3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-22 20:34:38 +01:00

style: pep8 autoformat

This commit is contained in:
Alexander Hampel 2023-03-15 15:35:39 -04:00
parent 468cf6efc7
commit ee10eaea50

View File

@ -34,6 +34,7 @@ __all__ = ['transport_distribution', 'conductivity_and_seebeck', 'write_output_t
# ----------------- helper functions -----------------------
def read_transport_input_from_hdf(sum_k):
r"""
Reads the data for transport calculations from the hdf5 archive.
@ -48,43 +49,34 @@ def read_transport_input_from_hdf(sum_k):
sum_k : sum_k object
triqs SumkDFT object
"""
assert sum_k.dft_code in ('wien2k','elk'), "read_transport_input_from_hdf() is only implemented for wien2k and elk inputs"
thingstoread = ['band_window_optics', 'velocities_k']
sum_k.read_input_from_hdf(
subgrp=sum_k.transp_data, things_to_read=thingstoread)
if(sum_k.dft_code=="wien2k"):
assert sum_k.dft_code in (
'wien2k', 'elk', 'w90'), "read_transport_input_from_hdf() is only implemented for wien2k and elk inputs"
if sum_k.dft_code in ('wien2k', 'elk'):
thingstoread = ['band_window_optics', 'velocities_k']
else:
thingstoread = ['band_window_optics']
sum_k.read_input_from_hdf(subgrp=sum_k.transp_data, things_to_read=thingstoread)
if (sum_k.dft_code == "wien2k"):
thingstoread = ['band_window', 'lattice_angles', 'lattice_constants',
'lattice_type', 'n_symmetries', 'rot_symmetries']
elif(sum_k.dft_code=="elk"):
thingstoread = ['band_window', 'n_symmetries',
'rot_symmetries','cell_vol']
elif (sum_k.dft_code == "elk"):
thingstoread = ['band_window', 'n_symmetries', 'rot_symmetries',
'cell_vol']
elif (sum_k.dft_code == 'w90'):
thingstoread = ['band_window', 'n_symmetries', 'rot_symmetries']
sum_k.read_input_from_hdf(subgrp=sum_k.misc_data, things_to_read=thingstoread)
if(sum_k.dft_code=="wien2k"):
sum_k.cell_vol = cellvolume(sum_k.lattice_type, sum_k.lattice_constants, sum_k.lattice_angles)[1]
if (sum_k.dft_code == "wien2k"):
sum_k.cell_vol = cellvolume(
sum_k.lattice_type, sum_k.lattice_constants, sum_k.lattice_angles)[1]
return sum_k
def read_transport_input_from_hdf_wannier90(sum_k):
r"""
Reads the data for transport calculations from the hdf5 archive.
Parameters
----------
sum_k : sum_k object
triqs SumkDFT object
Returns
-------
sum_k : sum_k object
triqs SumkDFT object
"""
thingstoread = ['band_window_optics']
sum_k.read_input_from_hdf(
subgrp=sum_k.transp_data, things_to_read=thingstoread)
thingstoread = ['band_window', 'n_symmetries', 'rot_symmetries']
sum_k.read_input_from_hdf(subgrp=sum_k.misc_data, things_to_read=thingstoread)
return sum_k
def write_output_to_hdf(sum_k, things_to_save, subgrp='user_data'):
r"""
@ -103,13 +95,15 @@ def write_output_to_hdf(sum_k, things_to_save, subgrp='user_data'):
if not (mpi.is_master_node()):
return # do nothing on nodes
with HDFArchive(sum_k.hdf_file, 'a') as ar:
if not subgrp in ar: ar.create_group(subgrp)
if not subgrp in ar:
ar.create_group(subgrp)
for it, val in things_to_save.items():
if it in [ "gf_struct_sumk", "gf_struct_solver",
"solver_to_sumk", "sumk_to_solver", "solver_to_sumk_block"]:
if it in ["gf_struct_sumk", "gf_struct_solver",
"solver_to_sumk", "sumk_to_solver", "solver_to_sumk_block"]:
warn("It is not recommended to save '{}' individually. Save 'block_structure' instead.".format(it))
ar[subgrp][it] = val
def cellvolume(lattice_type, lattice_constants, latticeangle):
r"""
Determines the conventional und primitive unit cell volumes.
@ -147,6 +141,7 @@ def cellvolume(lattice_type, lattice_constants, latticeangle):
return vol_c, vol_p
def fermi_dis(w, beta, der=0):
r"""
Fermi distribution.
@ -174,7 +169,8 @@ def fermi_dis(w, beta, der=0):
elif der == 1:
return - beta * fermi ** 2 * numpy.exp(exponent)
else:
raise('higher order of derivative than 1 not implemented')
raise ('higher order of derivative than 1 not implemented')
def recompute_w90_input_on_different_mesh(sum_k, seedname, nk_optics, pathname='./', calc_velocity=False, calc_inverse_mass=False, oc_select='both', oc_basis='h'):
r"""
@ -221,12 +217,16 @@ def recompute_w90_input_on_different_mesh(sum_k, seedname, nk_optics, pathname='
read_transport_input_from_hdf_wannier90(sum_k)
# first check for right formatting of sum_k.nk_optics
assert len(nk_optics) in [1,3], '"nk_optics" must be given as three integers or one float'
if len(nk_optics) == 1: assert numpy.array(list(nk_optics)).dtype in (int, float), '"nk_optics" single value must be float or integer'
if len(nk_optics) == 3: assert numpy.array(list(nk_optics)).dtype == int, '"nk_optics" mesh must be integers'
assert len(nk_optics) in [1, 3], '"nk_optics" must be given as three integers or one float'
if len(nk_optics) == 1:
assert numpy.array(list(nk_optics)).dtype in (
int, float), '"nk_optics" single value must be float or integer'
if len(nk_optics) == 3:
assert numpy.array(list(nk_optics)).dtype == int, '"nk_optics" mesh must be integers'
if len(nk_optics) == 1:
interpolate_factor = nk_optics[0]
nk_x, nk_y, nk_z = list(map(lambda i: int(numpy.ceil(interpolate_factor * len(set(sum_k.kpts[:,i])))), range(3)))
nk_x, nk_y, nk_z = list(
map(lambda i: int(numpy.ceil(interpolate_factor * len(set(sum_k.kpts[:, i])))), range(3)))
else:
nk_x, nk_y, nk_z = nk_optics
@ -241,10 +241,13 @@ def recompute_w90_input_on_different_mesh(sum_k, seedname, nk_optics, pathname='
n_kpts = nk_x * nk_y * nk_z
kpts = numpy.zeros((n_kpts, 3))
hopping = numpy.zeros((n_kpts, 1, n_orb, n_orb), dtype=complex)
proj_mat = numpy.zeros(numpy.shape(hopping[:,0,0,0]) + numpy.shape(sum_k.proj_mat[0,:]), dtype=complex)
proj_mat = numpy.zeros(numpy.shape(
hopping[:, 0, 0, 0]) + numpy.shape(sum_k.proj_mat[0, :]), dtype=complex)
cell_volume = kpts = None
if calc_velocity: velocities_k = None
if calc_inverse_mass: inverse_mass = None
if calc_velocity:
velocities_k = None
if calc_inverse_mass:
inverse_mass = None
if mpi.is_master_node():
# try wannierberri import
@ -257,8 +260,8 @@ def recompute_w90_input_on_different_mesh(sum_k, seedname, nk_optics, pathname='
except:
sys.exit()
# initialize WannierBerri system
shift_gamma = numpy.array([0.0,0.0,0.0])
#wberri = wb.System_w90(pathname + seedname, berry=True, fft='numpy')
shift_gamma = numpy.array([0.0, 0.0, 0.0])
# wberri = wb.System_w90(pathname + seedname, berry=True, fft='numpy')
# WannierBerri uses python multiprocessing which might conflict with mpi.
# if there's a segfault, uncomment the following line
wberri = wb.System_w90(pathname + seedname, berry=True, fft='numpy', npar=16)
@ -267,20 +270,21 @@ def recompute_w90_input_on_different_mesh(sum_k, seedname, nk_optics, pathname='
# read in hoppings and proj_mat
if oc_basis == 'h':
hopping[:,0,range(hopping.shape[2]),range(hopping.shape[3])] = dataK.E_K
hopping[:, 0, range(hopping.shape[2]), range(hopping.shape[3])] = dataK.E_K
elif oc_basis == 'w':
hopping[:,0,:,:] = dataK.HH_K
hopping[:, 0, :, :] = dataK.HH_K
fake_proj_mat = numpy.zeros(numpy.shape(dataK.UU_K), dtype=complex)
fake_proj_mat[:,range(numpy.shape(fake_proj_mat)[1]),range(numpy.shape(fake_proj_mat)[2])] = 1. + 1j*0.0
fake_proj_mat[:, range(numpy.shape(fake_proj_mat)[1]), range(
numpy.shape(fake_proj_mat)[2])] = 1. + 1j*0.0
for isp in range(n_inequiv_spin_blocks):
iorb = 0
for icrsh in range(sum_k.n_corr_shells):
dim = sum_k.corr_shells[icrsh]['dim']
if oc_basis == 'h':
proj_mat[:,isp,icrsh,0:dim,:] = dataK.UU_K[:,iorb:iorb+dim,:]
proj_mat[:, isp, icrsh, 0:dim, :] = dataK.UU_K[:, iorb:iorb+dim, :]
elif oc_basis == 'w':
proj_mat[:,isp,icrsh,0:dim,:] = fake_proj_mat[:,iorb:iorb+dim,:]
proj_mat[:, isp, icrsh, 0:dim, :] = fake_proj_mat[:, iorb:iorb+dim, :]
iorb += dim
if calc_velocity:
@ -296,16 +300,17 @@ def recompute_w90_input_on_different_mesh(sum_k, seedname, nk_optics, pathname='
# first term
Hhbar_alpha = dataK.Xbar('Ham', 1)
# second term
c_Hh_Ahbar_alpha = _commutator(hopping[:,0,:,:], dataK.Xbar('AA'))
c_Hh_Ahbar_alpha = _commutator(hopping[:, 0, :, :], dataK.Xbar('AA'))
velocities_k = (Hhbar_alpha + 1j * c_Hh_Ahbar_alpha) / HARTREETOEV / BOHRTOANG
# split into diag and offdiag elements, corresponding to intra- and interband contributions
v_diag = numpy.zeros(numpy.shape(velocities_k), dtype=complex)
v_diag[:,range(numpy.shape(velocities_k)[1]),
range(numpy.shape(velocities_k)[2]),:] = velocities_k[:,range(numpy.shape(velocities_k)[1]),
range(numpy.shape(velocities_k)[2]),:]
v_diag[:, range(numpy.shape(velocities_k)[1]),
range(numpy.shape(velocities_k)[2]), :] = velocities_k[:, range(numpy.shape(velocities_k)[1]),
range(numpy.shape(velocities_k)[2]), :]
v_offdiag = velocities_k.copy()
v_offdiag[:,range(numpy.shape(velocities_k)[1]),range(numpy.shape(velocities_k)[2]),:] = 0. + 1j*0.0
v_offdiag[:, range(numpy.shape(velocities_k)[1]), range(
numpy.shape(velocities_k)[2]), :] = 0. + 1j*0.0
if oc_select == 'intra':
velocities_k = v_diag
@ -326,12 +331,13 @@ def recompute_w90_input_on_different_mesh(sum_k, seedname, nk_optics, pathname='
Hw_alpha = dataK.fft_R_to_k(Hw_alpha_R, hermitean=False)[dataK.select_K]
# second term
Aw_alpha = dataK.fft_R_to_k(dataK.AA_R, hermitean=True)
c_Hw_Aw_alpha = _commutator(hopping[:,0,:,:], Aw_alpha)
c_Hw_Aw_alpha = _commutator(hopping[:, 0, :, :], Aw_alpha)
velocities_k = (Hw_alpha + 1j * c_Hw_Aw_alpha) / HARTREETOEV / BOHRTOANG
if calc_inverse_mass:
V_dot_D = numpy.einsum('kmnab, knoab -> kmoab', dataK.Xbar('Ham', 1)[:,:,:,:,None], dataK.D_H[:,:,:,None,:])
V_dot_D_dagger = V_dot_D.conj().transpose(0,2,1,3,4)
V_dot_D = numpy.einsum('kmnab, knoab -> kmoab', dataK.Xbar('Ham', 1)
[:, :, :, :, None], dataK.D_H[:, :, :, None, :])
V_dot_D_dagger = V_dot_D.conj().transpose(0, 2, 1, 3, 4)
V_curly = numpy.einsum('knnab -> knab', V_dot_D + V_dot_D_dagger)
del2E_H_diag = numpy.einsum('knnab->knab', dataK.Xbar('Ham', 2)).real
inverse_mass = del2E_H_diag + V_curly
@ -345,8 +351,10 @@ def recompute_w90_input_on_different_mesh(sum_k, seedname, nk_optics, pathname='
kpts = mpi.bcast(kpts)
hopping = mpi.bcast(hopping)
proj_mat = mpi.bcast(proj_mat)
if calc_velocity: velocities_k = mpi.bcast(velocities_k)
if calc_inverse_mass: inverse_mass = mpi.bcast(inverse_mass)
if calc_velocity:
velocities_k = mpi.bcast(velocities_k)
if calc_inverse_mass:
inverse_mass = mpi.bcast(inverse_mass)
# write interpolated sumk quantities into "things_to_modify"
things_to_modify['n_k'] = n_kpts
@ -355,7 +363,8 @@ def recompute_w90_input_on_different_mesh(sum_k, seedname, nk_optics, pathname='
things_to_modify[key] = numpy.full(n_kpts, 1/n_kpts)
n_inequiv_spin_blocks = sum_k.SP + 1 - sum_k.SO
for key in ['band_window', 'band_window_optics']:
things_to_modify[key] = [numpy.full((n_kpts, 2), sum_k.band_window[isp][0]) for isp in range(n_inequiv_spin_blocks)]
things_to_modify[key] = [numpy.full((n_kpts, 2), sum_k.band_window[isp][0])
for isp in range(n_inequiv_spin_blocks)]
things_to_modify['kpts'] = kpts
things_to_modify['hopping'] = hopping
things_to_modify['proj_mat'] = proj_mat
@ -386,6 +395,7 @@ def recompute_w90_input_on_different_mesh(sum_k, seedname, nk_optics, pathname='
# ----------------- transport -----------------------
def init_spectroscopy(sum_k, code='wien2k', w90_params={}):
r"""
Reads all necessary quantities for transport calculations from transport subgroup of the hdf5 archive.
@ -417,10 +427,12 @@ def init_spectroscopy(sum_k, code='wien2k', w90_params={}):
if mpi.is_master_node():
ar = HDFArchive(sum_k.hdf_file, 'r')
if not (sum_k.transp_data in ar):
raise IOError("transport_distribution: No %s subgroup in hdf file found! Call convert_transp_input first." % sum_k.transp_data)
raise IOError(
"transport_distribution: No %s subgroup in hdf file found! Call convert_transp_input first." % sum_k.transp_data)
# check if outputs file was converted
if not ('n_symmetries' in ar['dft_misc_input']):
raise IOError("transport_distribution: n_symmetries missing. Check if case.outputs file is present and call convert_misc_input() or convert_dft_input().")
raise IOError(
"transport_distribution: n_symmetries missing. Check if case.outputs file is present and call convert_misc_input() or convert_dft_input().")
sum_k = read_transport_input_from_hdf(sum_k)
@ -432,17 +444,21 @@ def init_spectroscopy(sum_k, code='wien2k', w90_params={}):
# check some of the input
pathname = w90_params['pathname'] if 'pathname' in w90_params else './'
assert all(isinstance(name, str) for name in ['seedname', 'pathname']), f'Check pathname {w90_params["pathname"]} and seedname {w90_params["seedname"]}'
assert all(isinstance(name, str) for name in [
'seedname', 'pathname']), f'Check pathname {w90_params["pathname"]} and seedname {w90_params["seedname"]}'
for file_ending in ['.wout', '_hr.dat', '.chk', '.mmn', '.eig']:
filename = [pathname, w90_params['seedname'], file_ending]
assert os.path.isfile(''.join(filename)), f'Filename {"".join(filename)} does not exist!'
assert os.path.isfile(
''.join(filename)), f'Filename {"".join(filename)} does not exist!'
calc_velocity = w90_params['calc_velocity'] if 'calc_velocity' in w90_params else True
calc_inverse_mass = w90_params['calc_inverse_mass'] if 'calc_inverse_mass' in w90_params else False
assert all(isinstance(name, bool) for name in [calc_velocity, calc_inverse_mass]), f'Parameter {calc_velocity} or {calc_inverse_mass} not bool!'
assert all(isinstance(name, bool) for name in [
calc_velocity, calc_inverse_mass]), f'Parameter {calc_velocity} or {calc_inverse_mass} not bool!'
# select contributions to be used
oc_select = w90_params['oc_select'] if 'oc_select' in w90_params else 'both'
assert oc_select in ['intra', 'inter', 'both'], '"oc_select" needs to be either ["intra", "inter", "both"]'
assert oc_select in ['intra', 'inter',
'both'], '"oc_select" needs to be either ["intra", "inter", "both"]'
# gauge choice options 'h' for Hamiltonian and 'w' for Wannier
oc_basis = w90_params['oc_basis'] if 'oc_basis' in w90_params else 'h'
assert oc_basis in ['h', 'w'], '"oc_basis" needs to be either ["h", "w"]'
@ -460,7 +476,7 @@ def init_spectroscopy(sum_k, code='wien2k', w90_params={}):
# recompute sum_k instances on denser grid
sum_k, _ = recompute_w90_input_on_different_mesh(sum_k, w90_params['seedname'], nk_optics=w90_params['nk_optics'], pathname=pathname,
calc_velocity=calc_velocity, calc_inverse_mass=calc_inverse_mass, oc_select=oc_select, oc_basis=oc_basis)
calc_velocity=calc_velocity, calc_inverse_mass=calc_inverse_mass, oc_select=oc_select, oc_basis=oc_basis)
# k-dependent-projections.
# to be checked. But this should be obsolete atm, works for both cases
@ -470,6 +486,8 @@ def init_spectroscopy(sum_k, code='wien2k', w90_params={}):
return sum_k
# Uses .data of only GfReFreq objects.
def transport_distribution(sum_k, beta, directions=['xx'], energy_window=None, Om_mesh=[0.0], with_Sigma=False, n_om=None, broadening=0.0, code='wien2k'):
r"""
Calculates the transport distribution
@ -520,7 +538,8 @@ def transport_distribution(sum_k, beta, directions=['xx'], energy_window=None, O
# up and down are equivalent if SP = 0
# positive om_mesh
assert all(Om >= 0.0 for Om in Om_mesh), "transport_distribution: Om_mesh should not contain negative values!"
assert all(
Om >= 0.0 for Om in Om_mesh), "transport_distribution: Om_mesh should not contain negative values!"
# Check if energy_window is sufficiently large and correct
if (energy_window[0] >= energy_window[1] or energy_window[0] >= 0 or energy_window[1] <= 0):
assert 0, "transport_distribution: energy_window wrong!"
@ -539,7 +558,7 @@ def transport_distribution(sum_k, beta, directions=['xx'], energy_window=None, O
# Define mesh for Green's function and in the specified energy window
if (with_Sigma == True):
omega = numpy.array([round(x.real, 12)
for x in sum_k.Sigma_imp[0].mesh])
for x in sum_k.Sigma_imp[0].mesh])
mesh = None
mu = sum_k.chemical_potential
n_om = len(omega)
@ -549,7 +568,8 @@ def transport_distribution(sum_k, beta, directions=['xx'], energy_window=None, O
# Find according window in Sigma mesh
ioffset = numpy.sum(
omega < energy_window[0] - max(Om_mesh))
omega = omega[numpy.logical_and(omega >= energy_window[0] - max(Om_mesh), omega <= energy_window[1] + max(Om_mesh))]
omega = omega[numpy.logical_and(
omega >= energy_window[0] - max(Om_mesh), omega <= energy_window[1] + max(Om_mesh))]
n_om = len(omega)
# Truncate Sigma to given omega window
@ -558,8 +578,8 @@ def transport_distribution(sum_k, beta, directions=['xx'], energy_window=None, O
for icrsh in range(sum_k.n_corr_shells):
Sigma_save = sum_k.Sigma_imp[icrsh].copy()
spn = sum_k.spin_block_names[sum_k.corr_shells[icrsh]['SO']]
glist = lambda: [GfReFreq(target_shape=(block_dim, block_dim), window=(omega[
0], omega[-1]), n_points=n_om) for block, block_dim in sum_k.gf_struct_sumk[icrsh]]
def glist(): return [GfReFreq(target_shape=(block_dim, block_dim), window=(omega[
0], omega[-1]), n_points=n_om) for block, block_dim in sum_k.gf_struct_sumk[icrsh]]
sum_k.Sigma_imp[icrsh] = BlockGf(
name_list=spn, block_list=glist(), make_copies=False)
for i, g in sum_k.Sigma_imp[icrsh]:
@ -575,7 +595,7 @@ def transport_distribution(sum_k, beta, directions=['xx'], energy_window=None, O
omega = numpy.linspace(
energy_window[0] - max(Om_mesh), energy_window[1] + max(Om_mesh), n_om)
mesh = MeshReFreq(energy_window[0] -
max(Om_mesh), energy_window[1] + max(Om_mesh), n_om)
max(Om_mesh), energy_window[1] + max(Om_mesh), n_om)
mu = 0.0
dir_to_int = {'x': 0, 'y': 1, 'z': 2}
@ -587,13 +607,15 @@ def transport_distribution(sum_k, beta, directions=['xx'], energy_window=None, O
if mpi.is_master_node():
print("Chemical potential: ", mu)
print("Using n_om = %s points in the energy_window [%s,%s]" % (n_om, omega[0], omega[-1]), end=' ')
print("Using n_om = %s points in the energy_window [%s,%s]" % (
n_om, omega[0], omega[-1]), end=' ')
print("where the omega vector is:")
print(omega)
print("Calculation requested for Omega mesh: ", numpy.array(Om_mesh))
print("Omega mesh automatically repined to: ", temp_Om_mesh)
Gamma_w = {direction: numpy.zeros((len(temp_Om_mesh), n_om), dtype=numpy.float_) for direction in directions}
Gamma_w = {direction: numpy.zeros((len(temp_Om_mesh), n_om),
dtype=numpy.float_) for direction in directions}
# Sum over all k-points
ikarray = numpy.array(list(range(sum_k.n_k)))
@ -612,7 +634,7 @@ def transport_distribution(sum_k, beta, directions=['xx'], energy_window=None, O
for iw in range(n_om):
A_kw[isp][:, :, iw] = -1.0 / (2.0 * numpy.pi * 1j) * (
A_kw[isp][:, :, iw] - numpy.conjugate(numpy.transpose(A_kw[isp][:, :, iw])))
#Akw_write[ik] = A_kw[isp].copy() * sum_k.bz_weights[ik]
# Akw_write[ik] = A_kw[isp].copy() * sum_k.bz_weights[ik]
b_min = max(sum_k.band_window[isp][
ik, 0], sum_k.band_window_optics[isp][ik, 0])
@ -640,17 +662,19 @@ def transport_distribution(sum_k, beta, directions=['xx'], energy_window=None, O
for direction in directions:
for iw in range(n_om):
for iq in range(len(temp_Om_mesh)):
if(iw + iOm_mesh[iq] >= n_om or omega[iw] < -temp_Om_mesh[iq] + energy_window[0] or omega[iw] > temp_Om_mesh[iq] + energy_window[1]):
if (iw + iOm_mesh[iq] >= n_om or omega[iw] < -temp_Om_mesh[iq] + energy_window[0] or omega[iw] > temp_Om_mesh[iq] + energy_window[1]):
continue
Gamma_w[direction][iq, iw] += (numpy.dot(numpy.dot(numpy.dot(vel_R[v_i, v_i, dir_to_int[direction[0]]], A_kw[isp][A_i, A_i, int(iw + iOm_mesh[iq])]),
vel_R[v_i, v_i, dir_to_int[direction[1]]]), A_kw[isp][A_i, A_i, iw]).trace().real * sum_k.bz_weights[ik])
vel_R[v_i, v_i, dir_to_int[direction[1]]]), A_kw[isp][A_i, A_i, iw]).trace().real * sum_k.bz_weights[ik])
for direction in directions:
Gamma_w[direction] = (mpi.all_reduce(mpi.world, Gamma_w[direction], lambda x, y: x + y) / sum_k.cell_vol / sum_k.n_symmetries)
Gamma_w[direction] = (mpi.all_reduce(mpi.world, Gamma_w[direction],
lambda x, y: x + y) / sum_k.cell_vol / sum_k.n_symmetries)
return Gamma_w, omega, temp_Om_mesh
def transport_function(beta, directions, hopping, velocities, energy_window, n_om, rot_symmetries):
r"""
Calculates the transport function
@ -688,7 +712,8 @@ def transport_function(beta, directions, hopping, velocities, energy_window, n_o
mpi.report('Computing transport function...')
# check that velocities are computed on the FBZ
assert numpy.shape(rot_symmetries)[0] == 1, 'Using symmetries currently not implemented for transport function.'
assert numpy.shape(rot_symmetries)[
0] == 1, 'Using symmetries currently not implemented for transport function.'
dir_to_int = {'x': 0, 'y': 1, 'z': 2}
@ -698,15 +723,19 @@ def transport_function(beta, directions, hopping, velocities, energy_window, n_o
transp_func = {direction: numpy.zeros(shape=(ws.shape[0])) for direction in directions}
for ct, w in enumerate(ws):
idx = numpy.where(numpy.abs(hopping[:,0,range(orb_1),range(orb_2)].real - w) <= tol)
fermi_wg = fermi_dis(hopping[:,0,range(orb_1),range(orb_2)][idx].real - w, beta, 1)/fermi_dis(0., beta, 1)
idx = numpy.where(numpy.abs(hopping[:, 0, range(orb_1), range(orb_2)].real - w) <= tol)
fermi_wg = fermi_dis(hopping[:, 0, range(orb_1), range(orb_2)]
[idx].real - w, beta, 1)/fermi_dis(0., beta, 1)
for direction in directions:
dir_a, dir_b = [dir_to_int[x] for x in direction]
matrix_product = numpy.einsum('kmn, kno -> kmo' , velocities[:,:,:,dir_a], velocities[:,:,:,dir_b])
transp_func[direction][ct] = numpy.sum(fermi_wg * matrix_product[:,range(orb_1),range(orb_2)][idx]).real
matrix_product = numpy.einsum(
'kmn, kno -> kmo', velocities[:, :, :, dir_a], velocities[:, :, :, dir_b])
transp_func[direction][ct] = numpy.sum(
fermi_wg * matrix_product[:, range(orb_1), range(orb_2)][idx]).real
return transp_func
def transport_coefficient(Gamma_w, omega, Om_mesh, spin_polarization, direction, iq, n, beta, method=None):
r"""
Calculates the transport coefficient A_n in a given direction for a given :math:`\Omega`. The required members (Gamma_w, directions, Om_mesh) have to be obtained first
@ -747,9 +776,11 @@ def transport_coefficient(Gamma_w, omega, Om_mesh, spin_polarization, direction,
A = 0.0
# setup the integrand
if (Om_mesh[iq] == 0.0):
A_int = Gamma_w[direction][iq] * (fermi_dis(omega, beta) * fermi_dis(-omega, beta)) * (omega * beta)**n
A_int = Gamma_w[direction][iq] * \
(fermi_dis(omega, beta) * fermi_dis(-omega, beta)) * (omega * beta)**n
elif (n == 0.0):
A_int = Gamma_w[direction][iq] * (fermi_dis(omega, beta) - fermi_dis(omega + Om_mesh[iq], beta)) / (Om_mesh[iq] * beta)
A_int = Gamma_w[direction][iq] * (fermi_dis(omega, beta) -
fermi_dis(omega + Om_mesh[iq], beta)) / (Om_mesh[iq] * beta)
# w-integration
if method == 'quad':
@ -774,6 +805,7 @@ def transport_coefficient(Gamma_w, omega, Om_mesh, spin_polarization, direction,
A = numpy.nan
return A
def conductivity_and_seebeck(Gamma_w, omega, Om_mesh, SP, directions, beta, method=None):
r"""
Calculates the Seebeck coefficient and the optical conductivity by calling
@ -828,27 +860,37 @@ def conductivity_and_seebeck(Gamma_w, omega, Om_mesh, SP, directions, beta, meth
for direction in directions:
for iq in range(n_q):
A0[direction][iq] = transport_coefficient(Gamma_w, omega, Om_mesh, SP, direction, iq=iq, n=0, beta=beta, method=method)
A1[direction][iq] = transport_coefficient(Gamma_w, omega, Om_mesh, SP, direction, iq=iq, n=1, beta=beta, method=method)
A2[direction][iq] = transport_coefficient(Gamma_w, omega, Om_mesh, SP, direction, iq=iq, n=2, beta=beta, method=method)
print("A_0 in direction %s for Omega = %.2f %e a.u." % (direction, Om_mesh[iq], A0[direction][iq]))
print("A_1 in direction %s for Omega = %.2f %e a.u." % (direction, Om_mesh[iq], A1[direction][iq]))
print("A_2 in direction %s for Omega = %.2f %e a.u." % (direction, Om_mesh[iq], A2[direction][iq]))
A0[direction][iq] = transport_coefficient(
Gamma_w, omega, Om_mesh, SP, direction, iq=iq, n=0, beta=beta, method=method)
A1[direction][iq] = transport_coefficient(
Gamma_w, omega, Om_mesh, SP, direction, iq=iq, n=1, beta=beta, method=method)
A2[direction][iq] = transport_coefficient(
Gamma_w, omega, Om_mesh, SP, direction, iq=iq, n=2, beta=beta, method=method)
print("A_0 in direction %s for Omega = %.2f %e a.u." %
(direction, Om_mesh[iq], A0[direction][iq]))
print("A_1 in direction %s for Omega = %.2f %e a.u." %
(direction, Om_mesh[iq], A1[direction][iq]))
print("A_2 in direction %s for Omega = %.2f %e a.u." %
(direction, Om_mesh[iq], A2[direction][iq]))
if ~numpy.isnan(A1[direction][iq]):
# Seebeck and kappa are overwritten if there is more than one Omega =
# 0 in Om_mesh
seebeck[direction] = - A1[direction][iq] / A0[direction][iq] * 86.17
kappa[direction] = A2[direction][iq] - A1[direction][iq]*A1[direction][iq]/A0[direction][iq]
kappa[direction] = A2[direction][iq] - \
A1[direction][iq]*A1[direction][iq]/A0[direction][iq]
kappa[direction] *= 293178.0
# factor for optical conductivity: hbar * velocity_Hartree_to_SI * volume_Hartree_to_SI * m_to_cm * 10^-4 final unit
convert_to_SI = cst.hbar * (cst.c * cst.fine_structure) **2 * (1/cst.physical_constants['Bohr radius'][0]) **3 * 1e-6
convert_to_SI = cst.hbar * (cst.c * cst.fine_structure) ** 2 * \
(1/cst.physical_constants['Bohr radius'][0]) ** 3 * 1e-6
optic_cond[direction] = beta * convert_to_SI * A0[direction]
for iq in range(n_q):
print("Conductivity in direction %s for Omega = %.2f %f x 10^4 Ohm^-1 cm^-1" % (direction, Om_mesh[iq], optic_cond[direction][iq]))
print("Conductivity in direction %s for Omega = %.2f %f x 10^4 Ohm^-1 cm^-1" %
(direction, Om_mesh[iq], optic_cond[direction][iq]))
if not (numpy.isnan(A1[direction][iq])):
print("Seebeck in direction %s for Omega = 0.00 %f x 10^(-6) V/K" % (direction, seebeck[direction]))
print("kappa in direction %s for Omega = 0.00 %f W/(m * K)" % (direction, kappa[direction]))
print("Seebeck in direction %s for Omega = 0.00 %f x 10^(-6) V/K" %
(direction, seebeck[direction]))
print("kappa in direction %s for Omega = 0.00 %f W/(m * K)" %
(direction, kappa[direction]))
return optic_cond, seebeck, kappa