3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-22 04:13:47 +01:00

Added untested 'ProjectorGroup' class (including orthogonalization routine)

This commit is contained in:
Oleg E. Peil 2015-02-17 21:12:57 +01:00 committed by Michel Ferrero
parent ba015d4b62
commit f0ae1c9927

View File

@ -33,9 +33,11 @@ class Projector:
return (overlap, over_eig)
################################################################################
# orthogonalize_projector()
#
# orthogonalize_projector_matrix()
#
################################################################################
def orthogonalize_projector(p_matrix):
def orthogonalize_projector_matrix(p_matrix):
"""
Orthogonalizes a projector defined by a rectangular matrix `p_matrix`.
@ -50,13 +52,15 @@ def orthogonalize_projector(p_matrix):
Orthogonalized projector matrix, initial overlap matrix and its eigenvalues.
"""
# Overlap matrix O_{m m'} = \sum_{v} P_{m v} P^{*}_{v m'}
overlap = np.dot(p_matrix, p_matrix.conj().T)
# Calculate [O^{-1/2}]_{m m'}
eig, eigv = np.linalg.eigh(overlap)
assert np.all(eig > 0.0), ("Negative eigenvalues of the overlap matrix:"
"projectors are ill-defined")
sqrt_eig = np.diag(1.0 / np.sqrt(eig))
shalf = np.dot(eigv, np.dot(sqrt_eig, eigv.conj().T))
# Apply \tilde{P}_{m v} = \sum_{m'} [O^{-1/2}]_{m m'} P_{m' v}
p_ortho = np.dot(shalf, p_matrix)
return (p_ortho, overlap, eig)
@ -115,11 +119,13 @@ def select_bands(eigvals, emin, emax):
return ib_win, nb_min, nb_max
################################################################################
################################################################################
#
# class ProjectorGroup
#
################################################################################
################################################################################
class ProjectorGroup:
"""
Container of projectors defined within a certain energy window.
@ -129,45 +135,22 @@ class ProjectorGroup:
Parameters:
- pars (dict) : dictionary of parameters from the config-file for a given PLO group
- proj_raw (numpy.array) : array of raw projectors
- gr_pars (dict) : group parameters from the config-file
- shells ([ProjectorShell]) : array of ProjectorShell objects
- eigvals (numpy.array) : array of KS eigenvalues
"""
# def __init__(self, proj_set, nb_min, nb_max, ib_win):
# """
# Constructor.
#
# Parameters
# ----------
#
# proj_set (numpy.array) : projector array
# nb_min (int) : the lowest absolute band index
# nb_max (int) : the lowest absolute band index
# ib_win (numpy.array((nk, ns, 2), dtype=int)) : the lowest and highest band indices
# for a given `k`-point
# """
# self.proj_set = proj_set
# self.nb_min = nb_min
# self.nb_max = nb_max
# self.ib_win = ib_win
#################################################################################
# __init__()
#################################################################################
def __init__(self, pars, proj_raw, eigvals):
def __init__(self, gr_pars, shells, eigvals):
"""
Constructor
"""
ns = proj_raw.shape[1]
nk, nband, ns_band = eigvals.shape
self.emin = gr_pars['emin']
self.emax = gr_pars['emax']
self.ishells = gr_pars['shells']
self.ortho = gr_pars['normalize']
self.normion = gr_pars['normion']
self.lorb = pars['lshell']
self.lm_l = range(lorb**2, (lorb+1)**2)
nlm = len(self.lm_l)
self.emin = pars['emin']
self.emax = pars['emax']
self.shells = shells
# Determine the minimum and maximum band numbers
ib_win, nb_min, nb_max = select_bands(eigvals, self.emin, self.emax)
@ -175,22 +158,63 @@ class ProjectorGroup:
self.nb_min = nb_min
self.nb_max = nb_max
# Set the dimensions of the array
nb_win = self.nb_max - self.nb_min + 1
nion_sel = pars['ion_list'].shape[0]
# Select projectors within the energy window
for ish in self.ishells:
shell = self.shells[ish]
shell.select_projectors(ib_win, nb_min, nb_max)
self.proj_set = np.zeros((nion_sel, ns, nk, nb_win, nlm), dtype=np.complex128)
# Select projectors for a given energy window
################################################################################
#
# orthogonalize
#
################################################################################
def orthogonalize(self):
"""
Orthogonalize a group of projectors.
"""
# Quick exit if no normalization is requested
if not self.ortho:
return
# TODO: add the case of 'normion = True'
assert not self.normion, "'NORMION = True' is not yet implemented"
# Determine the dimension of the projector matrix
# and map the blocks to the big matrix
i1_bl = 0
bl_map = [{} for ish in self.ishells]
for ish in self.ishells:
_shell = self.shells[ish]
nion, ns, nk, nlm, nb_max = _shell.proj_win.shape
bmat_bl = [] # indices corresponding to a big block matrix
for ion in xrange(nion):
i2_bl = i1_bl + nlm
bmat_bl.append((i1_bl, i2_bl))
i1_bl = i2_bl
bl_map[ish]['bmat_blocks'] = bmat_bl
ndim = i2
p_mat = np.zeros((ndim, nb_max), dtype=np.complex128)
for isp in xrange(ns):
for ik in xrange(nk):
# TODO: for non-collinear case something else should be done here
is_b = min(isp, ns_band)
ib1 = self.ib_win[ik, is_b, 0]
ib2 = self.ib_win[ik, is_b, 1] + 1
ib1_win = ib1 - self.nb_min
ib2_win = ib2 - self.nb_min
for ion, ion_sel in enumerate(pars['ion_list']):
self.proj_set[ion, isp, ik, ib1_win:ib2_win, :] = proj_raw[ion_sel, isp, ik, ib1:ib2, self.lm_l]
nb = self.ib_win[ik, isp, 1] - self.ib_win[ik, isp, 0] + 1
# Combine all projectors of the group to one block projector
for ish in self.ishells:
shell = self.shells[ish]
blocks = bl_map[ish]['bmat_blocks']
for ion in xrange(nion):
i1, i2 = blocks[ion]
p_mat[i1:i2, :nb] = shell.proj_win[ion, isp, ik, :nlm, :nb]
# Now orthogonalize the obtained block projector
p_orth, overl, eig = orthogonalize_projector_matrix(p_mat)
# Distribute back projectors in the same order
for ish in self.ishells:
shell = self.shells[ish]
blocks = bl_map[ish]['bmat_blocks']
for ion in xrange(nion):
i1, i2 = blocks[ion]
shell.proj_win[ion, isp, ik, :nlm, :nb] = p_mat[i1:i2, :nb]
################################################################################
################################################################################
@ -208,9 +232,8 @@ class ProjectorShell:
Parameters:
- pars (dict) : dictionary of parameters from the config-file for a given PLO group
- sh_pars (dict) : shell parameters from the config-file
- proj_raw (numpy.array) : array of raw projectors
- eigvals (numpy.array) : array of KS eigenvalues
"""
def __init__(self, sh_pars, proj_raw):
@ -224,7 +247,7 @@ class ProjectorShell:
self.lm1 = self.lorb**2
self.lm2 = (self.lorb+1)**2
# Pre-select a subset of projectors
# Pre-select a subset of projectors (this should be an array view => no memory is wasted)
self.proj_arr = proj_raw[self.ion_list, :, :, :, lm1:lm2]
################################################################################
@ -243,6 +266,7 @@ class ProjectorShell:
# Set the dimensions of the array
nb_win = self.nb_max - self.nb_min + 1
nion, ns, nk, nbtot, nlm = self.proj_arr.shape
# !!! Note that the order is changed below !!!
self.proj_win = np.zeros((nion, ns, nk, nb_win, nlm), dtype=np.complex128)
# Select projectors for a given energy window
@ -257,6 +281,9 @@ class ProjectorShell:
ib2_win = ib2 - self.nb_min
self.proj_win[:, isp, ik, ib1_win:ib2_win, :] = self.proj_arr[:, isp, ik, ib1:ib2, :]
# !!! This sucks but I have to change the order of 'ib' and 'ilm' indices here
self.proj_win.transpose((0, 1, 2, 4, 3))
def generate_ortho_plos(conf_pars, vasp_data):
"""
@ -282,4 +309,8 @@ def generate_ortho_plos(conf_pars, vasp_data):
for sh_par in conf_pars.shells:
shells.append(ProjectorShell(sh_par, proj_raw))
groups = []
for gr_par in conf_pars.groups:
group = ProjectorGroup(gr_par, shells, eigvals)