- for all functions, except when GIL option (not implemented) is here
we use a triqs::py_stream, which redirect the stream
to python sys.write
- so that a simple C++ code with a std::cout
print its output in the notebook...
- NB : it only works for the code within the cell.
If it calls another function on the lib which uses cout,
print is not redirected.
Designed for simple tests....
- cerr not (yet) redirected. (useful ?).
- Add to the wrapper generator (add_method) the release_GIL_and_enable_signal option which :
- release the GIL
- save the python signal handler
- enable the C++ triqs signal handler instead.
- undo all of this after the code runs, or in a case of exception.
- used python include, ceval.h, line 72 comments and below.
- reworked the triqs::signal_handler.
simple C like function, no object (no need).
start, stop, received, cf header file.
- clean the call_back.cpp : only place using the signal directly
(qmc uses the callback).
in particular, remove the old BOOST CHRONO, since
the std::chrono works fine on platforms we use now.
- implement transposed_view for arrays.
- .transpose method for gf
- wrapped to python
- add call op. for GfImTime, using C++
- Added ChangeLog
- rm matrix_stack
- start cleaning old code
- new parameter class :
parameters are viewed as form, built in C++, and filled in C++/python.
Each field of the form as a precise C++ type (erased using standard techniques).
First tests ok, to be reread/checked.
TODO : serialization is commented. Lead to long compilation time & large code
due to boost::serialization. Use h5 when possible.
- wrapper :
- separated the converters of the wrapped type in the TRIQS library
- necessary for parameters (it used outside an .so) and potentially
other codes, outside an .so module