3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-21 11:53:41 +01:00

Added first draft of general converter to handle general H(k)

Added also routine to rotate basis sets
This commit is contained in:
aichhorn 2014-04-02 17:54:31 +02:00
parent bf1f3c0758
commit e10c48e106
4 changed files with 464 additions and 2 deletions

View File

@ -26,6 +26,6 @@ from sumk_lda_tools import SumkLDATools
from U_matrix import Umatrix
from converters import *
__all__ =['SumkLDA','Symmetry','SumkLDATools','Umatrix','Wien2kConverter']
__all__ =['SumkLDA','Symmetry','SumkLDATools','Umatrix','Wien2kConverter','HkConverter']

View File

@ -21,7 +21,8 @@
################################################################################
from wien2k_converter import Wien2kConverter
from hk_converter import HkConverter
__all__ =['Wien2kConverter']
__all__ =['Wien2kConverter','HkConverter']

View File

@ -0,0 +1,298 @@
################################################################################
#
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
#
# Copyright (C) 2011 by M. Aichhorn
#
# TRIQS is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
#
################################################################################
from types import *
import numpy
from pytriqs.archive import *
import pytriqs.utility.mpi as mpi
import string
from math import sqrt
def Read_Fortran_File (filename):
""" Returns a generator that yields all numbers in the Fortran file as float, one by one"""
import os.path
if not(os.path.exists(filename)) : raise IOError, "File %s does not exists"%filename
for line in open(filename,'r') :
for x in line.replace('D','E').replace('(',' ').replace(')',' ').replace(',',' ').split() :
yield string.atof(x)
class HkConverter:
"""
Conversion from general H(k) file to an hdf5 file, that can be used as input for the SumK_LDA class.
"""
def __init__(self, hk_file, hdf_file, lda_subgrp = 'SumK_LDA', symm_subgrp = 'SymmCorr', repacking = False):
"""
Init of the class. Variable Filename gives the root of all filenames, e.g. case.ctqmcout, case.h5, and so
on.
"""
assert type(nmto_file)==StringType,"LDA_file must be a filename"
self.hdf_file = hdf_file
self.lda_file = hk_file
#self.Symm_file = Filename+'.symqmc'
#self.Parproj_file = Filename+'.parproj'
#self.Symmpar_file = Filename+'.sympar'
#self.Band_file = Filename+'.outband'
self.lda_subgrp = lda_subgrp
self.symm_subgrp = symm_subgrp
# Checks if h5 file is there and repacks it if wanted:
import os.path
if (os.path.exists(self.hdf_file) and repacking):
self.__repack()
def convert_dmft_input(self, only_upper_triangle = True, weights_in_file = False):
"""
Reads the input files, and stores the data in the HDFfile
"""
if not (mpi.is_master_node()): return # do it only on master:
mpi.report("Reading input from %s..."%self.lda_file)
# Read and write only on Master!!!
# R is a generator : each R.Next() will return the next number in the file
R = Read_Fortran_File(self.lda_file)
try:
energy_unit = 1.0 # the energy conversion factor is 1.0, we assume eV in files
n_k = int(R.next()) # read the number of k points
k_dep_projection = 0
SP = 0 # no spin-polarision
SO = 0 # no spin-orbit
charge_below = 0.0 # total charge below energy window is set to 0
density_required = R.next() # density required, for setting the chemical potential
symm_op = 0 # No symmetry groups for the k-sum
# the information on the non-correlated shells is needed for defining dimension of matrices:
n_shells = int(R.next()) # number of shells considered in the Wanniers
# corresponds to index R in formulas
# now read the information about the shells:
shells = [ [ int(R.next()) for i in range(4) ] for icrsh in range(n_shells) ] # reads iatom, sort, l, dim
n_corr_shells = int(R.next()) # number of corr. shells (e.g. Fe d, Ce f) in the unit cell,
# corresponds to index R in formulas
# now read the information about the shells:
corr_shells = [ [ int(R.next()) for i in range(6) ] for icrsh in range(n_corr_shells) ] # reads iatom, sort, l, dim, SO flag, irep
self.inequiv_shells(corr_shells) # determine the number of inequivalent correlated shells, has to be known for further reading...
use_rotations = 0
rot_mat = [numpy.identity(corr_shells[icrsh][3],numpy.complex_) for icrsh in xrange(n_corr_shells)]
rot_mat_time_inv = [0 for i in range(n_corr_shells)]
# Representative representations are read from file
n_reps = [1 for i in range(self.n_inequiv_corr_shells)]
dim_reps = [0 for i in range(self.n_inequiv_corr_shells)]
for icrsh in range(self.n_inequiv_corr_shells):
n_reps[icrsh] = int(R.next()) # number of representatives ("subsets"), e.g. t2g and eg
dim_reps[icrsh] = [int(R.next()) for i in range(n_reps[icrsh])] # dimensions of the subsets
# The transformation matrix:
# it is of dimension 2l+1, it is taken to be standard d (as in Wien2k)
T = []
for icrsh in range(self.n_inequiv_corr_shells):
#for ish in xrange(self.N_inequiv_corr_shells):
ll = 2*corr_shells[self.invshellmap[icrsh]][2]+1
lmax = ll * (corr_shells[self.invshellmap[icrsh]][4] + 1)
T.append(numpy.zeros([lmax,lmax],numpy.complex_))
T[icrsh] = numpy.array([[0.0, 0.0, 1.0, 0.0, 0.0],
[1.0/sqrt(2.0), 0.0, 0.0, 0.0, 1.0/sqrt(2.0)],
[-1.0/sqrt(2.0), 0.0, 0.0, 0.0, 1.0/sqrt(2.0)],
[0.0, 1.0/sqrt(2.0), 0.0, -1.0/sqrt(2.0), 0.0],
[0.0, 1.0/sqrt(2.0), 0.0, 1.0/sqrt(2.0), 0.0]])
# Spin blocks to be read:
n_spin_blocks = SP + 1 - SO # number of spins to read for Norbs and Ham, NOT Projectors
# define the number of N_Orbitals for all k points: it is the number of total bands and independent of k!
n_orb = sum([ shells[ish][3] for ish in range(n_shells)])
#n_orbitals = [ [n_orb for isp in range(n_spin_blocks)] for ik in xrange(n_k)]
n_orbitals = numpy.ones([n_k,n_spin_blocs],numpy.int) * n_orb
#print N_Orbitals
# Initialise the projectors:
#proj_mat = [ [ [numpy.zeros([corr_shells[icrsh][3], n_orbitals[ik][isp]], numpy.complex_)
# for icrsh in range (n_corr_shells)]
# for isp in range(n_spin_blocks)]
# for ik in range(n_k) ]
proj_mat = numpy.zeros([n_k,n_spin_blocs,n_corr_shells,max(numpy.array(corr_shells)[:,3]),max(n_orbitals)],numpy.complex_)
# Read the projectors from the file:
for ik in xrange(n_k):
for icrsh in range(n_corr_shells):
# calculate the offset:
offset = 0
no = 0
for i in range(n_shells):
if (no==0):
if ((shells[i][0]==corr_shells[icrsh][0]) and (shells[i][1]==corr_shells[icrsh][1])):
no = corr_shells[icrsh][3]
else:
offset += shells[i][3]
proj_mat[ik,isp,icrsh,0:no,offset:offset+no] = numpy.identity(no)
# now define the arrays for weights and hopping ...
bz_weights = numpy.ones([n_k],numpy.float_)/ float(n_k) # w(k_index), default normalisation
#hopping = [ [numpy.zeros([n_orbitals[ik][isp],n_orbitals[ik][isp]],numpy.complex_)
# for isp in range(n_spin_blocks)] for ik in xrange(n_k) ]
hopping = numpy.zeros([n_k,n_spin_blocs,max(n_orbitals),max(n_orbitals)],numpy.complex_)
if (weights_in_file):
# weights in the file
for ik in xrange(n_k) : bz_weights[ik] = R.next()
# if the sum over spins is in the weights, take it out again!!
sm = sum(bz_weights)
bz_weights[:] /= sm
# Grab the H
for isp in range(n_spin_blocks):
for ik in xrange(n_k) :
no = n_orbitals[ik][isp]
for i in xrange(no):
if (only_upper_triangle):
ii=i
else:
ii = 0
for j in xrange(ii,no):
hopping[ik,isp,i,j] = R.next()
hopping[ik,isp,i,j] += R.next() * 1j
if ((only_upper_triangle)and(i!=j)): hopping[ik,isp,j,i] = hopping[ik,isp,i,j].conjugate()
#keep some things that we need for reading parproj:
self.n_shells = n_shells
self.shells = shells
self.n_corr_shells = n_corr_shells
self.corr_shells = corr_shells
self.n_spin_blocks = n_spin_blocks
self.n_orbitals = n_orbitals
self.n_k = n_k
self.SO = SO
self.SP = SP
self.energy_unit = energy_unit
except StopIteration : # a more explicit error if the file is corrupted.
raise "SumK_LDA : reading file HMLT_file failed!"
R.close()
#print Proj_Mat[0]
#-----------------------------------------
# Store the input into HDF5:
ar = HDFArchive(self.hdf_file,'a')
if not (self.lda_subgrp in ar): ar.create_group(self.lda_subgrp)
# The subgroup containing the data. If it does not exist, it is created.
# If it exists, the data is overwritten!!!
ar[self.lda_subgrp]['energy_unit'] = energy_unit
ar[self.lda_subgrp]['n_k'] = n_k
ar[self.lda_subgrp]['k_dep_projection'] = k_dep_projection
ar[self.lda_subgrp]['SP'] = SP
ar[self.lda_subgrp]['SO'] = SO
ar[self.lda_subgrp]['charge_below'] = charge_below
ar[self.lda_subgrp]['density_required'] = density_required
ar[self.lda_subgrp]['symm_op'] = symm_op
ar[self.lda_subgrp]['n_shells'] = n_shells
ar[self.lda_subgrp]['shells'] = shells
ar[self.lda_subgrp]['n_corr_shells'] = n_corr_shells
ar[self.lda_subgrp]['corr_shells'] = corr_shells
ar[self.lda_subgrp]['use_rotations'] = use_rotations
ar[self.lda_subgrp]['rot_mat'] = rot_mat
ar[self.lda_subgrp]['rot_mat_time_inv'] = rot_mat_time_inv
ar[self.lda_subgrp]['n_reps'] = n_reps
ar[self.lda_subgrp]['dim_reps'] = dim_reps
ar[self.lda_subgrp]['T'] = T
ar[self.lda_subgrp]['n_orbitals'] = n_orbitals
ar[self.lda_subgrp]['proj_mat'] = proj_mat
ar[self.lda_subgrp]['bz_weights'] = bz_weights
ar[self.lda_subgrp]['hopping'] = hopping
del ar
def __repack(self):
"""Calls the h5repack routine, in order to reduce the file size of the hdf5 archive.
Should only be used BEFORE the first invokation of HDF_Archive in the program, otherwise
the hdf5 linking is broken!!!"""
import subprocess
if not (mpi.is_master_node()): return
mpi.report("Repacking the file %s"%self.hdf_file)
retcode = subprocess.call(["h5repack","-i%s"%self.hdf_file, "-otemphgfrt.h5"])
if (retcode!=0):
mpi.report("h5repack failed!")
else:
subprocess.call(["mv","-f","temphgfrt.h5","%s"%self.hdf_file])
def inequiv_shells(self,lst):
"""
The number of inequivalent shells is calculated from lst, and a mapping is given as
map(i_corr_shells) = i_inequiv_corr_shells
invmap(i_inequiv_corr_shells) = i_corr_shells
in order to put the Self energies to all equivalent shells, and for extracting Gloc
"""
tmp = []
self.shellmap = [0 for i in range(len(lst))]
self.invshellmap = [0]
self.n_inequiv_corr_shells = 1
tmp.append( lst[0][1:3] )
if (len(lst)>1):
for i in range(len(lst)-1):
fnd = False
for j in range(self.n_inequiv_corr_shells):
if (tmp[j]==lst[i+1][1:3]):
fnd = True
self.shellmap[i+1] = j
if (fnd==False):
self.shellmap[i+1] = self.n_inequiv_corr_shells
self.n_inequiv_corr_shells += 1
tmp.append( lst[i+1][1:3] )
self.invshellmap.append(i+1)

163
python/trans_basis.py Normal file
View File

@ -0,0 +1,163 @@
from pytriqs.applications.dft.sumk_lda import *
from pytriqs.applications.dft.converters import Wien2kConverter
from pytriqs.gf.local.block_gf import BlockGf
from pytriqs.gf.local.gf_imfreq import GfImFreq
import numpy
from pytriqs.archive import *
import copy
import pytriqs.utility.mpi as mpi
class TransBasis:
'''Computates rotations into a new basis, in order to make certain quantities diagonal.'''
def __init__(self, SK=None, hdf_datafile=None):
'''Inits the class by reading the input.'''
if (SK==None):
# build our own SK instance
if (hdf_datafile==None):
mpi.report("Give SK instance or HDF filename!")
return 0
Converter = Wien2kConverter(filename=hdf_datafile,repacking=False)
Converter.convert_dmft_input()
del Converter
self.SK = SumkLDA(hdf_file=hdf_datafile+'.h5',use_lda_blocks=False)
else:
self.SK = SK
self.T = copy.deepcopy(self.SK.T[0])
self.w = numpy.identity(SK.corr_shells[0][3])
def __call__(self, prop_to_be_diagonal = 'eal'):
'''Calculates the diagonalisation.'''
if (prop_to_be_diagonal=='eal'):
eal = self.SK.eff_atomic_levels()[0]
elif (prop_to_be_diagonal=='dm'):
eal = self.SK.simple_point_dens_mat()[0]
else:
mpi.report("Not a valid quantitiy to be diagonal! Choices are 'eal' or 'dm'")
return 0
if (self.SK.SO==0):
self.eig,self.w = numpy.linalg.eigh(eal['up'])
# now calculate new Transformation matrix
self.T = numpy.dot(self.T.transpose().conjugate(),self.w).conjugate().transpose()
#return numpy.dot(self.w.transpose().conjugate(),numpy.dot(eal['up'],self.w))
else:
self.eig,self.w = numpy.linalg.eigh(eal['ud'])
# now calculate new Transformation matrix
self.T = numpy.dot(self.T.transpose().conjugate(),self.w).conjugate().transpose()
#MPI.report("SO not implemented yet!")
#return 0
# measure for the 'unity' of the transformation:
wsqr = sum(abs(self.w.diagonal())**2)/self.w.diagonal().size
return wsqr
def rotate_gf(self,gf_to_rot):
'''rotates a given GF into the new basis'''
# build a full GF
gfrotated = BlockGf( name_block_generator = [ (a,GfImFreq(indices = al, mesh = gf_to_rot.mesh)) for a,al in self.SK.gf_struct_corr[0] ], make_copies = False)
# transform the CTQMC blocks to the full matrix:
s = self.SK.shellmap[0] # s is the index of the inequivalent shell corresponding to icrsh
for ibl in range(len(self.SK.gf_struct_solver[s])):
for i in range(len(self.SK.gf_struct_solver[s][ibl][1])):
for j in range(len(self.SK.gf_struct_solver[s][ibl][1])):
bl = self.SK.gf_struct_solver[s][ibl][0]
ind1 = self.SK.gf_struct_solver[s][ibl][1][i]
ind2 = self.SK.gf_struct_solver[s][ibl][1][j]
gfrotated[self.SK.map_inv[s][bl]][ind1,ind2] <<= gf_to_rot[bl][ind1,ind2]
# Rotate using the matrix w
for sig,bn in gfrotated:
gfrotated[sig].from_L_G_R(self.w.transpose().conjugate(),gfrotated[sig],self.w)
gfreturn = gf_to_rot.copy()
# Put back into CTQMC basis:
for ibl in range(len(self.SK.gf_struct_solver[0])):
for i in range(len(self.SK.gf_struct_solver[0][ibl][1])):
for j in range(len(self.SK.gf_struct_solver[0][ibl][1])):
bl = self.SK.gf_struct_solver[0][ibl][0]
ind1 = self.SK.gf_struct_solver[0][ibl][1][i]
ind2 = self.SK.gf_struct_solver[0][ibl][1][j]
gfreturn[bl][ind1,ind2] <<= gfrotated[self.SK.map_inv[0][bl]][ind1,ind2]
return gfreturn
def write_trans_file(self, filename):
'''writes the new transformation into a file, readable for dmftproj.'''
f=open(filename,'w')
Tnew = self.T.conjugate()
N = self.SK.corr_shells[0][3]
if (self.SK.SO==0):
for i in range(N):
st = ''
for k in range(N):
st += " %9.6f"%(Tnew[i,k].real)
st += " %9.6f"%(Tnew[i,k].imag)
for k in range(2*N):
st += " 0.0"
if (i<(N-1)):
f.write("%s\n"%(st))
else:
st1=st.replace(' ','*',1)
f.write("%s\n"%(st1))
for i in range(N):
st = ''
for k in range(2*N):
st += " 0.0"
for k in range(N):
st += " %9.6f"%(Tnew[i,k].real)
st += " %9.6f"%(Tnew[i,k].imag)
if (i<(N-1)):
f.write("%s\n"%(st))
else:
st1=st.replace(' ','*',1)
f.write("%s\n"%(st1))
else:
for i in range(N):
st = ''
for k in range(N):
st += " %9.6f"%(Tnew[i,k].real)
st += " %9.6f"%(Tnew[i,k].imag)
if (i<(N-1)):
f.write("%s\n"%(st))
else:
st1=st.replace(' ','*',1)
f.write("%s\n"%(st1))
#MPI.report("SO not implemented!")
f.close()