mirror of
https://github.com/triqs/dft_tools
synced 2025-01-12 14:08:24 +01:00
Add documentation about operators and IPT
new file: doc/reference/python/operators/ new file: doc/tutorials/python/ipt/
This commit is contained in:
parent
6589310b1b
commit
e90bd92d99
8
doc/reference/python/operators/manipulate.py
Normal file
8
doc/reference/python/operators/manipulate.py
Normal file
@ -0,0 +1,8 @@
|
|||||||
|
from pytriqs.operators import *
|
||||||
|
|
||||||
|
H = C('up',1) * Cdag('up',2) + C('up',2) * Cdag('up',1)
|
||||||
|
print H
|
||||||
|
print H - H.dagger()
|
||||||
|
|
||||||
|
print anti_commutator(C('up'),Cdag('up'))
|
||||||
|
print anti_commutator(C('up'),0.5*Cdag('down'))
|
26
doc/reference/python/operators/operators.rst
Normal file
26
doc/reference/python/operators/operators.rst
Normal file
@ -0,0 +1,26 @@
|
|||||||
|
.. _operators:
|
||||||
|
|
||||||
|
|
||||||
|
The Operator class
|
||||||
|
===================
|
||||||
|
|
||||||
|
The TRIQS solvers need to know several operators in order to solve the impurity
|
||||||
|
problem. For example, they must know what the local Hamiltonian is, but also its
|
||||||
|
quantum numbers (that can be used to improve the speed), possibly some
|
||||||
|
operators to be averaged, aso.
|
||||||
|
|
||||||
|
In order to deal with these objects, TRIQS provides a class that allows to
|
||||||
|
manipulate operators.
|
||||||
|
|
||||||
|
A simple example
|
||||||
|
-----------------
|
||||||
|
|
||||||
|
.. literalinclude:: manipulate.py
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Complete reference
|
||||||
|
------------------------
|
||||||
|
|
||||||
|
.. autoclass:: pytriqs.operators.Operator
|
||||||
|
:members:
|
59
doc/tutorials/python/ipt/ipt.py
Normal file
59
doc/tutorials/python/ipt/ipt.py
Normal file
@ -0,0 +1,59 @@
|
|||||||
|
import numpy
|
||||||
|
|
||||||
|
from pytriqs.gf.local import *
|
||||||
|
|
||||||
|
class Solver:
|
||||||
|
"""A simple IPT solver for the symmetric one band Anderson model"""
|
||||||
|
|
||||||
|
def __init__(self, **params):
|
||||||
|
self.name = 'Iterated Perturbation Theory'
|
||||||
|
|
||||||
|
self.U = params['U']
|
||||||
|
self.beta = params['beta']
|
||||||
|
|
||||||
|
# Only one block in GFs
|
||||||
|
g = GfImFreq(indices =[0], beta =self.beta, name ='0')
|
||||||
|
self.G = BlockGf(name_list=('0',), block_list=(g,))
|
||||||
|
self.G0 = self.G.copy()
|
||||||
|
|
||||||
|
def Solve(self):
|
||||||
|
|
||||||
|
# Imaginary time representation of G_0
|
||||||
|
g0t = GfImTime(indices =[0], beta =self.beta, name ='0')
|
||||||
|
G0t = BlockGf(name_list=('0',), block_list=(g0t,))
|
||||||
|
G0t['0'].set_from_inverse_fourier(self.G0['0'])
|
||||||
|
|
||||||
|
# IPT expression for the self-energy (particle-holy symmetric case is implied)
|
||||||
|
Sigmat = G0t.copy()
|
||||||
|
Sigmat['0'] <<= (self.U**2)*G0t['0']*G0t['0']*G0t['0']
|
||||||
|
|
||||||
|
self.Sigma = self.G0.copy()
|
||||||
|
self.Sigma['0'].set_from_fourier(Sigmat['0'])
|
||||||
|
|
||||||
|
# New impurity GF from the Dyson's equation
|
||||||
|
self.G <<= self.G0*inverse(1.0 - self.Sigma*self.G0)
|
||||||
|
|
||||||
|
S = 0
|
||||||
|
|
||||||
|
def run(**params):
|
||||||
|
"""IPT loop"""
|
||||||
|
|
||||||
|
# Read input parameters
|
||||||
|
U = params['U']
|
||||||
|
beta = params['beta']
|
||||||
|
N_loops = params['N_loops']
|
||||||
|
Initial_G0 = params['Initial_G0']
|
||||||
|
Self_Consistency = params['Self_Consistency']
|
||||||
|
|
||||||
|
global S
|
||||||
|
# Create a new IPT solver object
|
||||||
|
S = Solver(U=U, beta=beta)
|
||||||
|
# Initialize the bare GF using the function passed in through Initial_G0 parameter
|
||||||
|
Initial_G0(S.G0)
|
||||||
|
|
||||||
|
# DMFT iterations
|
||||||
|
for IterationNumber in range(N_loops):
|
||||||
|
print "DMFT iteration number ", IterationNumber
|
||||||
|
|
||||||
|
S.Solve()
|
||||||
|
Self_Consistency(S.G0,S.G)
|
76
doc/tutorials/python/ipt/ipt.rst
Normal file
76
doc/tutorials/python/ipt/ipt.rst
Normal file
@ -0,0 +1,76 @@
|
|||||||
|
.. _ipt:
|
||||||
|
|
||||||
|
Iterated perturbation theory: an extended DMFT example
|
||||||
|
========================================================
|
||||||
|
|
||||||
|
Introduction
|
||||||
|
------------
|
||||||
|
|
||||||
|
The iterated perturbation theory (IPT) was one of the first methods used to solve the
|
||||||
|
DMFT equations [#ipt1]_. In spite of its simplistic nature, IPT gives a qualitatively
|
||||||
|
correct description of a Mott metal-insulator transition in the Hubbard model on
|
||||||
|
infinite-dimensional lattices (on the quantitative level it tends to underestimate
|
||||||
|
correlations though). In IPT one iteratively solves the DMFT equations using the
|
||||||
|
second-order perturbation theory in Hubbard interaction :math:`U` to approximate
|
||||||
|
the impurity self-energy. For the particle-hole symmetric case it reads
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
|
||||||
|
\Sigma(i\omega_n) \approx \frac{U}{2} +
|
||||||
|
U^2 \int_0^\beta d\tau e^{i\omega_n\tau} G_0(\tau)^3
|
||||||
|
|
||||||
|
A Hartree-Fock contribution :math:`U/2` in the self-energy cancels with a term
|
||||||
|
from :math:`G_0(i\omega_n)^{-1}` when the functions are substituted into the
|
||||||
|
Dyson's equation. For this reason this contribution is usually omitted from
|
||||||
|
both functions.
|
||||||
|
|
||||||
|
The success of IPT is caused by the fact that it becomes exact not only in the
|
||||||
|
weak coupling limit (by construction), but also reproduces an atomic-limit
|
||||||
|
expression for :math:`\Sigma(i\omega_n)` as :math:`U` grows large [#ipt2]_.
|
||||||
|
|
||||||
|
Our sample implementation of IPT includes two files: `ipt.py` and
|
||||||
|
`mott.py`.
|
||||||
|
|
||||||
|
IPT solver and self-consistency loop
|
||||||
|
------------------------------------
|
||||||
|
|
||||||
|
The file `ipt.py` implements the weak coupling perturbation theory for a
|
||||||
|
symmetric single-band Anderson model (`Solver` class) and obeys
|
||||||
|
:ref:`the solver concept<solver_concept>`. It also runs a DMFT loop with this
|
||||||
|
solver and with a self-consistency condition provided from outside (function `run`).
|
||||||
|
|
||||||
|
All Green's functions in the calculations consist of one Matsubara block
|
||||||
|
(there is no need for spin indices, since only paramagnetic solutions are sought).
|
||||||
|
|
||||||
|
.. literalinclude:: ipt.py
|
||||||
|
|
||||||
|
Visualization of a Mott transition
|
||||||
|
----------------------------------
|
||||||
|
|
||||||
|
In `mott.py` the IPT module is used to run DMFT many times and scan a range of
|
||||||
|
values of :math:`U`. On every run the resulting data are saved in
|
||||||
|
an :ref:`HDF5 archive<hdf5_base>` and the density of states is plotted into
|
||||||
|
a PNG file using the :ref:`TRIQS matplotlib interface<plotting>`
|
||||||
|
(:math:`G(i\omega_n)` is analytically continued to the real axis by the
|
||||||
|
:ref:`Padé approximant<GfReFreq>`).
|
||||||
|
|
||||||
|
At the end of the script an external utility `convert` is invoked to join the
|
||||||
|
DOS plots into a single animated GIF file which illustrates how a metallic
|
||||||
|
solution evolves towards an insulator.
|
||||||
|
|
||||||
|
.. literalinclude:: mott.py
|
||||||
|
|
||||||
|
The result of this script is an animated gif:
|
||||||
|
|
||||||
|
.. image:: mott.gif
|
||||||
|
:width: 700
|
||||||
|
:align: center
|
||||||
|
|
||||||
|
|
||||||
|
Journal references
|
||||||
|
------------------
|
||||||
|
|
||||||
|
.. [#ipt1] A. Georges and G. Kotliar,
|
||||||
|
Phys. Rev. B 45, 6479–6483 (1992).
|
||||||
|
.. [#ipt2] X. Y. Zhang, M. J. Rozenberg, and G. Kotliar,
|
||||||
|
Phys. Rev. Lett. 70, 1666–1669 (1993)
|
BIN
doc/tutorials/python/ipt/mott.gif
Normal file
BIN
doc/tutorials/python/ipt/mott.gif
Normal file
Binary file not shown.
After Width: | Height: | Size: 560 KiB |
81
doc/tutorials/python/ipt/mott.py
Normal file
81
doc/tutorials/python/ipt/mott.py
Normal file
@ -0,0 +1,81 @@
|
|||||||
|
# Visualization of the Mott transition
|
||||||
|
|
||||||
|
from math import *
|
||||||
|
import os
|
||||||
|
import numpy
|
||||||
|
|
||||||
|
from pytriqs.gf.local import *
|
||||||
|
from pytriqs.gf.local import Omega, SemiCircular, inverse
|
||||||
|
from pytriqs.archive import *
|
||||||
|
from pytriqs.plot.mpl_interface import oplot
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
import ipt
|
||||||
|
|
||||||
|
beta = 40 # Inverse temperature
|
||||||
|
U = numpy.arange(0,4.05,0.1) # Range of interaction constants to scan
|
||||||
|
t = 0.5 # Scaled hopping constant on the Bethe lattice
|
||||||
|
|
||||||
|
N_loops = 20 # Number of DMFT loops
|
||||||
|
|
||||||
|
# Pade-related
|
||||||
|
DOSMesh = numpy.arange(-4,4,0.02) # Mesh to plot densities of states
|
||||||
|
eta = 0.00 # Imaginary frequency offset to use with Pade
|
||||||
|
Pade_L = 201 # Number of Matsubara frequencies to use with Pade
|
||||||
|
|
||||||
|
# Bare Green's function of the Bethe lattice (semicircle)
|
||||||
|
def Initial_G0(G0):
|
||||||
|
G0 <<= SemiCircular(2*t)
|
||||||
|
|
||||||
|
# Self-consistency condition
|
||||||
|
def Self_Consistency(G0,G):
|
||||||
|
G0['0'] <<= inverse(Omega - (t**2)*G['0'])
|
||||||
|
|
||||||
|
# Save results to an HDF5-archive
|
||||||
|
ar = HDFArchive('Mott.h5','w')
|
||||||
|
ar['beta'] = beta
|
||||||
|
ar['t'] = t
|
||||||
|
|
||||||
|
# List of files with DOS figures
|
||||||
|
DOS_files=[]
|
||||||
|
|
||||||
|
# Scan over values of U
|
||||||
|
for u in U:
|
||||||
|
print "Running DMFT calculation for beta=%.2f, U=%.2f, t=%.2f" % (beta,u,t)
|
||||||
|
ipt.run(N_loops = N_loops, beta=beta, U=u, Initial_G0=Initial_G0, Self_Consistency=Self_Consistency)
|
||||||
|
|
||||||
|
# The resulting local GF on the real axis
|
||||||
|
g_real = GfReFreq(indices = [0], beta = beta, mesh_array = DOSMesh, name = '0')
|
||||||
|
G_real = BlockGf(name_list = ('0',), block_list = (g_real,), make_copies = True)
|
||||||
|
|
||||||
|
# Analytic continuation with Pade
|
||||||
|
G_real['0'].set_from_pade(ipt.S.G['0'], N_Matsubara_Frequencies=Pade_L, Freq_Offset=eta)
|
||||||
|
|
||||||
|
# Save data to the archive
|
||||||
|
ar['U' + str(u)] = {'G0': ipt.S.G0, 'G': ipt.S.G, 'Sigma': ipt.S.Sigma, 'G_real':G_real}
|
||||||
|
|
||||||
|
# Plot the DOS
|
||||||
|
fig = plt.figure()
|
||||||
|
oplot(G_real['0'][0,0], RI='S', name="DOS", figure = fig)
|
||||||
|
|
||||||
|
# Adjust 'y' axis limits accordingly to the Luttinger sum rule
|
||||||
|
fig.axes[0].set_ylim(0,1/pi/t*1.1)
|
||||||
|
|
||||||
|
# Set title of the plot
|
||||||
|
fig_title = "Local DOS, IPT, Bethe lattice, $\\beta=%.2f$, $U=%.2f$" % (beta,u)
|
||||||
|
plt.title(fig_title)
|
||||||
|
|
||||||
|
# Save the figure as a PNG file
|
||||||
|
DOS_file = "DOS_beta%.2fU%.2f.png" % (beta,u)
|
||||||
|
fig.savefig(DOS_file, format="png", transparent=False)
|
||||||
|
DOS_files.append(DOS_file)
|
||||||
|
plt.close(fig)
|
||||||
|
|
||||||
|
# Create an animated GIF
|
||||||
|
# (you need to have 'convert' utility installed; it is a part of ImageMagick suite)
|
||||||
|
convert_cmd = "convert -delay 25 -loop 0"
|
||||||
|
convert_cmd += " " + ' '.join(DOS_files)
|
||||||
|
convert_cmd += " " + "DOS.gif"
|
||||||
|
|
||||||
|
print "Creating an animated DOS plot..."
|
||||||
|
os.system(convert_cmd)
|
Loading…
Reference in New Issue
Block a user