom) = jatom, rotloc is multiplied by R[isym] and Rloc is finally R[isym] X rotloc = <x_global|x_sym><x_sym|x_local> IF(srot(isym)%perm(iatom)==jatom) THEN WRITE(17,*) ' For jatom = ',jatom, ', isym =', isym rotloc(jatom)%srotnum=isym C Calculation of krotm and iprop. rotloc(jatom)%krotm(1:3,1:3)= = MATMUL(srot(isym)%krotm(1:3,1:3), & rotloc(jatom)%krotm(1:3,1:3)) rotloc(jatom)%iprop=rotloc(jatom)%iprop* * srot(isym)%iprop C Evaluation of the Euler angles of the final operation Rloc CALL euler(TRANSPOSE(rotloc(jatom)%krotm(1:3,1:3)), & alpha,beta,gama) C According to Wien convention, euler takes in argument the transpose C of the matrix rotloc(jatom)%krotm to give a,b anc c of rotloc(jatom). rotloc(jatom)%a=alpha rotloc(jatom)%b=beta rotloc(jatom)%g=gama C C ============================================================================================================= C Calculation of the rotational matrices and evaluation of the fields timeinv and phase for the Rloc matrices : C ============================================================================================================= IF(ifSP.AND.ifSO) THEN C No time reversal operation is applied to rotloc (alone). If a time reversal operation must be applied, C it comes from the symmetry operation R[isym]. That is why the field timeinv is the same as the one from srot. rotloc(jatom)%timeinv=srot(isym)%timeinv rotloc(jatom)%phase=0.d0 DO l=1,lmax ALLOCATE(tmp_rot(1:2*(2*l+1),1:2*(2*l+1))) tmp_rot=0.d0 C Whatever the value of beta (0 or Pi), the spinor rotation matrix of isym is block-diagonal. C because the time-reversal operation have been applied if necessary. factor=srot(isym)%phase/2.d0 ephase=EXP(CMPLX(0.d0,factor)) C We remind that the field phase is (g-a) if beta=Pi. As a result, ephase = exp(+i(g-a)/2) = -exp(+i(alpha-gamma)/2) C We remind that the field phase is (a+g) if beta=0. As a result, ephase = exp(+i(a+g)/2)=-exp(-i(alpha+gamma)/2) C in good agreement with Wien conventions for the definition of this phase factor. C Up/up block : tmp_rot(1:2*l+1,1:2*l+1)=ephase* & srot(isym)%rotl(-l:l,-l:l,l) C Dn/dn block : ephase=CONJG(ephase) C now, ephase = exp(+i(a-g)/2) = -exp(-i(alpha-gamma)/2) if beta=Pi C now, ephase = exp(-i(a+g)/2) = -exp(+i(alpha+gamma)/2) if beta=0 tmp_rot(2*l+2:2*(2*l+1),2*l+2:2*(2*l+1))= & ephase*srot(isym)%rotl(-l:l,-l:l,l) IF (rotloc(jatom)%timeinv) THEN C In this case, the time reversal operator was applied to srot. rotloc(jatom)%rotl(1:2*(2*l+1),1:2*(2*l+1),l)= & MATMUL(tmp_rot(1:2*(2*l+1),1:2*(2*l+1)),CONJG( & rotloc(jatom)%rotl(1:2*(2*l+1),1:2*(2*l+1),l))) C rotloc(jatom)%rotl now contains D(Rloc) = D(R[isym])*transpose[D(rotloc)]. ELSE C In this case, no time reversal operator was applied to srot. rotloc(jatom)%rotl(1:2*(2*l+1),1:2*(2*l+1),l)= & MATMUL(tmp_rot(1:2*(2*l+1),1:2*(2*l+1)), & rotloc(jatom)%rotl(1:2*(2*l+1),1:2*(2*l+1),l)) C rotloc(jatom)%rotl now contains D(Rloc) = D(R[isym])*D(rotloc). ENDIF DEALLOCATE(tmp_rot) ENDDO ELSE C Calculation of the rotational matrices associated to Rloc ALLOCATE(tmp_rot(1:2*lmax+1,1:2*lmax+1)) DO l=1,lmax C Use of the subroutine dmat to compute the rotational matrix C associated to the Rloc operation in a (2*l+1) space : tmp_rot=0.d0 CALL dmat(l,rotloc(jatom)%a,rotloc(jatom)%b, & rotloc(jatom)%g, & REAL(rotloc(jatom)%iprop,KIND=8),tmp_rot,2*lmax+1) rotloc(jatom)%rotl(-l:l,-l:l,l)= = tmp_rot(1:2*l+1,1:2*l+1) C rotloc(jatom)%rotl = table of the rotational matrices of the symmetry operation C for the different l orbital (from 1 to lmax), in the usual complex basis : dmat = D(R[isym])_l C rotloc(jatom)%rotl = D(Rloc[jatom])_{lm} ENDDO DEALLOCATE(tmp_rot) ENDIF ! End of the "ifSO-ifSP" if-then-else C EXIT C Only one symmetry operation is necessary to be applied to R to get the complete rotloc matrix. C This EXIT enables to leave the loop as soon as a symmetry operation which transforms the representative atom in jatom is found. ENDIF ! End of the "perm" if-then-else ENDDO ! End of the isym loop C C C =========================================================== C Computation of the rotational matrices in each sort basis : C =========================================================== ALLOCATE(rotloc(jatom)%rotrep(lmax)) C C Initialization of the rotloc(jatom)%rotrep field = D(Rloc)_{new_i} C This field is a table of size lmax which contains the rotloc matrices C in the representation basis associated to each included orbital of the jatom. DO l=1,lmax ALLOCATE(rotloc(jatom)%rotrep(l)%mat(1,1)) rotloc(jatom)%rotrep(l)%mat(1,1)=0.d0 ENDDO C C Computation of the elements 'mat' in rotloc(jatom)%rotrep(l) DO l=1,lmax C The considered orbital is not included, hence no computation IF (lsort(l,isrt)==0) cycle C The considered orbital is included IF (ifSP.AND.ifSO) THEN C In this case, the basis representation needs a complete spinor rotation approach (matrices of size 2*(2*l+1) ) C -------------------------------------------------------------------------------------------------------------- DEALLOCATE(rotloc(jatom)%rotrep(l)%mat) ALLOCATE(rotloc(jatom)%rotrep(l)%mat & (1:2*(2*l+1),1:2*(2*l+1))) ALLOCATE(tmp_rot(1:2*(2*l+1),1:2*(2*l+1))) C Computation of rotloc(jatom)%rotrep(l)%mat IF (reptrans(l,isrt)%ifmixing) THEN C In this case, the basis representation requires a complete spinor rotation approach too. IF(rotloc(jatom)%timeinv) THEN tmp_rot(1:2*(2*l+1),1:2*(2*l+1))=MATMUL( & reptrans(l,isrt)%transmat(1:2*(2*l+1),1:2*(2*l+1)), & rotloc(jatom)%rotl(1:2*(2*l+1),1:2*(2*l+1),l)) rotloc(jatom)%rotrep(l)%mat(1:2*(2*l+1),1:2*(2*l+1))= = MATMUL(tmp_rot(1:2*(2*l+1),1:2*(2*l+1)), & TRANSPOSE(reptrans(l,isrt)%transmat & (1:2*(2*l+1),1:2*(2*l+1)))) C Since the operation is antilinear, the field rotloc(jatom)%rotrep(l)%mat = (reptrans)*spinrot(l)*conjugate(inverse(reptrans)) C rotloc(jatom)%rotrep(l)%mat = D(Rloc)_{new_i} = <new_i|lm> D(Rloc)_{lm} [<lm|new_i>]^* C which is exactly the expression of the spinor rotation matrix in the new basis. ELSE tmp_rot(1:2*(2*l+1),1:2*(2*l+1))=MATMUL( & reptrans(l,isrt)%transmat(1:2*(2*l+1),1:2*(2*l+1)), & rotloc(jatom)%rotl(1:2*(2*l+1),1:2*(2*l+1),l)) rotloc(jatom)%rotrep(l)%mat(1:2*(2*l+1),1:2*(2*l+1))= = MATMUL(tmp_rot(1:2*(2*l+1),1:2*(2*l+1)), & TRANSPOSE(CONJG(reptrans(l,isrt)%transmat & (1:2*(2*l+1),1:2*(2*l+1))))) C Since the operation is linear, the field rotloc(jatom)%rotrep(l)%mat = (reptrans)*spinrot(l)*inverse(reptrans) C rotloc(jatom)%rotrep(l)%mat = D(Rloc)_{new_i} = <new_i|lm> D(Rloc)_{lm} <lm|new_i> C which is exactly the expression of the spinor rotation matrix in the new basis. ENDIF ELSE C In this case, the basis representation is reduced to the up/up block and must be extended. ALLOCATE(spinrot(1:2*(2*l+1),1:2*(2*l+1))) spinrot(1:2*(2*l+1),1:2*(2*l+1))=0.d0 spinrot(1:2*l+1,1:2*l+1)= & reptrans(l,isrt)%transmat(-l:l,-l:l) spinrot(2*l+2:2*(2*l+1),2*l+2:2*(2*l+1))= & reptrans(l,isrt)%transmat(-l:l,-l:l) IF(rotloc(jatom)%timeinv) THEN tmp_rot(1:2*(2*l+1),1:2*(2*l+1))=MATMUL( & spinrot(1:2*(2*l+1),1:2*(2*l+1)), & rotloc(jatom)%rotl(1:2*(2*l+1),1:2*(2*l+1),l)) rotloc(jatom)%rotrep(l)%mat(1:2*(2*l+1),1:2*(2*l+1))= = MATMUL(tmp_rot(1:2*(2*l+1),1:2*(2*l+1)), & TRANSPOSE(spinrot(1:2*(2*l+1),1:2*(2*l+1)))) C Since the operation is antilinear, the field rotloc(jatom)%rotrep(l)%mat = (reptrans)*spinrot(l)*conjugate(inverse(reptrans)) C rotloc(jatom)%rotrep(l)%mat = D(Rloc)_{new_i} = <new_i|lm> D(Rloc)_{lm} [<lm|new_i>]^* C which is exactly the expression of the spinor rotation matrix in the new basis. ELSE tmp_rot(1:2*(2*l+1),1:2*(2*l+1))=MATMUL( & spinrot(1:2*(2*l+1),1:2*(2*l+1)), & rotloc(jatom)%rotl(1:2*(2*l+1),1:2*(2*l+1),l)) rotloc(jatom)%rotrep(l)%mat(1:2*(2*l+1),1:2*(2*l+1))= = MATMUL(tmp_rot(1:2*(2*l+1),1:2*(2*l+1)), & TRANSPOSE(CONJG(spinrot(1:2*(2*l+1),1:2*(2*l+1))))) C Since the operation is linear, the field rotloc(jatom)%rotrep(l)%mat = (reptrans)*spinrot(l)*inverse(reptrans) C rotloc(jatom)%rotrep(l)%mat = D(Rloc)_{new_i} = <new_i|lm> D(Rloc)_{lm} <lm|new_i> C which is exactly the expression of the spinor rotation matrix in the new basis. ENDIF DEALLOCATE(spinrot) ENDIF ! End of the if mixing if-then-else DEALLOCATE(tmp_rot) C ELSE C If the basis representation can be reduce to the up/up block (matrices of size (2*l+1) only) C -------------------------------------------------------------------------------------------- DEALLOCATE(rotloc(jatom)%rotrep(l)%mat) ALLOCATE(rotloc(jatom)%rotrep(l)%mat(-l:l,-l:l)) ALLOCATE(tmp_rot(-l:l,-l:l)) C Computation of rotloc(jatom)%rotrep(l)%mat tmp_rot(-l:l,-l:l)=MATMUL( & reptrans(l,isrt)%transmat(-l:l,-l:l), & rotloc(jatom)%rotl(-l:l,-l:l,l)) rotloc(jatom)%rotrep(l)%mat(-l:l,-l:l)= = MATMUL(tmp_rot(-l:l,-l:l), & TRANSPOSE(CONJG(reptrans(l,isrt)%transmat(-l:l,-l:l)))) C the field rotloc(jatom)%rotrep(l)%mat = (reptrans)*rotl*inverse(reptrans) C rotloc(jatom)%rotrep(l)%mat = D(Rloc)_{new_i} = <new_i|lm> D(Rloc)_{lm} <lm|new_i> C which is exactly the expression of the rotation matrix for the up/up block in the new basis. DEALLOCATE(tmp_rot) ENDIF ENDDO ! End of the l loop ENDDO ! End of the jatom loop ENDDO ! End of the isrt loop C RETURN END SUBROUTINE euler(Rot,a,b,c) C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C %% %% C %% This subroutine calculates the Euler angles a, b and c of Rot. %% C %% The result are stored in a,b,c. (same as in SRC_lapwdm/euler.f) %% C %% %% C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C IMPLICIT NONE REAL(KIND=8) :: a,aa,b,bb,c,cc,zero,pi,y_norm,dot REAL(KIND=8), DIMENSION(3,3) :: Rot, Rot_temp REAL(KIND=8), DIMENSION(3) :: z,zz,y,yy,yyy,pom,x,xx INTEGER :: i,j C Definition of the constants zero=0d0 pi=ACOS(-1d0) C Definition of Rot_temp=Id DO i=1,3 DO j=1,3 Rot_temp(i,j)=0 IF (i.EQ.j) Rot_temp(i,i)=1 ENDDO ENDDO C Initialization of y=e_y, z=e_z, yyy and zz DO j=1,3 y(j)=Rot_temp(j,2) yyy(j)=Rot(j,2) z(j)=Rot_temp(j,3) zz(j)=Rot(j,3) ENDDO C Calculation of yy CALL vecprod(z,zz,yy) y_norm=DSQRT(dot(yy,yy)) IF (y_norm.lt.1d-10) THEN C If yy=0, this implies that b is zero or pi IF (ABS(dot(y,yyy)).gt.1d0) THEN aa=dot(y,yyy)/ABS(dot(y,yyy)) a=ACOS(aa) ELSE a=ACOS(dot(y,yyy)) ENDIF C IF (dot(z,zz).gt.zero) THEN c=zero b=zero IF (yyy(1).gt.zero) a=2*pi-a ELSE c=a a=zero b=pi IF (yyy(1).lt.zero) c=2*pi-c ENDIF ELSE C If yy is not 0, then b belongs to ]0,pi[ DO j=1,3 yy(j)=yy(j)/y_norm ENDDO C aa=dot(y,yy) bb=dot(z,zz) cc=dot(yy,yyy) IF (ABS(aa).gt.1d0) aa=aa/ABS(aa) IF (ABS(bb).gt.1d0) bb=bb/ABS(bb) IF (ABS(cc).gt.1d0) cc=cc/ABS(cc) b=ACOS(bb) a=ACOS(aa) c=ACOS(cc) IF (yy(1).gt.zero) a=2*pi-a CALL vecprod(yy,yyy,pom) IF (dot(pom,zz).lt.zero) c=2*pi-c ENDIF C END SUBROUTINE vecprod(a,b,c) C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C %% %% C %% This subroutine calculates the vector product of a and b. %% C %% The result is stored in c. (same as in SRC_lapwdm/euler.f) %% C %% %% C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C IMPLICIT NONE REAL(KIND=8), DIMENSION(3) :: a,b,c C c(1)=a(2)*b(3)-a(3)*b(2) c(2)=a(3)*b(1)-a(1)*b(3) c(3)=a(1)*b(2)-a(2)*b(1) C END REAL(KIND=8) FUNCTION dot(a,b) C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C %% %% C %% This function calculates the scalar product of a and b. %% C %% The result is stored in dot. (same as in SRC_lapwdm/euler.f) %% C %% %% C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C IMPLICIT NONE REAL(KIND=8) :: a,b INTEGER :: i dimension a(3),b(3) dot=0 DO i=1,3 dot=dot+a(i)*b(i) ENDDO C END