3
0
mirror of https://github.com/triqs/dft_tools synced 2024-10-31 11:13:46 +01:00

Update sumk_dft_transport.py

Implement Raman in conductivity_and_seebeck function.
This commit is contained in:
Germán Blesio 2023-10-04 14:50:04 +02:00 committed by Alexander Hampel
parent 1919aa7ed7
commit e2507ad965

View File

@ -899,7 +899,7 @@ def transport_coefficient(Gamma_w, omega, Om_mesh, spin_polarization, direction,
return A return A
def conductivity_and_seebeck(Gamma_w, omega, Om_mesh, SP, directions, beta, method=None): def conductivity_and_seebeck(Gamma_w, omega, Om_mesh, SP, directions, beta, method=None, mode='optics'):
r""" r"""
Calculates the Seebeck coefficient and the optical conductivity by calling Calculates the Seebeck coefficient and the optical conductivity by calling
:meth:`transport_coefficient <dft.sumk_dft_tools.SumkDFTTools.transport_coefficient>`. :meth:`transport_coefficient <dft.sumk_dft_tools.SumkDFTTools.transport_coefficient>`.
@ -923,6 +923,8 @@ def conductivity_and_seebeck(Gamma_w, omega, Om_mesh, SP, directions, beta, meth
method : string method : string
Integration method: cubic spline and scipy.integrate.quad ('quad'), simpson rule ('simpson'), trapezoidal rule ('trapz'), rectangular integration (otherwise) Integration method: cubic spline and scipy.integrate.quad ('quad'), simpson rule ('simpson'), trapezoidal rule ('trapz'), rectangular integration (otherwise)
Note that the sampling points of the the self-energy are used! Note that the sampling points of the the self-energy are used!
mode : string
Choose between optical conductivity/seebeck/Kappa ('optics') or Raman conductivity ('raman')
Returns Returns
------- -------
@ -945,6 +947,7 @@ def conductivity_and_seebeck(Gamma_w, omega, Om_mesh, SP, directions, beta, meth
# initialization # initialization
A0 = {direction: numpy.full((n_q,), numpy.nan) for direction in directions} A0 = {direction: numpy.full((n_q,), numpy.nan) for direction in directions}
if mode in ('optics'):
A1 = {direction: numpy.full((n_q,), numpy.nan) for direction in directions} A1 = {direction: numpy.full((n_q,), numpy.nan) for direction in directions}
A2 = {direction: numpy.full((n_q,), numpy.nan) for direction in directions} A2 = {direction: numpy.full((n_q,), numpy.nan) for direction in directions}
optic_cond = {direction: numpy.full((n_q,), numpy.nan) for direction in directions} optic_cond = {direction: numpy.full((n_q,), numpy.nan) for direction in directions}
@ -987,3 +990,16 @@ def conductivity_and_seebeck(Gamma_w, omega, Om_mesh, SP, directions, beta, meth
(direction, kappa[direction])) (direction, kappa[direction]))
return optic_cond, seebeck, kappa return optic_cond, seebeck, kappa
elif mode in ('raman'):
# ToDo: correct units
raman_cond = {direction: numpy.full((n_q,), numpy.nan) for direction in directions}
for direction in directions:
for iq in range(n_q):
A0[direction][iq] = transport_coefficient(Gamma_w, omega, Om_mesh, SP, direction, iq=iq, n=0, beta=beta, method=method)
print("A_0 in direction %s for Omega = %.2f %e a.u." % (direction, Om_mesh[iq], A0[direction][iq]))
raman_cond[direction] = beta * A0[direction] * 10700.0 / numpy.pi
for iq in range(n_q):
print("Raman conductivity in direction %s for Omega = %.2f %f x 10^4 Ohm^-1 cm^-1" % (direction, Om_mesh[iq], raman_cond[direction][iq]))
return raman_cond