The k-phases turned out to be already included at VASP level.
The previous changes are commented out. However, the dependence
of `ProjectorShell` on `kmesh` and `struct` remains and the tests
are fixed accordingly.
In the calculation of the Hamiltonian correction to the total energy
the arrays were not always aligned if the number of bands varied inside
the energy window.
* Fixed obvious bugs:
-- forgotten 'import re'
-- import user script by name from string
-- 'import converter' instead of 'import plovasp...'
* Number of iterations provided by the bash-script now has
an affect.
* Added a possibility to specify an alternative cfg-file
Now 'pytriqs' is invoked with an absolute path to the current
TRIQS installation. This ensures that the scripts will call
a compatible version of 'pytriqs'.
This test suite is based on V d-projectors in SrVO3.
The data have been recalculated to obtain the correct format
of LOCPROJ.
Also, some small but important changes are introduced to
the LOCPROJ parser and class ElectronicStructure.
Specifically, eigenvalues, Fermi-weights, and Fermi level are
now read from LOCPROJ instead of EIGENVAL and DOSCAR.
Besides, LOCPROJ now provides the value of NCDIJ instead of
NSPIN.
Basically, with these changes EIGENVAL and DOSCAR are no longer
needed. Although corresponding parseres will remain in 'vaspio.py'
they will not be used for standard operations.
To make it work one has to create a symlink in 'dft/converters/plovasp'
pointing to the built library 'atm.so'.
Also, one has to use 'from <modulename> import <function>' inside
the test itself to avoid problems with module name substitutions.
First of all, 'c++/plovasp/atm' was erroneously removed after
the last merge with the upstream branch.
Now, the whole subdirectory 'c++' is added.
Also, C++ flags are properly imported from the TRIQS configuration.
Function 'calc_density_correction()' has now two options.
VASP-type calculations include not only a density-matrix correction
(which is defined differently compared to Wien2K) but also a correction
to the band energy.
The main change is that `test_all.py` is now renamed to `run_suite.py`,
with the latter being able to run a selected test suite if a corresponding
command line argument (test suite directory name) is provided.
CMakeLists are improved to copy each test suite separately to avoid
copying unnecessary files. Also each test suite corresponds now to
a separate CMake test.
All imports inside the test cases refer now to paths relative
to TRIQS python library path. For example,
`import vaspio`
is replaced with
`import applications.dft.converters.plovasp.vasio`
In this way all tests can be executed wtih `build_pytriqs` provided
that the package is installed (the same practice as with other
'dft_tools' tests).
Also, the underscore can now be removed from subdirectory names
because there is no more conflict with module names.
In order to wrap the ATM routines by Python using TRIQS wrapping
tools it is necessary to modify the interface to 'dos_tetra3d'.
The major changes involved replacing direct NumPy arrays with
TRIQS arrays which can be converted to Python arrays using library
tools.
Also, some small changes were necessary to port the functions
from C99 complex numbers to C++ style.
CMakeList is added to automatize building of the ATM library.
In order to use c++2py tools the C-code must be rewritten to C++.
In particular, instead of direct creation of Numpy arrays STL
containers must be used.
The local Hamiltonian is now output after the density matrix.
This is mainly needed for debug purposes. At a later stage the
output should be better formatted and controlled.