- Cleaned of the eigensystems computations (worker is simpler, decision
at runtime, etc..).
- Fix#119 : When the matrix is in C order, the fortran lapack
sees in fact its conjugate, so we need to conjugate the eigenvectors at the end.
NB : not true if the storage order of the matrix is already fortran of course.
- Pb was that indices for gf where empty when constructed
with default args from C++.
- changed into : make indices from the shape in the default
case.
- also added more, simpler construction, for the indices
to easy C++ construction.
- the wrapper will now add date and time
at the boundary between C++ and Python.
- using C lib, not C++ (lack of support of C++ chrono functions in gcc).
- hdfarchive : transform the key to string with str
because they can be unicode and C wrapper does not convert python unicode strings.
- gf : Correct the scheme for BlockGf : not very clean, to be improved ?
I also added a test to make sure the time mesh is twice as
long as the frequency mesh. Obviously now some tests don't
pass... I will fix them in the next commit.
- For users : only change is :
H5::H5File in apps. to be replaced by triqs::h5::file, same API.
- using only the C API because :
- it is cleaner, better documented, more examples.
- it is the native hdf5 interface.
- simplify the installation e.g. on mac. Indeed, hdf5 is
usually installed without C++ interface, which is optional.
E.g. EPD et al., brew by default.
Also the infamous mpi+ hdf5_cpp bug, for which we have no clean solution.
- clean the notion of parent of a group. Not needed, better iterate function in C LT API.
- modified doc : no need for C++ bindings any more.
- modified cmake to avoid requiring CPP bindings.
- import arrays in extensions (mako file).
- put import_arrays in converter,
along the lines of our own objects (numpy and triqs uses
the same capsule technique, i.e. the standard technique from python
doc.)
- for all functions, except when GIL option (not implemented) is here
we use a triqs::py_stream, which redirect the stream
to python sys.write
- so that a simple C++ code with a std::cout
print its output in the notebook...
- NB : it only works for the code within the cell.
If it calls another function on the lib which uses cout,
print is not redirected.
Designed for simple tests....
- cerr not (yet) redirected. (useful ?).
- Add to the wrapper generator (add_method) the release_GIL_and_enable_signal option which :
- release the GIL
- save the python signal handler
- enable the C++ triqs signal handler instead.
- undo all of this after the code runs, or in a case of exception.
- used python include, ceval.h, line 72 comments and below.
- reworked the triqs::signal_handler.
simple C like function, no object (no need).
start, stop, received, cf header file.
- clean the call_back.cpp : only place using the signal directly
(qmc uses the callback).
in particular, remove the old BOOST CHRONO, since
the std::chrono works fine on platforms we use now.
- change the constructor wrapper.
- in the new method, leave the pointer _c to NULL.
- in the init, allocate it.
- It seems ok to leave the object in this non initialized state,
but that is not so clear from the doc.
Added check for this pointer == NULL in converters.
- Use a new buffered_function to replace the complicated generator code from ALPS.
- Clean the implementation of the random_generator
- update the documentation
- update to the new python wrapper (could not be done with the previous
version, because of lack of move constructor).
- implement transposed_view for arrays.
- .transpose method for gf
- wrapped to python
- add call op. for GfImTime, using C++
- Added ChangeLog
- rm matrix_stack
- start cleaning old code
- an include missing on OS X
- change serialization in the general case where hdf5 can be used,
(version of hdf5 high enough) to use only one buffer,
not a buffer per field.
- put back the mpi_param example.
- parameters : clean, add back serialization. Clean whitespace
- serialization : depending on the version of the hdf5 lib,
uses h5 or boost.
- TODO : test it on a machine with new hdf5.