- The issue comes from the fact that the default generated
+= and co by the Python API is the one for immutable types, like int.
- Indeed, in python, for an int :
x=1
id(x)
140266967205832
x+=1
id(x)
140266967205808
- For a mutable type, like a gf, it is necessary to
add explicitly the xxx_inplace_add functions.
- Added :
- the generation of the inplace_xxx functions
- a method in class_ in the wrapper generator that
deduce all += operator from the + operators.
- this assumes that the +=, ... are defined in C++.
- The generation of such operators are optional, with option
with_inplace_operators in the arithmetic flag.
- Also, added the overload g += M and g -= M for
g : GfImfreq, M a complex matrix.
Mainly for legacy Python codes.
- Pb was that indices for gf where empty when constructed
with default args from C++.
- changed into : make indices from the shape in the default
case.
- also added more, simpler construction, for the indices
to easy C++ construction.
- hdfarchive : transform the key to string with str
because they can be unicode and C wrapper does not convert python unicode strings.
- gf : Correct the scheme for BlockGf : not very clean, to be improved ?
I also added a test to make sure the time mesh is twice as
long as the frequency mesh. Obviously now some tests don't
pass... I will fix them in the next commit.
- For users : only change is :
H5::H5File in apps. to be replaced by triqs::h5::file, same API.
- using only the C API because :
- it is cleaner, better documented, more examples.
- it is the native hdf5 interface.
- simplify the installation e.g. on mac. Indeed, hdf5 is
usually installed without C++ interface, which is optional.
E.g. EPD et al., brew by default.
Also the infamous mpi+ hdf5_cpp bug, for which we have no clean solution.
- clean the notion of parent of a group. Not needed, better iterate function in C LT API.
- modified doc : no need for C++ bindings any more.
- modified cmake to avoid requiring CPP bindings.
- implement transposed_view for arrays.
- .transpose method for gf
- wrapped to python
- add call op. for GfImTime, using C++
- Added ChangeLog
- rm matrix_stack
- start cleaning old code
- h5/make_h5.... only used in parameters.
- old boost includes before C++11
- remove boost serialization, make macro TRIQS_MAKE_NVP temporarely
- remove boost::is_complex (can be written in 2 lines...)
- move some lib in cpp
Changed operator()(int, int...) && for array, and views.
- For const_view and regular type, returns value_type (i.e. a copy).
NB : does make a copy, not a move. Ok for scalar type. TODO: think for complicated types.
This allows codes like :
f(x)(0,0) where f : x-> matrix or const_view
to be correct in clef expression evaluation.
- For _view : return a value_type &, as before to allow :
A(....)(0,0) = rhs;
It is not possible to detect dangling refs in that case at compile time.
Added a security in TRIQS_ARRAYS_DEBUG mode to detect a dangling ref at run time,
i.e. the case where the view is "unique" (ref count ==1).
This would be a quite bad design anyway ...
- also :
- clean operator[] for vector (old workaround for old gcc...)
- add IsView flag in ISP impl class, for the impl. of operator() &&
mesh_pt should NOT be done directly by (),
it should be casted to matsubara_freq.
Removed an old line of code which we forgot to clean
when introducing matsubara_freq
A(i_)(om_) << ...
for A an array of gf was not working.
Modified the auto_assign of arrays to handle the case when the object
in the array is itself autoassigned.
Using the model of std::vector adapter for clef, which works.
Also fixed the gf for a little details (gf_impl is usually in the expression tree, not gf).
- bool at_end() for a mesh point means AFTER the last point ,
as end in STL. It was not correct ( +1 missing).
- also the at_end was not computed in the mesh product.
- it slightly changes the test_fit_tail --> just changed the output.
--> did this bug affect other functions/codes ?
- correct previous commit (for scalar gf, the new check was not compiling)
- correct windowing of linear mesh (left point corrected as right point for rounding error
-> code was previously assuming mesh with only positive, fermionic matsubara freqs
-> changed wn_min to n_min (was misleading, since it was an index, not a frequency) / same for <-> max
-> changed doc accordingly
-> Previously, calculation was implicitly assuming a mesh with only positive matsubara frequencies.
-> Added corresponding test
-> Also added test of density calculation with or without correct tail.
- add c14 include
- the C++14 is lot more readable (due to generic lambda).
- for mesh/product.hpp -> now 2 versions (C++14 and C++11 for temporary
backward compatibility).