mirror of
https://github.com/triqs/dft_tools
synced 2025-01-08 20:33:16 +01:00
fixed call to h_int_slater in basis_transformation test
This commit is contained in:
parent
295b7f278e
commit
e53a8c1c03
@ -79,8 +79,8 @@ from triqs.operators.util import h_int_slater, U_matrix, t2g_submatrix, transfor
|
|||||||
U3x3 = t2g_submatrix(U_matrix(2, U_int=2, J_hund=0.2, basis='spheric'))
|
U3x3 = t2g_submatrix(U_matrix(2, U_int=2, J_hund=0.2, basis='spheric'))
|
||||||
|
|
||||||
BS.transformation = [{'up':np.eye(3), 'down': np.eye(3)}]
|
BS.transformation = [{'up':np.eye(3), 'down': np.eye(3)}]
|
||||||
H0 = h_int_slater(spin_names=['up','down'], n_orb=3, U_matrix=U3x3, off_diag=False)
|
H0 = h_int_slater(spin_names=['up','down'], orb_names=range(3), U_matrix=U3x3, off_diag=False)
|
||||||
H1 = h_int_slater(spin_names=['up','down'], n_orb=3, U_matrix=U3x3, off_diag=True)
|
H1 = h_int_slater(spin_names=['up','down'], orb_names=range(3), U_matrix=U3x3, off_diag=True)
|
||||||
assert( H0 == BS.convert_operator(H1) )
|
assert( H0 == BS.convert_operator(H1) )
|
||||||
|
|
||||||
# Trafo Matrix switching index 1 & 2
|
# Trafo Matrix switching index 1 & 2
|
||||||
@ -91,15 +91,15 @@ map_op = {('up', 0): ('up', 0),
|
|||||||
('down', 0): ('down', 0),
|
('down', 0): ('down', 0),
|
||||||
('down', 1): ('down', 2),
|
('down', 1): ('down', 2),
|
||||||
('down', 2): ('down', 1)}
|
('down', 2): ('down', 1)}
|
||||||
H2 = BS.convert_operator(h_int_slater(spin_names=['up','down'], n_orb=3, U_matrix=U3x3, off_diag=True, map_operator_structure=map_op))
|
H2 = BS.convert_operator(h_int_slater(spin_names=['up','down'], orb_names=range(3), U_matrix=U3x3, off_diag=True, map_operator_structure=map_op))
|
||||||
assert( H0 == H2 )
|
assert( H0 == H2 )
|
||||||
|
|
||||||
BS.transformation = [{'up':np.array([[1,0,0],[0,1/np.sqrt(2),1/np.sqrt(2)],[0,1/np.sqrt(2),-1/np.sqrt(2)]]), 'down': np.array([[1,0,0],[0,1/np.sqrt(2),1/np.sqrt(2)],[0,1/np.sqrt(2),-1/np.sqrt(2)]])}]
|
BS.transformation = [{'up':np.array([[1,0,0],[0,1/np.sqrt(2),1/np.sqrt(2)],[0,1/np.sqrt(2),-1/np.sqrt(2)]]), 'down': np.array([[1,0,0],[0,1/np.sqrt(2),1/np.sqrt(2)],[0,1/np.sqrt(2),-1/np.sqrt(2)]])}]
|
||||||
H3 = BS.convert_operator(h_int_slater(spin_names=['up','down'], n_orb=3, U_matrix=U3x3, off_diag=True))
|
H3 = BS.convert_operator(h_int_slater(spin_names=['up','down'], orb_names=range(3), U_matrix=U3x3, off_diag=True))
|
||||||
for op in H3:
|
for op in H3:
|
||||||
for c_op in op[0]:
|
for c_op in op[0]:
|
||||||
assert(BS.solver_to_sumk[0][(c_op[1][0], c_op[1][1])] is not None) # This crashes with a key error if the operator structure is not the solver structure
|
assert(BS.solver_to_sumk[0][(c_op[1][0], c_op[1][1])] is not None) # This crashes with a key error if the operator structure is not the solver structure
|
||||||
|
|
||||||
U_trafod = transform_U_matrix(U3x3, BS.transformation[0]['up'].conjugate()) # The notorious .conjugate()
|
U_trafod = transform_U_matrix(U3x3, BS.transformation[0]['up'].conjugate()) # The notorious .conjugate()
|
||||||
H4 = h_int_slater(spin_names=['up','down'], n_orb=3, U_matrix=U_trafod, map_operator_structure=BS.sumk_to_solver[0])
|
H4 = h_int_slater(spin_names=['up','down'], orb_names=range(3), U_matrix=U_trafod, map_operator_structure=BS.sumk_to_solver[0])
|
||||||
assert( H4 == H3 ) # check that convert_operator does the same as transform_U_matrix
|
assert( H4 == H3 ) # check that convert_operator does the same as transform_U_matrix
|
||||||
|
Loading…
Reference in New Issue
Block a user