3
0
mirror of https://github.com/triqs/dft_tools synced 2024-10-31 11:13:46 +01:00

Update sumk_dft_transport.py

Implement Raman in conductivity_and_seebeck function.
This commit is contained in:
Germán Blesio 2023-10-04 14:50:04 +02:00 committed by Alexander Hampel
parent 1919aa7ed7
commit e2507ad965

View File

@ -899,7 +899,7 @@ def transport_coefficient(Gamma_w, omega, Om_mesh, spin_polarization, direction,
return A
def conductivity_and_seebeck(Gamma_w, omega, Om_mesh, SP, directions, beta, method=None):
def conductivity_and_seebeck(Gamma_w, omega, Om_mesh, SP, directions, beta, method=None, mode='optics'):
r"""
Calculates the Seebeck coefficient and the optical conductivity by calling
:meth:`transport_coefficient <dft.sumk_dft_tools.SumkDFTTools.transport_coefficient>`.
@ -923,7 +923,9 @@ def conductivity_and_seebeck(Gamma_w, omega, Om_mesh, SP, directions, beta, meth
method : string
Integration method: cubic spline and scipy.integrate.quad ('quad'), simpson rule ('simpson'), trapezoidal rule ('trapz'), rectangular integration (otherwise)
Note that the sampling points of the the self-energy are used!
mode : string
Choose between optical conductivity/seebeck/Kappa ('optics') or Raman conductivity ('raman')
Returns
-------
optic_cond : dictionary of double vectors
@ -945,45 +947,59 @@ def conductivity_and_seebeck(Gamma_w, omega, Om_mesh, SP, directions, beta, meth
# initialization
A0 = {direction: numpy.full((n_q,), numpy.nan) for direction in directions}
A1 = {direction: numpy.full((n_q,), numpy.nan) for direction in directions}
A2 = {direction: numpy.full((n_q,), numpy.nan) for direction in directions}
optic_cond = {direction: numpy.full((n_q,), numpy.nan) for direction in directions}
seebeck = {direction: numpy.nan for direction in directions}
kappa = {direction: numpy.nan for direction in directions}
if mode in ('optics'):
A1 = {direction: numpy.full((n_q,), numpy.nan) for direction in directions}
A2 = {direction: numpy.full((n_q,), numpy.nan) for direction in directions}
optic_cond = {direction: numpy.full((n_q,), numpy.nan) for direction in directions}
seebeck = {direction: numpy.nan for direction in directions}
kappa = {direction: numpy.nan for direction in directions}
for direction in directions:
for iq in range(n_q):
A0[direction][iq] = transport_coefficient(
Gamma_w, omega, Om_mesh, SP, direction, iq=iq, n=0, beta=beta, method=method)
A1[direction][iq] = transport_coefficient(
Gamma_w, omega, Om_mesh, SP, direction, iq=iq, n=1, beta=beta, method=method)
A2[direction][iq] = transport_coefficient(
Gamma_w, omega, Om_mesh, SP, direction, iq=iq, n=2, beta=beta, method=method)
print("A_0 in direction %s for Omega = %.2f %e a.u." %
(direction, Om_mesh[iq], A0[direction][iq]))
print("A_1 in direction %s for Omega = %.2f %e a.u." %
(direction, Om_mesh[iq], A1[direction][iq]))
print("A_2 in direction %s for Omega = %.2f %e a.u." %
(direction, Om_mesh[iq], A2[direction][iq]))
if ~numpy.isnan(A1[direction][iq]):
# Seebeck and kappa are overwritten if there is more than one Omega =
# 0 in Om_mesh
seebeck[direction] = - A1[direction][iq] / A0[direction][iq] * 86.17
kappa[direction] = A2[direction][iq] - \
A1[direction][iq]*A1[direction][iq]/A0[direction][iq]
kappa[direction] *= 293178.0
for direction in directions:
for iq in range(n_q):
A0[direction][iq] = transport_coefficient(
Gamma_w, omega, Om_mesh, SP, direction, iq=iq, n=0, beta=beta, method=method)
A1[direction][iq] = transport_coefficient(
Gamma_w, omega, Om_mesh, SP, direction, iq=iq, n=1, beta=beta, method=method)
A2[direction][iq] = transport_coefficient(
Gamma_w, omega, Om_mesh, SP, direction, iq=iq, n=2, beta=beta, method=method)
print("A_0 in direction %s for Omega = %.2f %e a.u." %
(direction, Om_mesh[iq], A0[direction][iq]))
print("A_1 in direction %s for Omega = %.2f %e a.u." %
(direction, Om_mesh[iq], A1[direction][iq]))
print("A_2 in direction %s for Omega = %.2f %e a.u." %
(direction, Om_mesh[iq], A2[direction][iq]))
if ~numpy.isnan(A1[direction][iq]):
# Seebeck and kappa are overwritten if there is more than one Omega =
# 0 in Om_mesh
seebeck[direction] = - A1[direction][iq] / A0[direction][iq] * 86.17
kappa[direction] = A2[direction][iq] - \
A1[direction][iq]*A1[direction][iq]/A0[direction][iq]
kappa[direction] *= 293178.0
# factor for optical conductivity: hbar * velocity_Hartree_to_SI * volume_Hartree_to_SI * m_to_cm * 10^-4 final unit
convert_to_SI = cst.hbar * (cst.c * cst.fine_structure) ** 2 * \
(1/cst.physical_constants['Bohr radius'][0]) ** 3 * 1e-6
optic_cond[direction] = beta * convert_to_SI * A0[direction]
for iq in range(n_q):
print("Conductivity in direction %s for Omega = %.2f %f x 10^4 Ohm^-1 cm^-1" %
(direction, Om_mesh[iq], optic_cond[direction][iq]))
if not (numpy.isnan(A1[direction][iq])):
print("Seebeck in direction %s for Omega = 0.00 %f x 10^(-6) V/K" %
(direction, seebeck[direction]))
print("kappa in direction %s for Omega = 0.00 %f W/(m * K)" %
(direction, kappa[direction]))
# factor for optical conductivity: hbar * velocity_Hartree_to_SI * volume_Hartree_to_SI * m_to_cm * 10^-4 final unit
convert_to_SI = cst.hbar * (cst.c * cst.fine_structure) ** 2 * \
(1/cst.physical_constants['Bohr radius'][0]) ** 3 * 1e-6
optic_cond[direction] = beta * convert_to_SI * A0[direction]
for iq in range(n_q):
print("Conductivity in direction %s for Omega = %.2f %f x 10^4 Ohm^-1 cm^-1" %
(direction, Om_mesh[iq], optic_cond[direction][iq]))
if not (numpy.isnan(A1[direction][iq])):
print("Seebeck in direction %s for Omega = 0.00 %f x 10^(-6) V/K" %
(direction, seebeck[direction]))
print("kappa in direction %s for Omega = 0.00 %f W/(m * K)" %
(direction, kappa[direction]))
return optic_cond, seebeck, kappa
return optic_cond, seebeck, kappa
elif mode in ('raman'):
# ToDo: correct units
raman_cond = {direction: numpy.full((n_q,), numpy.nan) for direction in directions}
for direction in directions:
for iq in range(n_q):
A0[direction][iq] = transport_coefficient(Gamma_w, omega, Om_mesh, SP, direction, iq=iq, n=0, beta=beta, method=method)
print("A_0 in direction %s for Omega = %.2f %e a.u." % (direction, Om_mesh[iq], A0[direction][iq]))
raman_cond[direction] = beta * A0[direction] * 10700.0 / numpy.pi
for iq in range(n_q):
print("Raman conductivity in direction %s for Omega = %.2f %f x 10^4 Ohm^-1 cm^-1" % (direction, Om_mesh[iq], raman_cond[direction][iq]))
return raman_cond