3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-08 20:33:16 +01:00

Implement calculate_diagonalization_matrix method into SK

This commit is contained in:
Hermann Schnait 2019-07-10 17:15:48 +02:00
parent 8016152c5e
commit e40f315989

View File

@ -1333,7 +1333,81 @@ class SumkDFT(object):
# a block was found, break out of the loop
break
def calculate_diagonalization_matrix(self, prop_to_be_diagonal='eal', calc_in_solver_blocks=False, write_to_blockstructure = True, ish=0):
"""
Calculates the diagonalisation matrix, and (optionally) stores it in the BlockStructure.
Parameters
----------
prop_to_be_diagonal : string, optional
Defines the property to be diagonalized.
- 'eal' : local hamiltonian (i.e. crystal field)
- 'dm' : local density matrix
calc_in_solver_blocks : bool, optional
Whether the property shall be diagonalized in the
full sumk structure, or just in the solver structure.
write_to_blockstructure : bool, optional
Whether the diagonalization matrix shall be written to
the BlockStructure directly.
ish : int, optional
Number of the correlated shell to be diagonalized.
Returns
-------
trafo : dict
The transformation matrix for each spin-block in the correlated shell
"""
trafo = {}
if prop_to_be_diagonal == 'eal':
prop = self.eff_atomic_levels()[ish]
elif prop_to_be_diagonal == 'dm':
prop = self.density_matrix(method='using_point_integration')[ish]
else:
mpi.report(
"calculate_diagonalization_matrix: not a valid quantitiy to be diagonal. Choices are 'eal' or 'dm'.")
return 0
if calc_in_solver_blocks:
trafo_tmp = self.block_structure.transformation
self.block_structure.transformation = None
prop_solver = self.block_structure.convert_matrix(prop, space_from='sumk', space_to='solver')
t= {}
for name in prop_solver:
t[name] = numpy.linalg.eigh(prop_solver[name])[1].conjugate().transpose()
trafo = self.block_structure.convert_matrix(t, space_from='solver', space_to='sumk')
#self.T = numpy.dot(self.T.transpose().conjugate(),
# self.w).conjugate().transpose()
self.block_structure.transformation = trafo_tmp
else:
for name in prop:
t = numpy.linalg.eigh(prop[name])[1].conjugate().transpose()
trafo[name] = t
# calculate new Transformation matrix
#self.T = numpy.dot(self.T.transpose().conjugate(),
# self.w).conjugate().transpose()
# measure for the 'unity' of the transformation:
#wsqr = sum(abs(self.w.diagonal())**2) / self.w.diagonal().size
#return wsqr
if write_to_blockstructure:
if self.block_structure.transformation == None:
self.block_structure.transformation = [{} for icrsh in range(self.n_corr_shells)]
for sp in self.spin_block_names[self.corr_shells[icrsh]['SO']]:
self.block_structure.transformation[icrsh][sp] = numpy.eye(self.corr_shells[icrsh]['dim'], self.corr_shells[icrsh]['dim'], numpy.complex_)
self.block_structure.transformation[ish] = trafo
return trafo
def density_matrix(self, method='using_gf', beta=40.0):
"""Calculate density matrices in one of two ways.