Added output of density and overlap matrices to plotools.py.
If one defines a very large window (spanning all bands) one can
compare this output with the one produced by 'debug_density_matrix()'
in class ElectronicStructure.
For a small window, the overlap gives an idea of symmetry-related
degeneracies and of how strong the states are going to be renormalized
by the orthogonalization routine.
The new method in ElectronicStructure allows one to output
denisty and overlap matrices originating from the raw projectors
read from PROJCAR (LOCPROJ). This output is mainly intended for debug purposes.
Added a check to 'vaspio.py' testing that the number of columns
implies that the Fermi weights are present in EIGENVAL. This check ensures
that the new format (starting from VASP 5.4) of the file is used.
Corresponding test is added to the suite.
Added 'rpath.py' module to determine the current directory.
Also fixed the test example for EIGENVAL: VASP 5.4 uses a format
with Fermi weights output (unlike previous versions).
Originally, the tests worked only when run from their respective
directory. If one tries to run them from another directory (which happens
when test discovery is used) the tests were not able to find the input files.
Now, a dummy module 'rpath' is added to all tests whose sole role is
to obtain the current path.
The new projector input requires a different approach of selecting
the projectors for each shell. Specifically, for each site/orbital
index defined for a given shell one has to look for the corresponding
input projector (from PROJCAR).
Also, small fixes were required to make 'ferw' array index order
consistent with what is expected in ProjectorShell. This order might
eventually be modified.
Since in the new implementation the projectors produced by VASP
are output only for selected functions it is necessary to check
that input cfg-file specifies only those projectors that were selected
in the INCAR file. The consistency routine checks for every shell
and site/orbital character that a corresponding projector is present
in PROJCAR.
Some necessary modifications to class ElectronicStructure in order
to conform the modified projector input. In particular, the dimensions
of the projector array are now taken directly from the array,
and the old dictionary 'params' is replaced with a list 'proj_params'
containing information on the character of projectors.
Small fixes to accord with the changes of Vaspio:
* 'nspin' is now taken from Eigenval.ispin
* 'nc_flag' is now determined from the value of 'ncdij' read from DOSCAR
* 'ferw' is now taken from Eigenval
This python-parser is a prototype of a future parser that will probably
be using only LOCPROJ (which is going to be modified).
At the moment, one has to use the first line of LOCPROJ to determine
the array dimensions and parse PROJCAR because it contains relevant information
on projectors (such as site and orbital character).
Note that in the previous implementation relying on the binary PLOCAR-file
the Fermi weights were taken from PLOCAR. In the current version of VASP
(>=5.4.1) the Fermi weights can read in from EIGENVAL.
The files from the original vasp-interface repository are reshuffled in
accord with the directory structure of dft_tools. Some of the directories,
such as 'test' (unit tests for the interface), 'examples' (simple examples for
the development purposes) are temporarily placed into 'python/vasp' directory
to avoid confusion with integral tests and examples of dft_tools.