3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-23 04:43:42 +01:00

fix: velocities from WannierBerri now correctly implemented

fix: transport function not implemented if using symmetries

feat: computing OC in Wannier or Hamiltonian basis

feat: computing intra- and interband contributions separately in OC
This commit is contained in:
phibeck 2023-01-18 14:27:19 -05:00 committed by Alexander Hampel
parent d5e6d60258
commit e949d4c1b0

View File

@ -21,6 +21,7 @@
########################################################################## ##########################################################################
import sys import sys
import numpy import numpy
from warnings import warn
from triqs.gf import * from triqs.gf import *
import triqs.utility.mpi as mpi import triqs.utility.mpi as mpi
from .symmetry import * from .symmetry import *
@ -175,7 +176,7 @@ def fermi_dis(w, beta, der=0):
else: else:
raise('higher order of derivative than 1 not implemented') raise('higher order of derivative than 1 not implemented')
def recompute_w90_input_on_different_mesh(sum_k, seedname, nk_optics, pathname='./', calc_velocity=False, calc_inverse_mass=False): def recompute_w90_input_on_different_mesh(sum_k, seedname, nk_optics, pathname='./', calc_velocity=False, calc_inverse_mass=False, oc_select='both', oc_basis='h'):
r""" r"""
Recomputes dft_input objects on a finer mesh using WannierBerri and Wannier90 input. Recomputes dft_input objects on a finer mesh using WannierBerri and Wannier90 input.
@ -196,6 +197,10 @@ def recompute_w90_input_on_different_mesh(sum_k, seedname, nk_optics, pathname='
whether the velocity (first derivative of H(k)) is computed whether the velocity (first derivative of H(k)) is computed
calc_inverse_mass : boolean, optional, default=False calc_inverse_mass : boolean, optional, default=False
whether the inverse effective mass (second derivative of H(k)) is computed whether the inverse effective mass (second derivative of H(k)) is computed
oc_select : string, optional, default='both'
select contributions for optical conductivity from ['intra', 'inter', 'both']
oc_basis : string, optional, default='h'
gauge choice options 'h' for Hamiltonian/band and 'w' for Wannier basis
Returns Returns
------- -------
@ -205,6 +210,8 @@ def recompute_w90_input_on_different_mesh(sum_k, seedname, nk_optics, pathname='
dictionary of datasets to be temporarily overwritten dictionary of datasets to be temporarily overwritten
""" """
mpi.report('Starting Wannier interpolation...')
BOHRTOANG = cst.physical_constants['Bohr radius'][0]/cst.angstrom BOHRTOANG = cst.physical_constants['Bohr radius'][0]/cst.angstrom
HARTREETOEV = cst.physical_constants['Hartree energy'][0]/cst.eV HARTREETOEV = cst.physical_constants['Hartree energy'][0]/cst.eV
n_inequiv_spin_blocks = sum_k.SP + 1 - sum_k.SO n_inequiv_spin_blocks = sum_k.SP + 1 - sum_k.SO
@ -259,19 +266,68 @@ def recompute_w90_input_on_different_mesh(sum_k, seedname, nk_optics, pathname='
dataK = wb.data_K.Data_K(wberri, dK=shift_gamma, grid=grid, fftlib='numpy') dataK = wb.data_K.Data_K(wberri, dK=shift_gamma, grid=grid, fftlib='numpy')
# read in hoppings and proj_mat # read in hoppings and proj_mat
if oc_basis == 'h':
hopping[:,0,range(hopping.shape[2]),range(hopping.shape[3])] = dataK.E_K hopping[:,0,range(hopping.shape[2]),range(hopping.shape[3])] = dataK.E_K
elif oc_basis == 'w':
hopping[:,0,:,:] = dataK.HH_K
fake_proj_mat = numpy.zeros(numpy.shape(dataK.UU_K), dtype=complex)
fake_proj_mat[:,range(numpy.shape(fake_proj_mat)[1]),range(numpy.shape(fake_proj_mat)[2])] = 1. + 1j*0.0
for isp in range(n_inequiv_spin_blocks): for isp in range(n_inequiv_spin_blocks):
iorb = 0 iorb = 0
for icrsh in range(sum_k.n_corr_shells): for icrsh in range(sum_k.n_corr_shells):
dim = sum_k.corr_shells[icrsh]['dim'] dim = sum_k.corr_shells[icrsh]['dim']
if oc_basis == 'h':
proj_mat[:,isp,icrsh,0:dim,:] = dataK.UU_K[:,iorb:iorb+dim,:] proj_mat[:,isp,icrsh,0:dim,:] = dataK.UU_K[:,iorb:iorb+dim,:]
elif oc_basis == 'w':
proj_mat[:,isp,icrsh,0:dim,:] = fake_proj_mat[:,iorb:iorb+dim,:]
iorb += dim iorb += dim
if calc_velocity: if calc_velocity:
# construct velocities from dataK # velocity: [k x n_orb x n_orb x R]
V_H_diag = numpy.zeros(numpy.shape(dataK.Xbar('Ham', 1)), dtype=complex) def _commutator(A, B):
V_H_diag[:, range(V_H_diag.shape[1]), range(V_H_diag.shape[1]), :] = numpy.einsum('knna -> kna', dataK.Xbar('Ham', 1)) term1 = numpy.einsum('kmo, kona -> kmna', A, B)
velocities_k = ( V_H_diag - dataK.Xbar('AA') * 1j*( dataK.E_K[:,None,:,None] - dataK.E_K[:,:,None,None] ) ) / HARTREETOEV / BOHRTOANG term2 = numpy.einsum('kmoa, kon -> kmna', B, A)
return term1 - term2
# in the band basis
# vh_alpha = Hhbar_alpha + i [Hh, Ahbar_alpha]
if oc_basis == 'h':
# first term
Hhbar_alpha = dataK.Xbar('Ham', 1)
# second term
c_Hh_Ahbar_alpha = _commutator(hopping[:,0,:,:], dataK.Xbar('AA'))
velocities_k = (Hhbar_alpha + 1j * c_Hh_Ahbar_alpha) / HARTREETOEV / BOHRTOANG
# split into diag and offdiag elements, corresponding to intra- and interband contributions
v_diag = numpy.zeros(numpy.shape(velocities_k), dtype=complex)
v_diag[:,range(numpy.shape(velocities_k)[1]),
range(numpy.shape(velocities_k)[2]),:] = velocities_k[:,range(numpy.shape(velocities_k)[1]),
range(numpy.shape(velocities_k)[2]),:]
v_offdiag = velocities_k.copy()
v_offdiag[:,range(numpy.shape(velocities_k)[1]),range(numpy.shape(velocities_k)[2]),:] = 0. + 1j*0.0
if oc_select == 'intra':
velocities_k = v_diag
elif oc_select == 'inter':
velocities_k = v_offdiag
elif oc_select == 'both':
velocities_k = v_diag + v_offdiag
# in the orbital basis
# vw_alpha = Hw_alpha + i [Hw, Aw_alpha]
elif oc_basis == 'w':
# first term
Hw_alpha_R = dataK.Ham_R.copy()
for i in range(1):
shape_cR = numpy.shape(dataK.cRvec_wcc)
Hw_alpha_R = 1j * Hw_alpha_R.reshape((Hw_alpha_R.shape) + (1, )) * dataK.cRvec_wcc.reshape(
(shape_cR[0], shape_cR[1], dataK.system.nRvec) + (1, ) * len(Hw_alpha_R.shape[3:]) + (3, ))
Hw_alpha = dataK.fft_R_to_k(Hw_alpha_R, hermitean=False)[dataK.select_K]
# second term
Aw_alpha = dataK.fft_R_to_k(dataK.AA_R, hermitean=True)
c_Hw_Aw_alpha = _commutator(hopping[:,0,:,:], Aw_alpha)
velocities_k = (Hw_alpha + 1j * c_Hw_Aw_alpha) / HARTREETOEV / BOHRTOANG
if calc_inverse_mass: if calc_inverse_mass:
V_dot_D = numpy.einsum('kmnab, knoab -> kmoab', dataK.Xbar('Ham', 1)[:,:,:,:,None], dataK.D_H[:,:,:,None,:]) V_dot_D = numpy.einsum('kmnab, knoab -> kmoab', dataK.Xbar('Ham', 1)[:,:,:,:,None], dataK.D_H[:,:,:,None,:])
@ -350,8 +406,9 @@ def init_spectroscopy(sum_k, code='wien2k', w90_params={}):
triqs SumkDFT object, interpolated triqs SumkDFT object, interpolated
""" """
n_inequiv_spin_blocks = sum_k.SP + 1 - sum_k.SO mpi.report('Initializing optical conductivity...')
# up and down are equivalent if SP = 0 # up and down are equivalent if SP = 0
n_inequiv_spin_blocks = sum_k.SP + 1 - sum_k.SO
# ----------------- set-up input from DFT ----------------------- # ----------------- set-up input from DFT -----------------------
if code in ('wien2k', 'elk'): if code in ('wien2k', 'elk'):
@ -383,9 +440,27 @@ def init_spectroscopy(sum_k, code='wien2k', w90_params={}):
calc_inverse_mass = w90_params['calc_inverse_mass'] if 'calc_inverse_mass' in w90_params else False calc_inverse_mass = w90_params['calc_inverse_mass'] if 'calc_inverse_mass' in w90_params else False
assert all(isinstance(name, bool) for name in [calc_velocity, calc_inverse_mass]), f'Parameter {calc_velocity} or {calc_inverse_mass} not bool!' assert all(isinstance(name, bool) for name in [calc_velocity, calc_inverse_mass]), f'Parameter {calc_velocity} or {calc_inverse_mass} not bool!'
# select contributions to be used
oc_select = w90_params['oc_select'] if 'oc_select' in w90_params else 'both'
assert oc_select in ['intra', 'inter', 'both'], '"oc_select" needs to be either ["intra", "inter", "both"]'
# gauge choice options 'h' for Hamiltonian and 'w' for Wannier
oc_basis = w90_params['oc_basis'] if 'oc_basis' in w90_params else 'h'
assert oc_basis in ['h', 'w'], '"oc_basis" needs to be either ["h", "w"]'
# finally, make sure oc_select is 'both' for oc_basis = 'w'
if oc_basis == 'w' and oc_select != 'both':
warn(f'"oc_select" must be "both" for "oc_basis" = "w"!')
oc_select = 'both'
# further checks for calc_inverse_mass
if calc_inverse_mass:
assert oc_basis == 'h', '"calc_inverse_mass" only implemented for "oc_basis" == "h"'
assert oc_select == 'both', '"oc_select" not implemented for "calc_inverse_mass"'
# print some information
mpi.report(f'{"Basis choice [h (Hamiltonian), w (Wannier)]:":<60s} {oc_basis}')
mpi.report(f'{"Contributions from [intra(-band), inter(-band), both]:":<60s} {oc_select}')
# recompute sum_k instances on denser grid # recompute sum_k instances on denser grid
sum_k, _ = recompute_w90_input_on_different_mesh(sum_k, w90_params['seedname'], nk_optics=w90_params['nk_optics'], pathname=pathname, sum_k, _ = recompute_w90_input_on_different_mesh(sum_k, w90_params['seedname'], nk_optics=w90_params['nk_optics'], pathname=pathname,
calc_velocity=calc_velocity, calc_inverse_mass=calc_inverse_mass) calc_velocity=calc_velocity, calc_inverse_mass=calc_inverse_mass, oc_select=oc_select, oc_basis=oc_basis)
# k-dependent-projections. # k-dependent-projections.
# to be checked. But this should be obsolete atm, works for both cases # to be checked. But this should be obsolete atm, works for both cases
@ -439,6 +514,8 @@ def transport_distribution(sum_k, beta, directions=['xx'], energy_window=None, O
frequency mesh of the optical conductivity recomputed on the mesh provided by the self energy frequency mesh of the optical conductivity recomputed on the mesh provided by the self energy
""" """
mpi.report('Computing transport distribution...')
n_inequiv_spin_blocks = sum_k.SP + 1 - sum_k.SO n_inequiv_spin_blocks = sum_k.SP + 1 - sum_k.SO
# up and down are equivalent if SP = 0 # up and down are equivalent if SP = 0
@ -569,13 +646,12 @@ def transport_distribution(sum_k, beta, directions=['xx'], energy_window=None, O
Gamma_w[direction][iq, iw] += (numpy.dot(numpy.dot(numpy.dot(vel_R[v_i, v_i, dir_to_int[direction[0]]], A_kw[isp][A_i, A_i, int(iw + iOm_mesh[iq])]), Gamma_w[direction][iq, iw] += (numpy.dot(numpy.dot(numpy.dot(vel_R[v_i, v_i, dir_to_int[direction[0]]], A_kw[isp][A_i, A_i, int(iw + iOm_mesh[iq])]),
vel_R[v_i, v_i, dir_to_int[direction[1]]]), A_kw[isp][A_i, A_i, iw]).trace().real * sum_k.bz_weights[ik]) vel_R[v_i, v_i, dir_to_int[direction[1]]]), A_kw[isp][A_i, A_i, iw]).trace().real * sum_k.bz_weights[ik])
for direction in directions: for direction in directions:
Gamma_w[direction] = (mpi.all_reduce(mpi.world, Gamma_w[direction], lambda x, y: x + y) / sum_k.cell_vol / sum_k.n_symmetries) Gamma_w[direction] = (mpi.all_reduce(mpi.world, Gamma_w[direction], lambda x, y: x + y) / sum_k.cell_vol / sum_k.n_symmetries)
return Gamma_w, omega, temp_Om_mesh return Gamma_w, omega, temp_Om_mesh
def transport_function(beta, directions, hopping, velocities, energy_window, n_om): def transport_function(beta, directions, hopping, velocities, energy_window, n_om, rot_symmetries):
r""" r"""
Calculates the transport function Calculates the transport function
@ -600,6 +676,8 @@ def transport_function(beta, directions, hopping, velocities, energy_window, n_o
n_om : integer n_om : integer
Number of equidistant frequency points in the interval [energy_window[0]-max(Om_mesh), energy_window[1]+max(Om_mesh)]. This parameters is only used if Number of equidistant frequency points in the interval [energy_window[0]-max(Om_mesh), energy_window[1]+max(Om_mesh)]. This parameters is only used if
with_Sigma = False. with_Sigma = False.
rot_symmetries : list of 3 x 3 matrices
rotational symmetries to restore the full FBZ
Returns Returns
------- -------
@ -607,6 +685,11 @@ def transport_function(beta, directions, hopping, velocities, energy_window, n_o
transport function in each direction, frequencies given by energy_window transport function in each direction, frequencies given by energy_window
""" """
mpi.report('Computing transport function...')
# check that velocities are computed on the FBZ
assert numpy.shape(rot_symmetries)[0] == 1, 'Using symmetries currently not implemented for transport function.'
dir_to_int = {'x': 0, 'y': 1, 'z': 2} dir_to_int = {'x': 0, 'y': 1, 'z': 2}
tol = 1/beta tol = 1/beta
@ -619,7 +702,8 @@ def transport_function(beta, directions, hopping, velocities, energy_window, n_o
fermi_wg = fermi_dis(hopping[:,0,range(orb_1),range(orb_2)][idx].real - w, beta, 1)/fermi_dis(0., beta, 1) fermi_wg = fermi_dis(hopping[:,0,range(orb_1),range(orb_2)][idx].real - w, beta, 1)/fermi_dis(0., beta, 1)
for direction in directions: for direction in directions:
dir_a, dir_b = [dir_to_int[x] for x in direction] dir_a, dir_b = [dir_to_int[x] for x in direction]
transp_func[direction][ct] = numpy.sum(fermi_wg * velocities[:,range(orb_1),range(orb_2),dir_a][idx] * velocities[:,range(orb_1),range(orb_2),dir_b][idx], axis=0).real matrix_product = numpy.einsum('kmn, kno -> kmo' , velocities[:,:,:,dir_a], velocities[:,:,:,dir_b])
transp_func[direction][ct] = numpy.sum(fermi_wg * matrix_product[:,range(orb_1),range(orb_2)][idx]).real
return transp_func return transp_func
@ -727,6 +811,8 @@ def conductivity_and_seebeck(Gamma_w, omega, Om_mesh, SP, directions, beta, meth
thermal conductivity in each direction. If zero is not present in Om_mesh the thermal conductivity is set to NaN thermal conductivity in each direction. If zero is not present in Om_mesh the thermal conductivity is set to NaN
""" """
mpi.report('Computing optical conductivity and kinetic coefficients...')
if not (mpi.is_master_node()): if not (mpi.is_master_node()):
return return