mirror of
https://github.com/triqs/dft_tools
synced 2024-12-22 04:13:47 +01:00
Added first draft of general converter to handle general H(k)
Added also routine to rotate basis sets
This commit is contained in:
parent
bf1f3c0758
commit
e10c48e106
@ -26,6 +26,6 @@ from sumk_lda_tools import SumkLDATools
|
||||
from U_matrix import Umatrix
|
||||
from converters import *
|
||||
|
||||
__all__ =['SumkLDA','Symmetry','SumkLDATools','Umatrix','Wien2kConverter']
|
||||
__all__ =['SumkLDA','Symmetry','SumkLDATools','Umatrix','Wien2kConverter','HkConverter']
|
||||
|
||||
|
||||
|
@ -21,7 +21,8 @@
|
||||
################################################################################
|
||||
|
||||
from wien2k_converter import Wien2kConverter
|
||||
from hk_converter import HkConverter
|
||||
|
||||
__all__ =['Wien2kConverter']
|
||||
__all__ =['Wien2kConverter','HkConverter']
|
||||
|
||||
|
||||
|
298
python/converters/hk_converter.py
Normal file
298
python/converters/hk_converter.py
Normal file
@ -0,0 +1,298 @@
|
||||
|
||||
################################################################################
|
||||
#
|
||||
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
#
|
||||
# Copyright (C) 2011 by M. Aichhorn
|
||||
#
|
||||
# TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
# terms of the GNU General Public License as published by the Free Software
|
||||
# Foundation, either version 3 of the License, or (at your option) any later
|
||||
# version.
|
||||
#
|
||||
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
# details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along with
|
||||
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
################################################################################
|
||||
|
||||
from types import *
|
||||
import numpy
|
||||
from pytriqs.archive import *
|
||||
import pytriqs.utility.mpi as mpi
|
||||
import string
|
||||
from math import sqrt
|
||||
|
||||
|
||||
def Read_Fortran_File (filename):
|
||||
""" Returns a generator that yields all numbers in the Fortran file as float, one by one"""
|
||||
import os.path
|
||||
if not(os.path.exists(filename)) : raise IOError, "File %s does not exists"%filename
|
||||
for line in open(filename,'r') :
|
||||
for x in line.replace('D','E').replace('(',' ').replace(')',' ').replace(',',' ').split() :
|
||||
yield string.atof(x)
|
||||
|
||||
|
||||
|
||||
class HkConverter:
|
||||
"""
|
||||
Conversion from general H(k) file to an hdf5 file, that can be used as input for the SumK_LDA class.
|
||||
"""
|
||||
|
||||
def __init__(self, hk_file, hdf_file, lda_subgrp = 'SumK_LDA', symm_subgrp = 'SymmCorr', repacking = False):
|
||||
"""
|
||||
Init of the class. Variable Filename gives the root of all filenames, e.g. case.ctqmcout, case.h5, and so
|
||||
on.
|
||||
"""
|
||||
|
||||
assert type(nmto_file)==StringType,"LDA_file must be a filename"
|
||||
self.hdf_file = hdf_file
|
||||
self.lda_file = hk_file
|
||||
#self.Symm_file = Filename+'.symqmc'
|
||||
#self.Parproj_file = Filename+'.parproj'
|
||||
#self.Symmpar_file = Filename+'.sympar'
|
||||
#self.Band_file = Filename+'.outband'
|
||||
self.lda_subgrp = lda_subgrp
|
||||
self.symm_subgrp = symm_subgrp
|
||||
|
||||
# Checks if h5 file is there and repacks it if wanted:
|
||||
import os.path
|
||||
if (os.path.exists(self.hdf_file) and repacking):
|
||||
self.__repack()
|
||||
|
||||
|
||||
|
||||
def convert_dmft_input(self, only_upper_triangle = True, weights_in_file = False):
|
||||
"""
|
||||
Reads the input files, and stores the data in the HDFfile
|
||||
"""
|
||||
|
||||
|
||||
if not (mpi.is_master_node()): return # do it only on master:
|
||||
mpi.report("Reading input from %s..."%self.lda_file)
|
||||
|
||||
# Read and write only on Master!!!
|
||||
# R is a generator : each R.Next() will return the next number in the file
|
||||
R = Read_Fortran_File(self.lda_file)
|
||||
try:
|
||||
energy_unit = 1.0 # the energy conversion factor is 1.0, we assume eV in files
|
||||
n_k = int(R.next()) # read the number of k points
|
||||
k_dep_projection = 0
|
||||
SP = 0 # no spin-polarision
|
||||
SO = 0 # no spin-orbit
|
||||
charge_below = 0.0 # total charge below energy window is set to 0
|
||||
density_required = R.next() # density required, for setting the chemical potential
|
||||
symm_op = 0 # No symmetry groups for the k-sum
|
||||
|
||||
# the information on the non-correlated shells is needed for defining dimension of matrices:
|
||||
n_shells = int(R.next()) # number of shells considered in the Wanniers
|
||||
# corresponds to index R in formulas
|
||||
# now read the information about the shells:
|
||||
shells = [ [ int(R.next()) for i in range(4) ] for icrsh in range(n_shells) ] # reads iatom, sort, l, dim
|
||||
|
||||
n_corr_shells = int(R.next()) # number of corr. shells (e.g. Fe d, Ce f) in the unit cell,
|
||||
# corresponds to index R in formulas
|
||||
# now read the information about the shells:
|
||||
corr_shells = [ [ int(R.next()) for i in range(6) ] for icrsh in range(n_corr_shells) ] # reads iatom, sort, l, dim, SO flag, irep
|
||||
|
||||
self.inequiv_shells(corr_shells) # determine the number of inequivalent correlated shells, has to be known for further reading...
|
||||
|
||||
|
||||
use_rotations = 0
|
||||
rot_mat = [numpy.identity(corr_shells[icrsh][3],numpy.complex_) for icrsh in xrange(n_corr_shells)]
|
||||
rot_mat_time_inv = [0 for i in range(n_corr_shells)]
|
||||
|
||||
# Representative representations are read from file
|
||||
n_reps = [1 for i in range(self.n_inequiv_corr_shells)]
|
||||
dim_reps = [0 for i in range(self.n_inequiv_corr_shells)]
|
||||
|
||||
for icrsh in range(self.n_inequiv_corr_shells):
|
||||
n_reps[icrsh] = int(R.next()) # number of representatives ("subsets"), e.g. t2g and eg
|
||||
dim_reps[icrsh] = [int(R.next()) for i in range(n_reps[icrsh])] # dimensions of the subsets
|
||||
|
||||
# The transformation matrix:
|
||||
# it is of dimension 2l+1, it is taken to be standard d (as in Wien2k)
|
||||
T = []
|
||||
for icrsh in range(self.n_inequiv_corr_shells):
|
||||
#for ish in xrange(self.N_inequiv_corr_shells):
|
||||
ll = 2*corr_shells[self.invshellmap[icrsh]][2]+1
|
||||
lmax = ll * (corr_shells[self.invshellmap[icrsh]][4] + 1)
|
||||
T.append(numpy.zeros([lmax,lmax],numpy.complex_))
|
||||
|
||||
T[icrsh] = numpy.array([[0.0, 0.0, 1.0, 0.0, 0.0],
|
||||
[1.0/sqrt(2.0), 0.0, 0.0, 0.0, 1.0/sqrt(2.0)],
|
||||
[-1.0/sqrt(2.0), 0.0, 0.0, 0.0, 1.0/sqrt(2.0)],
|
||||
[0.0, 1.0/sqrt(2.0), 0.0, -1.0/sqrt(2.0), 0.0],
|
||||
[0.0, 1.0/sqrt(2.0), 0.0, 1.0/sqrt(2.0), 0.0]])
|
||||
|
||||
|
||||
# Spin blocks to be read:
|
||||
n_spin_blocks = SP + 1 - SO # number of spins to read for Norbs and Ham, NOT Projectors
|
||||
|
||||
|
||||
# define the number of N_Orbitals for all k points: it is the number of total bands and independent of k!
|
||||
n_orb = sum([ shells[ish][3] for ish in range(n_shells)])
|
||||
#n_orbitals = [ [n_orb for isp in range(n_spin_blocks)] for ik in xrange(n_k)]
|
||||
n_orbitals = numpy.ones([n_k,n_spin_blocs],numpy.int) * n_orb
|
||||
#print N_Orbitals
|
||||
|
||||
# Initialise the projectors:
|
||||
#proj_mat = [ [ [numpy.zeros([corr_shells[icrsh][3], n_orbitals[ik][isp]], numpy.complex_)
|
||||
# for icrsh in range (n_corr_shells)]
|
||||
# for isp in range(n_spin_blocks)]
|
||||
# for ik in range(n_k) ]
|
||||
proj_mat = numpy.zeros([n_k,n_spin_blocs,n_corr_shells,max(numpy.array(corr_shells)[:,3]),max(n_orbitals)],numpy.complex_)
|
||||
|
||||
|
||||
# Read the projectors from the file:
|
||||
for ik in xrange(n_k):
|
||||
for icrsh in range(n_corr_shells):
|
||||
# calculate the offset:
|
||||
offset = 0
|
||||
no = 0
|
||||
for i in range(n_shells):
|
||||
if (no==0):
|
||||
if ((shells[i][0]==corr_shells[icrsh][0]) and (shells[i][1]==corr_shells[icrsh][1])):
|
||||
no = corr_shells[icrsh][3]
|
||||
else:
|
||||
offset += shells[i][3]
|
||||
|
||||
proj_mat[ik,isp,icrsh,0:no,offset:offset+no] = numpy.identity(no)
|
||||
|
||||
|
||||
|
||||
# now define the arrays for weights and hopping ...
|
||||
bz_weights = numpy.ones([n_k],numpy.float_)/ float(n_k) # w(k_index), default normalisation
|
||||
#hopping = [ [numpy.zeros([n_orbitals[ik][isp],n_orbitals[ik][isp]],numpy.complex_)
|
||||
# for isp in range(n_spin_blocks)] for ik in xrange(n_k) ]
|
||||
hopping = numpy.zeros([n_k,n_spin_blocs,max(n_orbitals),max(n_orbitals)],numpy.complex_)
|
||||
|
||||
if (weights_in_file):
|
||||
# weights in the file
|
||||
for ik in xrange(n_k) : bz_weights[ik] = R.next()
|
||||
|
||||
# if the sum over spins is in the weights, take it out again!!
|
||||
sm = sum(bz_weights)
|
||||
bz_weights[:] /= sm
|
||||
|
||||
|
||||
# Grab the H
|
||||
for isp in range(n_spin_blocks):
|
||||
for ik in xrange(n_k) :
|
||||
no = n_orbitals[ik][isp]
|
||||
for i in xrange(no):
|
||||
if (only_upper_triangle):
|
||||
ii=i
|
||||
else:
|
||||
ii = 0
|
||||
for j in xrange(ii,no):
|
||||
hopping[ik,isp,i,j] = R.next()
|
||||
hopping[ik,isp,i,j] += R.next() * 1j
|
||||
|
||||
if ((only_upper_triangle)and(i!=j)): hopping[ik,isp,j,i] = hopping[ik,isp,i,j].conjugate()
|
||||
|
||||
#keep some things that we need for reading parproj:
|
||||
self.n_shells = n_shells
|
||||
self.shells = shells
|
||||
self.n_corr_shells = n_corr_shells
|
||||
self.corr_shells = corr_shells
|
||||
self.n_spin_blocks = n_spin_blocks
|
||||
self.n_orbitals = n_orbitals
|
||||
self.n_k = n_k
|
||||
self.SO = SO
|
||||
self.SP = SP
|
||||
self.energy_unit = energy_unit
|
||||
except StopIteration : # a more explicit error if the file is corrupted.
|
||||
raise "SumK_LDA : reading file HMLT_file failed!"
|
||||
|
||||
R.close()
|
||||
|
||||
#print Proj_Mat[0]
|
||||
|
||||
#-----------------------------------------
|
||||
# Store the input into HDF5:
|
||||
ar = HDFArchive(self.hdf_file,'a')
|
||||
if not (self.lda_subgrp in ar): ar.create_group(self.lda_subgrp)
|
||||
# The subgroup containing the data. If it does not exist, it is created.
|
||||
# If it exists, the data is overwritten!!!
|
||||
|
||||
ar[self.lda_subgrp]['energy_unit'] = energy_unit
|
||||
ar[self.lda_subgrp]['n_k'] = n_k
|
||||
ar[self.lda_subgrp]['k_dep_projection'] = k_dep_projection
|
||||
ar[self.lda_subgrp]['SP'] = SP
|
||||
ar[self.lda_subgrp]['SO'] = SO
|
||||
ar[self.lda_subgrp]['charge_below'] = charge_below
|
||||
ar[self.lda_subgrp]['density_required'] = density_required
|
||||
ar[self.lda_subgrp]['symm_op'] = symm_op
|
||||
ar[self.lda_subgrp]['n_shells'] = n_shells
|
||||
ar[self.lda_subgrp]['shells'] = shells
|
||||
ar[self.lda_subgrp]['n_corr_shells'] = n_corr_shells
|
||||
ar[self.lda_subgrp]['corr_shells'] = corr_shells
|
||||
ar[self.lda_subgrp]['use_rotations'] = use_rotations
|
||||
ar[self.lda_subgrp]['rot_mat'] = rot_mat
|
||||
ar[self.lda_subgrp]['rot_mat_time_inv'] = rot_mat_time_inv
|
||||
ar[self.lda_subgrp]['n_reps'] = n_reps
|
||||
ar[self.lda_subgrp]['dim_reps'] = dim_reps
|
||||
ar[self.lda_subgrp]['T'] = T
|
||||
ar[self.lda_subgrp]['n_orbitals'] = n_orbitals
|
||||
ar[self.lda_subgrp]['proj_mat'] = proj_mat
|
||||
ar[self.lda_subgrp]['bz_weights'] = bz_weights
|
||||
ar[self.lda_subgrp]['hopping'] = hopping
|
||||
|
||||
del ar
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def __repack(self):
|
||||
"""Calls the h5repack routine, in order to reduce the file size of the hdf5 archive.
|
||||
Should only be used BEFORE the first invokation of HDF_Archive in the program, otherwise
|
||||
the hdf5 linking is broken!!!"""
|
||||
|
||||
import subprocess
|
||||
|
||||
if not (mpi.is_master_node()): return
|
||||
|
||||
mpi.report("Repacking the file %s"%self.hdf_file)
|
||||
|
||||
retcode = subprocess.call(["h5repack","-i%s"%self.hdf_file, "-otemphgfrt.h5"])
|
||||
if (retcode!=0):
|
||||
mpi.report("h5repack failed!")
|
||||
else:
|
||||
subprocess.call(["mv","-f","temphgfrt.h5","%s"%self.hdf_file])
|
||||
|
||||
|
||||
|
||||
def inequiv_shells(self,lst):
|
||||
"""
|
||||
The number of inequivalent shells is calculated from lst, and a mapping is given as
|
||||
map(i_corr_shells) = i_inequiv_corr_shells
|
||||
invmap(i_inequiv_corr_shells) = i_corr_shells
|
||||
in order to put the Self energies to all equivalent shells, and for extracting Gloc
|
||||
"""
|
||||
|
||||
tmp = []
|
||||
self.shellmap = [0 for i in range(len(lst))]
|
||||
self.invshellmap = [0]
|
||||
self.n_inequiv_corr_shells = 1
|
||||
tmp.append( lst[0][1:3] )
|
||||
|
||||
if (len(lst)>1):
|
||||
for i in range(len(lst)-1):
|
||||
|
||||
fnd = False
|
||||
for j in range(self.n_inequiv_corr_shells):
|
||||
if (tmp[j]==lst[i+1][1:3]):
|
||||
fnd = True
|
||||
self.shellmap[i+1] = j
|
||||
if (fnd==False):
|
||||
self.shellmap[i+1] = self.n_inequiv_corr_shells
|
||||
self.n_inequiv_corr_shells += 1
|
||||
tmp.append( lst[i+1][1:3] )
|
||||
self.invshellmap.append(i+1)
|
||||
|
163
python/trans_basis.py
Normal file
163
python/trans_basis.py
Normal file
@ -0,0 +1,163 @@
|
||||
from pytriqs.applications.dft.sumk_lda import *
|
||||
from pytriqs.applications.dft.converters import Wien2kConverter
|
||||
from pytriqs.gf.local.block_gf import BlockGf
|
||||
from pytriqs.gf.local.gf_imfreq import GfImFreq
|
||||
import numpy
|
||||
from pytriqs.archive import *
|
||||
import copy
|
||||
import pytriqs.utility.mpi as mpi
|
||||
|
||||
class TransBasis:
|
||||
'''Computates rotations into a new basis, in order to make certain quantities diagonal.'''
|
||||
|
||||
|
||||
def __init__(self, SK=None, hdf_datafile=None):
|
||||
'''Inits the class by reading the input.'''
|
||||
|
||||
if (SK==None):
|
||||
# build our own SK instance
|
||||
if (hdf_datafile==None):
|
||||
mpi.report("Give SK instance or HDF filename!")
|
||||
return 0
|
||||
|
||||
Converter = Wien2kConverter(filename=hdf_datafile,repacking=False)
|
||||
Converter.convert_dmft_input()
|
||||
del Converter
|
||||
|
||||
self.SK = SumkLDA(hdf_file=hdf_datafile+'.h5',use_lda_blocks=False)
|
||||
else:
|
||||
self.SK = SK
|
||||
|
||||
self.T = copy.deepcopy(self.SK.T[0])
|
||||
self.w = numpy.identity(SK.corr_shells[0][3])
|
||||
|
||||
|
||||
|
||||
def __call__(self, prop_to_be_diagonal = 'eal'):
|
||||
'''Calculates the diagonalisation.'''
|
||||
|
||||
if (prop_to_be_diagonal=='eal'):
|
||||
eal = self.SK.eff_atomic_levels()[0]
|
||||
elif (prop_to_be_diagonal=='dm'):
|
||||
eal = self.SK.simple_point_dens_mat()[0]
|
||||
else:
|
||||
mpi.report("Not a valid quantitiy to be diagonal! Choices are 'eal' or 'dm'")
|
||||
return 0
|
||||
|
||||
if (self.SK.SO==0):
|
||||
self.eig,self.w = numpy.linalg.eigh(eal['up'])
|
||||
|
||||
# now calculate new Transformation matrix
|
||||
self.T = numpy.dot(self.T.transpose().conjugate(),self.w).conjugate().transpose()
|
||||
|
||||
|
||||
#return numpy.dot(self.w.transpose().conjugate(),numpy.dot(eal['up'],self.w))
|
||||
|
||||
else:
|
||||
|
||||
self.eig,self.w = numpy.linalg.eigh(eal['ud'])
|
||||
|
||||
# now calculate new Transformation matrix
|
||||
self.T = numpy.dot(self.T.transpose().conjugate(),self.w).conjugate().transpose()
|
||||
|
||||
|
||||
#MPI.report("SO not implemented yet!")
|
||||
#return 0
|
||||
|
||||
# measure for the 'unity' of the transformation:
|
||||
wsqr = sum(abs(self.w.diagonal())**2)/self.w.diagonal().size
|
||||
return wsqr
|
||||
|
||||
|
||||
def rotate_gf(self,gf_to_rot):
|
||||
'''rotates a given GF into the new basis'''
|
||||
|
||||
# build a full GF
|
||||
gfrotated = BlockGf( name_block_generator = [ (a,GfImFreq(indices = al, mesh = gf_to_rot.mesh)) for a,al in self.SK.gf_struct_corr[0] ], make_copies = False)
|
||||
|
||||
|
||||
# transform the CTQMC blocks to the full matrix:
|
||||
s = self.SK.shellmap[0] # s is the index of the inequivalent shell corresponding to icrsh
|
||||
for ibl in range(len(self.SK.gf_struct_solver[s])):
|
||||
for i in range(len(self.SK.gf_struct_solver[s][ibl][1])):
|
||||
for j in range(len(self.SK.gf_struct_solver[s][ibl][1])):
|
||||
bl = self.SK.gf_struct_solver[s][ibl][0]
|
||||
ind1 = self.SK.gf_struct_solver[s][ibl][1][i]
|
||||
ind2 = self.SK.gf_struct_solver[s][ibl][1][j]
|
||||
gfrotated[self.SK.map_inv[s][bl]][ind1,ind2] <<= gf_to_rot[bl][ind1,ind2]
|
||||
|
||||
# Rotate using the matrix w
|
||||
for sig,bn in gfrotated:
|
||||
gfrotated[sig].from_L_G_R(self.w.transpose().conjugate(),gfrotated[sig],self.w)
|
||||
|
||||
gfreturn = gf_to_rot.copy()
|
||||
# Put back into CTQMC basis:
|
||||
for ibl in range(len(self.SK.gf_struct_solver[0])):
|
||||
for i in range(len(self.SK.gf_struct_solver[0][ibl][1])):
|
||||
for j in range(len(self.SK.gf_struct_solver[0][ibl][1])):
|
||||
bl = self.SK.gf_struct_solver[0][ibl][0]
|
||||
ind1 = self.SK.gf_struct_solver[0][ibl][1][i]
|
||||
ind2 = self.SK.gf_struct_solver[0][ibl][1][j]
|
||||
gfreturn[bl][ind1,ind2] <<= gfrotated[self.SK.map_inv[0][bl]][ind1,ind2]
|
||||
|
||||
return gfreturn
|
||||
|
||||
|
||||
def write_trans_file(self, filename):
|
||||
'''writes the new transformation into a file, readable for dmftproj.'''
|
||||
|
||||
f=open(filename,'w')
|
||||
|
||||
Tnew = self.T.conjugate()
|
||||
N = self.SK.corr_shells[0][3]
|
||||
|
||||
if (self.SK.SO==0):
|
||||
|
||||
for i in range(N):
|
||||
st = ''
|
||||
for k in range(N):
|
||||
st += " %9.6f"%(Tnew[i,k].real)
|
||||
st += " %9.6f"%(Tnew[i,k].imag)
|
||||
for k in range(2*N):
|
||||
st += " 0.0"
|
||||
|
||||
if (i<(N-1)):
|
||||
f.write("%s\n"%(st))
|
||||
else:
|
||||
st1=st.replace(' ','*',1)
|
||||
f.write("%s\n"%(st1))
|
||||
|
||||
|
||||
for i in range(N):
|
||||
st = ''
|
||||
for k in range(2*N):
|
||||
st += " 0.0"
|
||||
for k in range(N):
|
||||
st += " %9.6f"%(Tnew[i,k].real)
|
||||
st += " %9.6f"%(Tnew[i,k].imag)
|
||||
|
||||
if (i<(N-1)):
|
||||
f.write("%s\n"%(st))
|
||||
else:
|
||||
st1=st.replace(' ','*',1)
|
||||
f.write("%s\n"%(st1))
|
||||
|
||||
else:
|
||||
|
||||
for i in range(N):
|
||||
st = ''
|
||||
for k in range(N):
|
||||
st += " %9.6f"%(Tnew[i,k].real)
|
||||
st += " %9.6f"%(Tnew[i,k].imag)
|
||||
|
||||
if (i<(N-1)):
|
||||
f.write("%s\n"%(st))
|
||||
else:
|
||||
st1=st.replace(' ','*',1)
|
||||
f.write("%s\n"%(st1))
|
||||
#MPI.report("SO not implemented!")
|
||||
|
||||
f.close()
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user