* elk-transport
* minor updates
* specify explicitly fortran compiler and python exe in CMAKE
Co-authored-by: Alexander Hampel <ahampel@flatironinstitute.org>
updated the Elk interface to fix some minor bugs which arose for certain systems with equivalent atoms. I've also included new tests for this interface and collated all of these interface tests in the "test/python/elk" subdirectory.
Added:
substantial speed-up using MPI for Fourier transform
option to add a local spin-orbit term to t2g local Hamiltonian.
writing dft_fermi_energy to group 'dft_misc_input'
writing kpt_basis to group 'dft_input' if bloch_basis=True
writing kpts_cart to group 'dft_misc_input' if bloch_basis=True
Minor bugfixes:
bug can be caused by rounding of outer window limits if bloch_basis and disentangle =True, made error message clearer
for charge self-consistent calculations, and 2) spin-orbit coupling
if bloch_basis = True:
* if "seedname_u.dat" (and in case of disentanglement "seedname_u_dis.dat")
present, write hopping in Bloch basis
* "proj_mat" transforming from Bloch to orbital space
* diagonal hoppings are directly read from "seedname.eig"
* fermi weights and band_window of Wannier Hamiltonian are read from DFT
output and "seedname.nnkp", written into new subgroup "dft_misc_input"
* automatic calculation of "density_required"
* implemented for Quantum Espresso (read from "seedname.nscf.out" if
verbosity = 'high') and VASP (read from "OUTCAR"/"LOCPROJ")
* spin-orbit coupling SO = 1 implemented
* substitute k_mesh and bz_weights with kpts and kpt_weights,
respectively (previous names kept for compatibility)
* updated tests
Adding Elk-TRIQS interface (first iteration)
This interface reads in Elk's ground-state files / projectors generated by a specific Elk interface code version (https://github.com/AlynJ/Elk_interface-TRIQS). The interface can perform charge-self consistent DFT+DMFT calculations using the aforementioned Elk code version, including spin orbit-coupling. Hence, this is the first open source interfaced DFT code to triqs with FCSC support.
The commit includes detailed documentation and tutorials on how to use this interface. Moreover, further new post-processing routines are added for Fermi surface plots and spectral functions (A(w)) from the elk inputs.
The interface was tested by A. James and A. Hampel. However, this is the first iteration of the interface and should be used with care. Please report all bugs.
List of changes:
---------------
- sumk.py: added cacluation of charge density correction for elk (dm_type='elk').
- sumk_dft_tools.py: added new post-processing functions to calculate the Fermi surface and A(w) from the Elk inputs.
- documentation and tutorial files amended for this interface.
- added python tests for the Elk converter.
* adding kpts_basis, kpts, and kpt_weights to h5 dft_input
* read these properties as optional arguments in Sumk_dft.py
* change accordingly the ref h5 files for vasp converter test
* soon all converters are demanted to store those properties
* bz_weights should then be replaced by kpt_weights
* closes PR #146
* moved the plovasp C++ code to c++/triqs_dft_tools/converters/vasp
* added global header triqs_dft_tools/triqs_dft_tools.hpp
* python dir based on single cmakelist file
* registered C++ tests for plovasp
* corrected imports for py3 tests for plovasp
* corrected block order in sigma_from_file and srvo3_Gloc
* exchanged ref files for sigma_from_file, srvo3_Gloc, SrVO3.ref.h5
* moved vasp converter bash scripts from dir shells to bin dir
* change in Build_Documentation control flow
* don’t Build_Documentation of deps if EXCLUDE_FROM_ALL
* export new APP4TRIQS_WITH_PYTHON_SUPPORT variable in config.cmake