The part responsible for generating a mapping between the shell/ions
and block projector matrices has now been relocated to a separate
method 'get_block_matrix_map()'. This simplifies the source code
and makes testing easier.
The mapping for NORMION = True has been implemented.
Also, the orthogonalization loop has been fixed. First of all,
orthogonalization should be done separately for each block map 'bl_map'.
Second, one has to take into account that the orbital dimensions of the
block matrix can vary from block to block. To make that the overlap
matrix is non-singular one, thus, has to pass to
'orthogonalize_projector_matrix()' only a view of a submatrix of 'pmat'
corresponding to the current block.
Two tests to check the simplest cases have been added.
The implementation of the mapping of a set of projectors (belonging
to different shells and ions) onto a block matrix in the
orthogonalization routine has been generalized. Now, an implementation
of the choice between the full orthogoanlization and per-site one
is straightforward: it is just a matter of defining a proper mapping.
The mapping scheme itself is described in the doc-string of method
'ProjectorGroup.orthogonalize()'
There was a very nasty bug in the preparation of the block matrix
'p_mat'. The point is that this matrix is created once for all k-points
with the band dimension being the maximum possible. However, only
a part of the matrix is used at every k-point but the orthogonalization
is done for the whole matrix. The problem was that if the number of
bands for a given k-point was smaller than that for the next k-point
them for the next k-point some part of 'p_mat' still contained data from
the previous step, which messed up the orthonormalization. Now, 'p_mat'
is set to zero at each step of the loop.
Also, property 'nion' was added to ProjectorShell since it is used
very often.
First of all, suite '_plotools' is now split into three separate suites
'_plotools', '_proj_shell', '_proj_group', following the changes made
into the structure of the code.
Second, the two tests in 'test_projshells.py' have been fixed to conform
to the recent modifications in the code and input files.
Added missing import of ProjectorGroup and ProjectorShell to
'plotools.py'.
Moved separate routines 'orthogonalize_projector_matrix()'
and 'select_bands()' into class ProjectorGroup because these
routines are anyway not used elsewhere outside this class.
The classes ProjectorShell and ProjectorGroup are now defined in
different source files. This makes 'plotools.py' only contain
routines that control the data flows, including consistency checks
and output.
Matrices parsed by the config-parser are interpreted as transformation
matrices for each ion in the shell. If only one matrix is defined
(by TRANSFORM) it is copied for every ion.
Whether a matrix is real or complex is derived from its dimensions
consistently with other parameters of the shell (such as 'nm = 2*l + 1').
Transformation matrices are stored as complex in any case.
TRANSFILE option provides a filename containing transformation
matrices for all ions of a projected shell.
The parser simply reads the numbers into a 2d-array which is left
for interpretation at a later stage.
A description of the option 'TRANSFILE' is added to 'config.rst'.
Also, the description of options 'RTRANSFORM' and 'CTRANSFORM' is
modified. They are now combined into a single option 'TRANSFORM'.
It was incorrect to ascribe VASP atomic sort to corr_shell['sort'],
the latter having a different meaning. According to the terminology of
Wien2k a sort determines an equivalence class of atoms.
Since the implementation at the moment does not support symmetries
the atom index is now used as a 'sort' index to make sure that all shells
remain inequivalent.
If option DOSMESH is specified a projected DOS for each shell
will be output. Energy mesh parameters are given in DOSMESH as
DOSMESH = [EMIN EMAX] N_POINTS
The parameters in the brackets [] are optional. If only the number
of points is specified the energy range is taken to be the same
as the projection energy window.
When PROJCAR is read it assigns the orbitals by their corresponding
labels. These labels are now added to the dictionary 'proj_params'.
Although they are not used currently they can be handy when it comes
to identifying the character of the orbitals.
Also, the order of orbital labels for p- and d-orbitals was changed
to conform to the convention of the old PROCAR file.
Added a function that allows one to get the non-interacting projected DOS for
newly generated projectors. The DOS is calculated with analytical tetrahedron
integration added previously.
At the moment, the DOS is generated and output for debugging purposes
after the projectors are generated. Eventually, there should be an
option in the input config file requesting the output of DOS for a given
energy mesh.
There was an inconsistency in the convention on the position of the
subarray corresponding to projectors within the selected window.
In some cases the subarray was defined from 0 to ib_max, in other cases
it was from 'ib1 - ib_min' to 'ib2 - ib_min'.
Now the global convention is that the projectors for a given window
are stored in a slice '0:ib_max', where 'ib_max = ib2 - ib1 + 1'.
There was a mess with indices 'ib_min', 'ib_max' indicating the
selected window. First of all their old names 'nb_min', 'nb_max' were
confusing and because of that they were sometimes incorrectly used as
the maximum size of the window and sometimes as a maximum band index.
Now the convention is more clear: 'ib_min', 'ib_max' correspond to the
minimum/maximum band indices (in terms of original VASP indices) and
'nb_max == ib_max - ib_min + 1' is the maximum number of bands within
the window.
Added output of density and overlap matrices to plotools.py.
If one defines a very large window (spanning all bands) one can
compare this output with the one produced by 'debug_density_matrix()'
in class ElectronicStructure.
For a small window, the overlap gives an idea of symmetry-related
degeneracies and of how strong the states are going to be renormalized
by the orthogonalization routine.
The new method in ElectronicStructure allows one to output
denisty and overlap matrices originating from the raw projectors
read from PROJCAR (LOCPROJ). This output is mainly intended for debug purposes.
Added a check to 'vaspio.py' testing that the number of columns
implies that the Fermi weights are present in EIGENVAL. This check ensures
that the new format (starting from VASP 5.4) of the file is used.
Corresponding test is added to the suite.
Added 'rpath.py' module to determine the current directory.
Also fixed the test example for EIGENVAL: VASP 5.4 uses a format
with Fermi weights output (unlike previous versions).
Originally, the tests worked only when run from their respective
directory. If one tries to run them from another directory (which happens
when test discovery is used) the tests were not able to find the input files.
Now, a dummy module 'rpath' is added to all tests whose sole role is
to obtain the current path.
The new projector input requires a different approach of selecting
the projectors for each shell. Specifically, for each site/orbital
index defined for a given shell one has to look for the corresponding
input projector (from PROJCAR).
Also, small fixes were required to make 'ferw' array index order
consistent with what is expected in ProjectorShell. This order might
eventually be modified.
Since in the new implementation the projectors produced by VASP
are output only for selected functions it is necessary to check
that input cfg-file specifies only those projectors that were selected
in the INCAR file. The consistency routine checks for every shell
and site/orbital character that a corresponding projector is present
in PROJCAR.
Some necessary modifications to class ElectronicStructure in order
to conform the modified projector input. In particular, the dimensions
of the projector array are now taken directly from the array,
and the old dictionary 'params' is replaced with a list 'proj_params'
containing information on the character of projectors.
Small fixes to accord with the changes of Vaspio:
* 'nspin' is now taken from Eigenval.ispin
* 'nc_flag' is now determined from the value of 'ncdij' read from DOSCAR
* 'ferw' is now taken from Eigenval