3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-10 13:08:18 +01:00

Merge pull request #154 from 70akaline/unstable

Fix bugs in website tutorial
This commit is contained in:
Alexander Hampel 2020-11-27 10:37:45 -05:00 committed by GitHub
commit e33eec8c7e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 13 additions and 13 deletions

View File

@ -37,7 +37,7 @@ that for one-shot calculations. Only at the very end we have to calculate the mo
and store it in a format such that Wien2k can read it. Therefore, after the DMFT loop that we saw in the and store it in a format such that Wien2k can read it. Therefore, after the DMFT loop that we saw in the
previous section, we symmetrise the self energy, and recalculate the impurity Green function:: previous section, we symmetrise the self energy, and recalculate the impurity Green function::
SK.symm_deg_gf(S.Sigma,orb=0) SK.symm_deg_gf(S.Sigma,ish=0)
S.G_iw << inverse(S.G0_iw) - S.Sigma_iw S.G_iw << inverse(S.G0_iw) - S.Sigma_iw
S.G_iw.invert() S.G_iw.invert()

View File

@ -19,10 +19,6 @@ h_field = 0.0
U = 4.0 U = 4.0
J = 0.65 J = 0.65
dc_type = 1 # DC type: 0 FLL, 1 Held, 2 AMF dc_type = 1 # DC type: 0 FLL, 1 Held, 2 AMF
# Construct U matrix for density-density calculations
Umat, Upmat = U_matrix_kanamori(n_orb=n_orb, U_int=U, J_hund=J)
# Construct density-density Hamiltonian
h_int = h_int_density(spin_names, orb_names, map_operator_structure=SK.sumk_to_solver[0], U=Umat, Uprime=Upmat)
## SLATER HAMILTONIAN ## SLATER HAMILTONIAN
## Define interaction paramters, DC and Hamiltonian ## Define interaction paramters, DC and Hamiltonian
@ -74,6 +70,10 @@ n_orb = SK.corr_shells[0]['dim']
l = SK.corr_shells[0]['l'] l = SK.corr_shells[0]['l']
spin_names = ["up","down"] spin_names = ["up","down"]
orb_names = [i for i in range(n_orb)] orb_names = [i for i in range(n_orb)]
# Construct U matrix for density-density calculations
Umat, Upmat = U_matrix_kanamori(n_orb=n_orb, U_int=U, J_hund=J)
# Construct density-density Hamiltonian
h_int = h_int_density(spin_names, orb_names, map_operator_structure=SK.sumk_to_solver[0], U=Umat, Uprime=Upmat)
# Use GF structure determined by DFT blocks # Use GF structure determined by DFT blocks
gf_struct = [(block, indices) for block, indices in SK.gf_struct_solver[0].items()] gf_struct = [(block, indices) for block, indices in SK.gf_struct_solver[0].items()]
@ -99,7 +99,7 @@ if previous_present:
for iteration_number in range(1,loops+1): for iteration_number in range(1,loops+1):
if mpi.is_master_node(): print("Iteration = ", iteration_number) if mpi.is_master_node(): print("Iteration = ", iteration_number)
SK.symm_deg_gf(S.Sigma_iw,orb=0) # symmetrise Sigma SK.symm_deg_gf(S.Sigma_iw,ish=0) # symmetrise Sigma
SK.set_Sigma([ S.Sigma_iw ]) # set Sigma into the SumK class SK.set_Sigma([ S.Sigma_iw ]) # set Sigma into the SumK class
chemical_potential = SK.calc_mu( precision = prec_mu ) # find the chemical potential for given density chemical_potential = SK.calc_mu( precision = prec_mu ) # find the chemical potential for given density
S.G_iw << SK.extract_G_loc()[0] # calc the local Green function S.G_iw << SK.extract_G_loc()[0] # calc the local Green function

View File

@ -113,11 +113,11 @@ SK.dc_energ = mpi.bcast(SK.dc_energ)
SK.chemical_potential = mpi.bcast(SK.chemical_potential) SK.chemical_potential = mpi.bcast(SK.chemical_potential)
# Calc the first G0 # Calc the first G0
SK.symm_deg_gf(S.Sigma_iw,orb=0) SK.symm_deg_gf(S.Sigma_iw, ish=0)
SK.put_Sigma(Sigma_imp = [S.Sigma_iw]) SK.put_Sigma(Sigma_imp = [S.Sigma_iw])
SK.calc_mu(precision=0.01) SK.calc_mu(precision=0.01)
S.G_iw << SK.extract_G_loc()[0] S.G_iw << SK.extract_G_loc()[0]
SK.symm_deg_gf(S.G_iw, orb=0) SK.symm_deg_gf(S.G_iw, ish=0)
#Init the DC term and the self-energy if no previous iteration was found #Init the DC term and the self-energy if no previous iteration was found
if iteration_offset == 0: if iteration_offset == 0:
@ -145,7 +145,7 @@ for it in range(iteration_offset, iteration_offset + n_iterations):
dm = S.G_iw.density() dm = S.G_iw.density()
SK.calc_dc(dm, U_interact=U, J_hund=J, orb=0, use_dc_formula=DC_type,use_dc_value=DC_value) SK.calc_dc(dm, U_interact=U, J_hund=J, orb=0, use_dc_formula=DC_type,use_dc_value=DC_value)
# Get new G # Get new G
SK.symm_deg_gf(S.Sigma_iw,orb=0) SK.symm_deg_gf(S.Sigma_iw, ish=0)
SK.put_Sigma(Sigma_imp=[S.Sigma_iw]) SK.put_Sigma(Sigma_imp=[S.Sigma_iw])
SK.calc_mu(precision=0.01) SK.calc_mu(precision=0.01)
S.G_iw << SK.extract_G_loc()[0] S.G_iw << SK.extract_G_loc()[0]

View File

@ -120,11 +120,11 @@ def dmft_cycle():
SK.chemical_potential = mpi.bcast(SK.chemical_potential) SK.chemical_potential = mpi.bcast(SK.chemical_potential)
# Calc the first G0 # Calc the first G0
SK.symm_deg_gf(S.Sigma_iw,orb=0) SK.symm_deg_gf(S.Sigma_iw, ish=0)
SK.put_Sigma(Sigma_imp = [S.Sigma_iw]) SK.put_Sigma(Sigma_imp = [S.Sigma_iw])
SK.calc_mu(precision=0.01) SK.calc_mu(precision=0.01)
S.G_iw << SK.extract_G_loc()[0] S.G_iw << SK.extract_G_loc()[0]
SK.symm_deg_gf(S.G_iw, orb=0) SK.symm_deg_gf(S.G_iw, ish=0)
#Init the DC term and the self-energy if no previous iteration was found #Init the DC term and the self-energy if no previous iteration was found
if iteration_offset == 0: if iteration_offset == 0:
@ -153,7 +153,7 @@ def dmft_cycle():
dm = S.G_iw.density() dm = S.G_iw.density()
SK.calc_dc(dm, U_interact=U, J_hund=J, orb=0, use_dc_formula=DC_type,use_dc_value=DC_value) SK.calc_dc(dm, U_interact=U, J_hund=J, orb=0, use_dc_formula=DC_type,use_dc_value=DC_value)
# Get new G # Get new G
SK.symm_deg_gf(S.Sigma_iw,orb=0) SK.symm_deg_gf(S.Sigma_iw, ish=0)
SK.put_Sigma(Sigma_imp=[S.Sigma_iw]) SK.put_Sigma(Sigma_imp=[S.Sigma_iw])
SK.calc_mu(precision=0.01) SK.calc_mu(precision=0.01)
S.G_iw << SK.extract_G_loc()[0] S.G_iw << SK.extract_G_loc()[0]

View File

@ -187,7 +187,7 @@ some additional refinements::
for iteration_number in range(1,loops+1): for iteration_number in range(1,loops+1):
if mpi.is_master_node(): print "Iteration = ", iteration_number if mpi.is_master_node(): print "Iteration = ", iteration_number
SK.symm_deg_gf(S.Sigma_iw,orb=0) # symmetrizing Sigma SK.symm_deg_gf(S.Sigma_iw,ish=0) # symmetrizing Sigma
SK.set_Sigma([ S.Sigma_iw ]) # put Sigma into the SumK class SK.set_Sigma([ S.Sigma_iw ]) # put Sigma into the SumK class
chemical_potential = SK.calc_mu( precision = prec_mu ) # find the chemical potential for given density chemical_potential = SK.calc_mu( precision = prec_mu ) # find the chemical potential for given density
S.G_iw << SK.extract_G_loc()[0] # calc the local Green function S.G_iw << SK.extract_G_loc()[0] # calc the local Green function