mirror of
https://github.com/triqs/dft_tools
synced 2024-10-31 11:13:46 +01:00
Update sumk_dft_transport.py
Implement Raman in conductivity_and_seebeck function.
This commit is contained in:
parent
1919aa7ed7
commit
e2507ad965
@ -899,7 +899,7 @@ def transport_coefficient(Gamma_w, omega, Om_mesh, spin_polarization, direction,
|
||||
return A
|
||||
|
||||
|
||||
def conductivity_and_seebeck(Gamma_w, omega, Om_mesh, SP, directions, beta, method=None):
|
||||
def conductivity_and_seebeck(Gamma_w, omega, Om_mesh, SP, directions, beta, method=None, mode='optics'):
|
||||
r"""
|
||||
Calculates the Seebeck coefficient and the optical conductivity by calling
|
||||
:meth:`transport_coefficient <dft.sumk_dft_tools.SumkDFTTools.transport_coefficient>`.
|
||||
@ -923,7 +923,9 @@ def conductivity_and_seebeck(Gamma_w, omega, Om_mesh, SP, directions, beta, meth
|
||||
method : string
|
||||
Integration method: cubic spline and scipy.integrate.quad ('quad'), simpson rule ('simpson'), trapezoidal rule ('trapz'), rectangular integration (otherwise)
|
||||
Note that the sampling points of the the self-energy are used!
|
||||
|
||||
mode : string
|
||||
Choose between optical conductivity/seebeck/Kappa ('optics') or Raman conductivity ('raman')
|
||||
|
||||
Returns
|
||||
-------
|
||||
optic_cond : dictionary of double vectors
|
||||
@ -945,45 +947,59 @@ def conductivity_and_seebeck(Gamma_w, omega, Om_mesh, SP, directions, beta, meth
|
||||
|
||||
# initialization
|
||||
A0 = {direction: numpy.full((n_q,), numpy.nan) for direction in directions}
|
||||
A1 = {direction: numpy.full((n_q,), numpy.nan) for direction in directions}
|
||||
A2 = {direction: numpy.full((n_q,), numpy.nan) for direction in directions}
|
||||
optic_cond = {direction: numpy.full((n_q,), numpy.nan) for direction in directions}
|
||||
seebeck = {direction: numpy.nan for direction in directions}
|
||||
kappa = {direction: numpy.nan for direction in directions}
|
||||
if mode in ('optics'):
|
||||
A1 = {direction: numpy.full((n_q,), numpy.nan) for direction in directions}
|
||||
A2 = {direction: numpy.full((n_q,), numpy.nan) for direction in directions}
|
||||
optic_cond = {direction: numpy.full((n_q,), numpy.nan) for direction in directions}
|
||||
seebeck = {direction: numpy.nan for direction in directions}
|
||||
kappa = {direction: numpy.nan for direction in directions}
|
||||
|
||||
for direction in directions:
|
||||
for iq in range(n_q):
|
||||
A0[direction][iq] = transport_coefficient(
|
||||
Gamma_w, omega, Om_mesh, SP, direction, iq=iq, n=0, beta=beta, method=method)
|
||||
A1[direction][iq] = transport_coefficient(
|
||||
Gamma_w, omega, Om_mesh, SP, direction, iq=iq, n=1, beta=beta, method=method)
|
||||
A2[direction][iq] = transport_coefficient(
|
||||
Gamma_w, omega, Om_mesh, SP, direction, iq=iq, n=2, beta=beta, method=method)
|
||||
print("A_0 in direction %s for Omega = %.2f %e a.u." %
|
||||
(direction, Om_mesh[iq], A0[direction][iq]))
|
||||
print("A_1 in direction %s for Omega = %.2f %e a.u." %
|
||||
(direction, Om_mesh[iq], A1[direction][iq]))
|
||||
print("A_2 in direction %s for Omega = %.2f %e a.u." %
|
||||
(direction, Om_mesh[iq], A2[direction][iq]))
|
||||
if ~numpy.isnan(A1[direction][iq]):
|
||||
# Seebeck and kappa are overwritten if there is more than one Omega =
|
||||
# 0 in Om_mesh
|
||||
seebeck[direction] = - A1[direction][iq] / A0[direction][iq] * 86.17
|
||||
kappa[direction] = A2[direction][iq] - \
|
||||
A1[direction][iq]*A1[direction][iq]/A0[direction][iq]
|
||||
kappa[direction] *= 293178.0
|
||||
for direction in directions:
|
||||
for iq in range(n_q):
|
||||
A0[direction][iq] = transport_coefficient(
|
||||
Gamma_w, omega, Om_mesh, SP, direction, iq=iq, n=0, beta=beta, method=method)
|
||||
A1[direction][iq] = transport_coefficient(
|
||||
Gamma_w, omega, Om_mesh, SP, direction, iq=iq, n=1, beta=beta, method=method)
|
||||
A2[direction][iq] = transport_coefficient(
|
||||
Gamma_w, omega, Om_mesh, SP, direction, iq=iq, n=2, beta=beta, method=method)
|
||||
print("A_0 in direction %s for Omega = %.2f %e a.u." %
|
||||
(direction, Om_mesh[iq], A0[direction][iq]))
|
||||
print("A_1 in direction %s for Omega = %.2f %e a.u." %
|
||||
(direction, Om_mesh[iq], A1[direction][iq]))
|
||||
print("A_2 in direction %s for Omega = %.2f %e a.u." %
|
||||
(direction, Om_mesh[iq], A2[direction][iq]))
|
||||
if ~numpy.isnan(A1[direction][iq]):
|
||||
# Seebeck and kappa are overwritten if there is more than one Omega =
|
||||
# 0 in Om_mesh
|
||||
seebeck[direction] = - A1[direction][iq] / A0[direction][iq] * 86.17
|
||||
kappa[direction] = A2[direction][iq] - \
|
||||
A1[direction][iq]*A1[direction][iq]/A0[direction][iq]
|
||||
kappa[direction] *= 293178.0
|
||||
|
||||
# factor for optical conductivity: hbar * velocity_Hartree_to_SI * volume_Hartree_to_SI * m_to_cm * 10^-4 final unit
|
||||
convert_to_SI = cst.hbar * (cst.c * cst.fine_structure) ** 2 * \
|
||||
(1/cst.physical_constants['Bohr radius'][0]) ** 3 * 1e-6
|
||||
optic_cond[direction] = beta * convert_to_SI * A0[direction]
|
||||
for iq in range(n_q):
|
||||
print("Conductivity in direction %s for Omega = %.2f %f x 10^4 Ohm^-1 cm^-1" %
|
||||
(direction, Om_mesh[iq], optic_cond[direction][iq]))
|
||||
if not (numpy.isnan(A1[direction][iq])):
|
||||
print("Seebeck in direction %s for Omega = 0.00 %f x 10^(-6) V/K" %
|
||||
(direction, seebeck[direction]))
|
||||
print("kappa in direction %s for Omega = 0.00 %f W/(m * K)" %
|
||||
(direction, kappa[direction]))
|
||||
# factor for optical conductivity: hbar * velocity_Hartree_to_SI * volume_Hartree_to_SI * m_to_cm * 10^-4 final unit
|
||||
convert_to_SI = cst.hbar * (cst.c * cst.fine_structure) ** 2 * \
|
||||
(1/cst.physical_constants['Bohr radius'][0]) ** 3 * 1e-6
|
||||
optic_cond[direction] = beta * convert_to_SI * A0[direction]
|
||||
for iq in range(n_q):
|
||||
print("Conductivity in direction %s for Omega = %.2f %f x 10^4 Ohm^-1 cm^-1" %
|
||||
(direction, Om_mesh[iq], optic_cond[direction][iq]))
|
||||
if not (numpy.isnan(A1[direction][iq])):
|
||||
print("Seebeck in direction %s for Omega = 0.00 %f x 10^(-6) V/K" %
|
||||
(direction, seebeck[direction]))
|
||||
print("kappa in direction %s for Omega = 0.00 %f W/(m * K)" %
|
||||
(direction, kappa[direction]))
|
||||
|
||||
return optic_cond, seebeck, kappa
|
||||
return optic_cond, seebeck, kappa
|
||||
elif mode in ('raman'):
|
||||
# ToDo: correct units
|
||||
raman_cond = {direction: numpy.full((n_q,), numpy.nan) for direction in directions}
|
||||
|
||||
for direction in directions:
|
||||
for iq in range(n_q):
|
||||
A0[direction][iq] = transport_coefficient(Gamma_w, omega, Om_mesh, SP, direction, iq=iq, n=0, beta=beta, method=method)
|
||||
print("A_0 in direction %s for Omega = %.2f %e a.u." % (direction, Om_mesh[iq], A0[direction][iq]))
|
||||
raman_cond[direction] = beta * A0[direction] * 10700.0 / numpy.pi
|
||||
for iq in range(n_q):
|
||||
print("Raman conductivity in direction %s for Omega = %.2f %f x 10^4 Ohm^-1 cm^-1" % (direction, Om_mesh[iq], raman_cond[direction][iq]))
|
||||
|
||||
return raman_cond
|
||||
|
Loading…
Reference in New Issue
Block a user