3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-23 21:03:45 +01:00

gf : various fixes

- blocks : including the iterator
  --> there is still an issue, with the use of & intead of a view
- details after rereading...
This commit is contained in:
Olivier Parcollet 2013-10-21 15:07:29 +02:00
parent d6cb6d2945
commit e5648d2bfd
4 changed files with 265 additions and 186 deletions

View File

@ -98,7 +98,7 @@ namespace triqs { namespace gfs {
}
// from a vector of gf (moving directly)
template <typename Variable, typename Target, typename Opt, typename GF2>
template <typename Variable, typename Target, typename Opt>
block_gf<Variable, Target, Opt> make_block_gf(std::vector<gf<Variable, Target, Opt>> &&V) {
return {{int(V.size())}, std::move(V), nothing{}, nothing{}};
}
@ -161,29 +161,79 @@ namespace triqs { namespace gfs {
template<typename T> size_t n_blocks (gf<block_index,T> const & g) { return g.mesh().size();}
template<typename T> size_t n_blocks (gf_view<block_index,T> const & g) { return g.mesh().size();}
// an iterator over the block
template<typename Target, typename Opt>
class block_gf_iterator :
public boost::iterator_facade< block_gf_iterator<Target,Opt>, typename Target::view_type , boost::forward_traversal_tag, typename Target::view_type > {
friend class boost::iterator_core_access;
typedef gf_view<block_index,Target,Opt> big_gf_t;
typedef typename big_gf_t::mesh_t::const_iterator mesh_iterator_t;
big_gf_t big_gf;
mesh_iterator_t mesh_it;
// ------------------------------- an iterator over the blocks --------------------------------------------------
typename Target::view_type const & dereference() const { return big_gf[*mesh_it];}
bool equal(block_gf_iterator const & other) const { return ((mesh_it == other.mesh_it));}
public:
block_gf_iterator(gf_view<block_index,Target,Opt> bgf, bool at_end = false): big_gf(std::move(bgf)), mesh_it(&big_gf.mesh(),at_end) {}
void increment() { ++mesh_it; }
bool at_end() const { return mesh_it.at_end();}
};
// iterator
template <typename Target, typename Opt>
class block_gf_iterator : public boost::iterator_facade<block_gf_iterator<Target, Opt>, typename Target::view_type,
boost::forward_traversal_tag, typename Target::view_type> {
friend class boost::iterator_core_access;
typedef gf_view<block_index, Target, Opt> big_gf_t;
typedef typename big_gf_t::mesh_t::const_iterator mesh_iterator_t;
big_gf_t big_gf;
mesh_iterator_t mesh_it;
template<typename Target, typename Opt, bool B, bool C>
block_gf_iterator<Target,Opt> begin(gf_impl<block_index,Target,Opt,B,C> const & bgf) { return {bgf,false};}
typename Target::view_type const &dereference() const { return big_gf[*mesh_it]; }
bool equal(block_gf_iterator const &other) const { return ((mesh_it == other.mesh_it)); }
template<typename Target, typename Opt, bool B, bool C>
block_gf_iterator<Target,Opt> end(gf_impl<block_index,Target,Opt,B,C> const & bgf) { return {bgf,true};}
public:
block_gf_iterator(gf_view<block_index, Target, Opt> bgf, bool at_end = false)
: big_gf(std::move(bgf)), mesh_it(&big_gf.mesh(), at_end) {}
void increment() { ++mesh_it; }
bool at_end() const { return mesh_it.at_end(); }
};
//------------
template <typename Target, typename Opt, bool B, bool C>
block_gf_iterator<Target, Opt> begin(gf_impl<block_index, Target, Opt, B, C> &bgf) {
return {bgf, false};
}
//------------
template <typename Target, typename Opt, bool B, bool C>
block_gf_iterator<Target, Opt> end(gf_impl<block_index, Target, Opt, B, C> &bgf) {
return {bgf, true};
}
//----- const iterator
template <typename Target, typename Opt>
class block_gf_const_iterator : public boost::iterator_facade<block_gf_iterator<Target, Opt>, typename Target::const_view_type,
boost::forward_traversal_tag, typename Target::const_view_type> {
friend class boost::iterator_core_access;
typedef gf_const_view<block_index, Target, Opt> big_gf_t;
typedef typename big_gf_t::mesh_t::const_iterator mesh_iterator_t;
big_gf_t big_gf;
mesh_iterator_t mesh_it;
typename Target::const_view_type const &dereference() const { return big_gf[*mesh_it]; }
bool equal(block_gf_const_iterator const &other) const { return ((mesh_it == other.mesh_it)); }
public:
block_gf_const_iterator(gf_const_view<block_index, Target, Opt> bgf, bool at_end = false)
: big_gf(std::move(bgf)), mesh_it(&big_gf.mesh(), at_end) {}
void increment() { ++mesh_it; }
bool at_end() const { return mesh_it.at_end(); }
};
template <typename Target, typename Opt, bool B, bool C>
block_gf_iterator<Target, Opt> begin(gf_impl<block_index, Target, Opt, B, C> const &bgf) {
return {bgf, false};
}
template <typename Target, typename Opt, bool B, bool C>
block_gf_iterator<Target, Opt> end(gf_impl<block_index, Target, Opt, B, C> const &bgf) {
return {bgf, true};
}
template <typename Target, typename Opt, bool B, bool C>
block_gf_iterator<Target, Opt> cbegin(gf_impl<block_index, Target, Opt, B, C> const &bgf) {
return {bgf, false};
}
template <typename Target, typename Opt, bool B, bool C>
block_gf_iterator<Target, Opt> cend(gf_impl<block_index, Target, Opt, B, C> const &bgf) {
return {bgf, true};
}
}}
#endif

View File

@ -399,6 +399,8 @@ namespace triqs { namespace gfs {
gf(gf const & g): B(g){}
gf(gf && g) noexcept : B(std::move(g)){}
gf(gf_view<Variable,Target,Opt> const & g): B(g, bool() ){}
gf(gf_const_view<Variable,Target,Opt> const & g): B(g, bool() ){}
template<typename GfType> gf(GfType const & x,typename std::enable_if<ImmutableGreenFunction<GfType>::value>::type *dummy =0 ): B() { *this = x;}
gf(typename B::mesh_t m,

View File

@ -29,13 +29,12 @@ namespace triqs { namespace gfs {
struct discrete_mesh {
typedef Domain domain_t;
typedef size_t index_t;
typedef size_t index_t;
discrete_mesh (domain_t && dom) : _dom(dom){}
discrete_mesh (domain_t const & dom) : _dom(dom){} //icc has a bug
discrete_mesh () : _dom(){}
domain_t const & domain() const { return _dom;}
discrete_mesh(domain_t dom) : _dom(std::move(dom)) {}
discrete_mesh() = default;
domain_t const &domain() const { return _dom; }
size_t size() const {return _dom.size();}
/// Conversions point <-> index <-> discrete_index
@ -70,6 +69,7 @@ namespace triqs { namespace gfs {
/// Mesh comparison
bool operator == (discrete_mesh const & M) const { return (_dom == M._dom) ;}
bool operator != (discrete_mesh const & M) const { return !(operator==(M)); }
/// Write into HDF5
friend void h5_write (h5::group fg, std::string subgroup_name, discrete_mesh const & m) {

View File

@ -25,184 +25,211 @@
// ADDED for Krylov : to be clean and removed if necessary
#include <algorithm>
#include <boost/math/special_functions/round.hpp>
namespace triqs { namespace gfs {
namespace triqs {
namespace gfs {
// Three possible meshes
enum mesh_kind { half_bins, full_bins, without_last };
enum mesh_kind {
half_bins,
full_bins,
without_last
};
template<typename Domain>
struct linear_mesh {
template <typename Domain> struct linear_mesh {
typedef Domain domain_t;
typedef size_t index_t;
typedef typename domain_t::point_t domain_pt_t;
typedef Domain domain_t;
typedef size_t index_t;
typedef typename domain_t::point_t domain_pt_t;
linear_mesh () : _dom(), L(0), a_pt(0), b_pt(0), xmin(0), xmax(0), del(0), meshk(half_bins) {}
linear_mesh (domain_t const & dom, double a, double b, size_t n_pts, mesh_kind mk) :
_dom(dom), L(n_pts), a_pt(a), b_pt(b), meshk(mk) {
switch(mk) {
case half_bins: del = (b-a)/L; xmin = a+0.5*del; break;
case full_bins: del = (b-a)/(L-1); xmin = a; break;
case without_last: del = (b-a)/L; xmin = a; break;
}
xmax = xmin + del*(L-1);
linear_mesh() : _dom(), L(0), a_pt(0), b_pt(0), xmin(0), xmax(0), del(0), meshk(half_bins) {}
linear_mesh(domain_t dom, double a, double b, size_t n_pts, mesh_kind mk)
: _dom(std::move(dom)), L(n_pts), a_pt(a), b_pt(b), meshk(mk) {
switch (mk) {
case half_bins:
del = (b - a) / L;
xmin = a + 0.5 * del;
break;
case full_bins:
del = (b - a) / (L - 1);
xmin = a;
break;
case without_last:
del = (b - a) / L;
xmin = a;
break;
}
xmax = xmin + del * (L - 1);
}
linear_mesh (domain_t && dom, double a, double b, size_t n_pts, mesh_kind mk) :
_dom(dom), L(n_pts), a_pt(a), b_pt(b), meshk(mk) {
switch(mk) {
case half_bins: del = (b-a)/L; xmin = a+0.5*del; break;
case full_bins: del = (b-a)/(L-1); xmin = a; break;
case without_last: del = (b-a)/L; xmin = a; break;
}
xmax = xmin + del*(L-1);
}
domain_t const &domain() const { return _dom; }
size_t size() const { return L; }
double delta() const { return del; }
double x_max() const { return xmax; }
double x_min() const { return xmin; }
mesh_kind kind() const { return meshk; }
domain_t const & domain() const { return _dom;}
size_t size() const { return L; }
double delta() const { return del; }
double x_max() const { return xmax; }
double x_min() const { return xmin; }
mesh_kind kind() const { return meshk; }
/// Conversions point <-> index <-> linear_index
domain_pt_t index_to_point(index_t ind) const {
return embed(xmin + ind * del, std::integral_constant<bool, std::is_base_of<std::complex<double>, domain_pt_t>::value>());
}
/// Conversions point <-> index <-> linear_index
domain_pt_t index_to_point (index_t ind) const {return embed(xmin + ind * del, mpl::bool_<boost::is_base_of<std::complex<double>, domain_pt_t>::value >()) ;}
private : // multiply by I is the type is a complex ....
domain_pt_t embed( double x, mpl::bool_<false> ) const { return x;}
domain_pt_t embed( double x, mpl::bool_<true> ) const { return std::complex<double>(0,x);}
public :
private: // multiply by I is the type is a complex ....
domain_pt_t embed(double x, std::false_type) const { return x; }
domain_pt_t embed(double x, std::true_type) const { return std::complex<double>(0, x); }
size_t index_to_linear(index_t ind) const {return ind;}
/// The wrapper for the mesh point
class mesh_point_t : tag::mesh_point, public arith_ops_by_cast<mesh_point_t, domain_pt_t > {
linear_mesh const * m;
index_t _index;
public:
mesh_point_t( linear_mesh const & mesh, index_t const & index_): m(&mesh), _index(index_) {}
void advance() { ++_index;}
typedef domain_pt_t cast_t;
operator cast_t () const { return m->index_to_point(_index);}
size_t linear_index() const { return _index;}
size_t index() const { return _index;}
bool at_end() const { return (_index == m->size());}
void reset() {_index =0;}
};
public:
size_t index_to_linear(index_t ind) const { return ind; }
/// Accessing a point of the mesh
mesh_point_t operator[](index_t i) const { return mesh_point_t (*this,i);}
/// The wrapper for the mesh point
class mesh_point_t : tag::mesh_point, public arith_ops_by_cast<mesh_point_t, domain_pt_t> {
linear_mesh const *m;
index_t _index;
// ADDED for krylov : to be CLEANED AND CHANGED
// Find the index of the mesh point which is nearest to x
index_t nearest_index(domain_pt_t x) const {
double x_real = real_or_imag(x, std::is_base_of<std::complex<double>, domain_pt_t>());
using boost::math::round; using std::min; using std::max;
switch(meshk) {
case half_bins:
case full_bins: return min(max(round((x_real-xmin)/del),.0),static_cast<double>(L-1));
case without_last: return min(max(round((x_real-xmin)/del),.0),static_cast<double>(L-2));
}
}
private:
static double real_or_imag(domain_pt_t x, std::false_type) {return x; }
static double real_or_imag(domain_pt_t x, std::true_type) {return imag(x); }
public:
/// Iterating on all the points...
typedef mesh_pt_generator<linear_mesh> const_iterator;
const_iterator begin() const { return const_iterator (this);}
const_iterator end() const { return const_iterator (this, true);}
const_iterator cbegin() const { return const_iterator (this);}
const_iterator cend() const { return const_iterator (this, true);}
/// Mesh comparison
bool operator == (linear_mesh const & M) const { return ((_dom == M._dom) && (size() ==M.size()) && (std::abs(xmin - M.xmin)<1.e-15) && (std::abs(xmax - M.xmax)<1.e-15));}
bool operator != (linear_mesh const & M) const { return !(operator==(M));}
/// Write into HDF5
friend void h5_write (h5::group fg, std::string subgroup_name, linear_mesh const & m) {
h5::group gr = fg.create_group(subgroup_name);
int k;
switch(m.meshk) {
case half_bins: k=0; break;
case full_bins: k=1; break;
case without_last: k=2; break;
}
h5_write(gr,"domain",m.domain());
h5_write(gr,"min",m.a_pt);
h5_write(gr,"max",m.b_pt);
h5_write(gr,"size",m.size());
h5_write(gr,"kind",k);
}
/// Read from HDF5
friend void h5_read (h5::group fg, std::string subgroup_name, linear_mesh & m){
h5::group gr = fg.open_group(subgroup_name);
typename linear_mesh::domain_t dom;
double a,b;
size_t L;
int k;
mesh_kind mk;
h5_read(gr,"domain",dom);
h5_read(gr,"min",a);
h5_read(gr,"max",b);
h5_read(gr,"size",L);
h5_read(gr,"kind",k);
switch(k) {
case 0: mk = half_bins; break;
case 1: mk = full_bins; break;
case 2: mk = without_last; break;
}
m = linear_mesh(std::move(dom), a, b, L, mk);
}
// BOOST Serialization
friend class boost::serialization::access;
template<class Archive>
void serialize(Archive & ar, const unsigned int version) {
ar & boost::serialization::make_nvp("domain",_dom);
ar & boost::serialization::make_nvp("a_pt",a_pt);
ar & boost::serialization::make_nvp("b_pt",b_pt);
ar & boost::serialization::make_nvp("xmin",xmin);
ar & boost::serialization::make_nvp("xmax",xmax);
ar & boost::serialization::make_nvp("del",del);
ar & boost::serialization::make_nvp("size",L);
ar & boost::serialization::make_nvp("kind",meshk);
}
friend std::ostream &operator <<(std::ostream &sout, linear_mesh const & m){return sout << "Linear Mesh of size "<< m.L; }
private:
domain_t _dom;
size_t L;
double a_pt, b_pt;
double xmin, xmax;
double del;
mesh_kind meshk;
mesh_point_t(linear_mesh const &mesh, index_t const &index_) : m(&mesh), _index(index_) {}
void advance() { ++_index; }
typedef domain_pt_t cast_t;
operator cast_t() const { return m->index_to_point(_index); }
size_t linear_index() const { return _index; }
size_t index() const { return _index; }
bool at_end() const { return (_index == m->size()); }
void reset() { _index = 0; }
};
/// Accessing a point of the mesh
mesh_point_t operator[](index_t i) const { return mesh_point_t(*this, i); }
// UNUSED
/// Simple approximation of a point of the domain by a mesh point. No check
template<typename D>
size_t get_closest_mesh_pt_index ( linear_mesh<D> const & mesh, typename D::point_t const & x) {
double a = (x - mesh.x_min())/mesh.delta();
return std::floor(a);
// ADDED for krylov : to be CLEANED AND CHANGED
// Find the index of the mesh point which is nearest to x
index_t nearest_index(domain_pt_t x) const {
double x_real = real_or_imag(x, std::is_base_of<std::complex<double>, domain_pt_t>());
using boost::math::round;
using std::min;
using std::max;
switch (meshk) {
case half_bins:
case full_bins:
return min(max(round((x_real - xmin) / del), .0), static_cast<double>(L - 1));
case without_last:
return min(max(round((x_real - xmin) / del), .0), static_cast<double>(L - 2));
}
}
/// Approximation of a point of the domain by a mesh point
template<typename D>
std::tuple<bool, long, double> windowing (linear_mesh<D> const & mesh, typename D::point_t const & x) {
double a = (x - mesh.x_min())/mesh.delta();
long i = std::floor(a), imax = long(mesh.size())-1;
bool in = (i>=0) && (i<imax);
double w = a-i;
if (i==imax) { --i; in = (std::abs(w)< 1.e-14); w=1.0;}
return std::make_tuple(in,i,w);
//return std::make_tuple(in, (in ? i : 0),w);
private:
static double real_or_imag(domain_pt_t x, std::false_type) { return x; }
static double real_or_imag(domain_pt_t x, std::true_type) { return imag(x); }
public:
/// Iterating on all the points...
typedef mesh_pt_generator<linear_mesh> const_iterator;
const_iterator begin() const { return const_iterator(this); }
const_iterator end() const { return const_iterator(this, true); }
const_iterator cbegin() const { return const_iterator(this); }
const_iterator cend() const { return const_iterator(this, true); }
/// Mesh comparison
bool operator==(linear_mesh const &M) const {
return ((_dom == M._dom) && (size() == M.size()) && (std::abs(xmin - M.xmin) < 1.e-15) && (std::abs(xmax - M.xmax) < 1.e-15));
}
bool operator!=(linear_mesh const &M) const { return !(operator==(M)); }
/// Write into HDF5
friend void h5_write(h5::group fg, std::string subgroup_name, linear_mesh const &m) {
h5::group gr = fg.create_group(subgroup_name);
int k;
switch (m.meshk) {
case half_bins:
k = 0;
break;
case full_bins:
k = 1;
break;
case without_last:
k = 2;
break;
}
h5_write(gr, "domain", m.domain());
h5_write(gr, "min", m.a_pt);
h5_write(gr, "max", m.b_pt);
h5_write(gr, "size", m.size());
h5_write(gr, "kind", k);
}
}}
/// Read from HDF5
friend void h5_read(h5::group fg, std::string subgroup_name, linear_mesh &m) {
h5::group gr = fg.open_group(subgroup_name);
typename linear_mesh::domain_t dom;
double a, b;
size_t L;
int k;
mesh_kind mk;
h5_read(gr, "domain", dom);
h5_read(gr, "min", a);
h5_read(gr, "max", b);
h5_read(gr, "size", L);
h5_read(gr, "kind", k);
switch (k) {
case 0:
mk = half_bins;
break;
case 1:
mk = full_bins;
break;
case 2:
mk = without_last;
break;
}
m = linear_mesh(std::move(dom), a, b, L, mk);
}
// BOOST Serialization
friend class boost::serialization::access;
template <class Archive> void serialize(Archive &ar, const unsigned int version) {
ar &boost::serialization::make_nvp("domain", _dom);
ar &boost::serialization::make_nvp("a_pt", a_pt);
ar &boost::serialization::make_nvp("b_pt", b_pt);
ar &boost::serialization::make_nvp("xmin", xmin);
ar &boost::serialization::make_nvp("xmax", xmax);
ar &boost::serialization::make_nvp("del", del);
ar &boost::serialization::make_nvp("size", L);
ar &boost::serialization::make_nvp("kind", meshk);
}
friend std::ostream &operator<<(std::ostream &sout, linear_mesh const &m) { return sout << "Linear Mesh of size " << m.L; }
private:
domain_t _dom;
size_t L;
double a_pt, b_pt;
double xmin, xmax;
double del;
mesh_kind meshk;
};
// UNUSED
/// Simple approximation of a point of the domain by a mesh point. No check
template <typename D> size_t get_closest_mesh_pt_index(linear_mesh<D> const &mesh, typename D::point_t const &x) {
double a = (x - mesh.x_min()) / mesh.delta();
return std::floor(a);
}
/// Approximation of a point of the domain by a mesh point
template <typename D> std::tuple<bool, long, double> windowing(linear_mesh<D> const &mesh, typename D::point_t const &x) {
double a = (x - mesh.x_min()) / mesh.delta();
long i = std::floor(a), imax = long(mesh.size()) - 1;
bool in = (i >= 0) && (i < imax);
double w = a - i;
if (i == imax) {
--i;
in = (std::abs(w) < 1.e-14);
w = 1.0;
}
return std::make_tuple(in, i, w);
// return std::make_tuple(in, (in ? i : 0),w);
}
}
}
#endif