mirror of
https://github.com/triqs/dft_tools
synced 2025-04-25 09:44:53 +02:00
cleaned up files in Sr2MgOsO6 doc
This commit is contained in:
parent
a77844ea1a
commit
d6977d8bee
19
doc/tutorials/images_scripts/Sr2MgOsO6_noSOC.py
Normal file
19
doc/tutorials/images_scripts/Sr2MgOsO6_noSOC.py
Normal file
@ -0,0 +1,19 @@
|
|||||||
|
# Conversion:
|
||||||
|
from triqs_dft_tools.converters.wien2k_converter import *
|
||||||
|
Converter = Wien2kConverter(filename = "Sr2MgOsO6_noSOC")
|
||||||
|
Converter.convert_dft_input()
|
||||||
|
|
||||||
|
import numpy
|
||||||
|
numpy.set_printoptions(precision=3, suppress=True)
|
||||||
|
|
||||||
|
# Set up SK class:
|
||||||
|
from triqs_dft_tools.sumk_dft import *
|
||||||
|
SK = SumkDFT(hdf_file='Sr2MgOsO6.h5',use_dft_blocks=True)
|
||||||
|
|
||||||
|
eal = SK.eff_atomic_levels()
|
||||||
|
|
||||||
|
mat = SK.calculate_diagonalization_matrix(prop_to_be_diagonal='eal')
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -2,7 +2,7 @@
|
|||||||
|
|
||||||
Here we will discuss a calculation where off-diagonal matrix elements show up, and will discuss step-by-step how this calculation can be set up.
|
Here we will discuss a calculation where off-diagonal matrix elements show up, and will discuss step-by-step how this calculation can be set up.
|
||||||
|
|
||||||
The full script for this calculation is also provided here (:download:`dft_dmft_cthyb.py <images_scripts/dft_dmft_cthyb.py>`).
|
The full script for this calculation is also provided here (:download:`Sr2MgOsO6_noSOC.py <images_scripts/Sr2MgOsO6_noSOC.py>`).
|
||||||
|
|
||||||
Note that we do not include spin-orbit coupling here for pedagogical reasons. For the real material it is necessary to include also SOC.
|
Note that we do not include spin-orbit coupling here for pedagogical reasons. For the real material it is necessary to include also SOC.
|
||||||
|
|
||||||
@ -61,208 +61,3 @@ This reads all the data, and stores everything that is necessary for the DMFT ca
|
|||||||
The DMFT calculation
|
The DMFT calculation
|
||||||
====================
|
====================
|
||||||
|
|
||||||
The DMFT script itself is, except very few details, independent of the DFT package that was used to calculate the local orbitals.
|
|
||||||
As soon as one has converted everything to the hdf5 format, the following procedure is practially the same.
|
|
||||||
|
|
||||||
Loading modules
|
|
||||||
---------------
|
|
||||||
|
|
||||||
First, we load the necessary modules::
|
|
||||||
|
|
||||||
from triqs_dft_tools.sumk_dft import *
|
|
||||||
from pytriqs.gf import *
|
|
||||||
from pytriqs.archive import HDFArchive
|
|
||||||
from pytriqs.operators.util import *
|
|
||||||
from triqs_cthyb import *
|
|
||||||
import pytriqs.utility.mpi as mpi
|
|
||||||
|
|
||||||
The last two lines load the modules for the construction of the
|
|
||||||
:ref:`CTHYB solver <triqscthyb:welcome>`.
|
|
||||||
|
|
||||||
Initializing SumkDFT
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
We define some parameters, which should be self-explanatory::
|
|
||||||
|
|
||||||
dft_filename = 'SrVO3' # filename
|
|
||||||
U = 4.0 # interaction parameters
|
|
||||||
J = 0.65
|
|
||||||
beta = 40 # inverse temperature
|
|
||||||
loops = 15 # number of DMFT loops
|
|
||||||
mix = 0.8 # mixing factor of Sigma after solution of the AIM
|
|
||||||
dc_type = 1 # DC type: 0 FLL, 1 Held, 2 AMF
|
|
||||||
use_blocks = True # use bloc structure from DFT input
|
|
||||||
prec_mu = 0.0001 # precision of chemical potential
|
|
||||||
|
|
||||||
|
|
||||||
And next, we can initialize the :class:`SumkDFT <dft.sumk_dft.SumkDFT>` class::
|
|
||||||
|
|
||||||
SK = SumkDFT(hdf_file=dft_filename+'.h5',use_dft_blocks=use_blocks)
|
|
||||||
|
|
||||||
Initializing the solver
|
|
||||||
-----------------------
|
|
||||||
|
|
||||||
We also have to specify the :ref:`CTHYB solver <triqscthyb:welcome>` related settings.
|
|
||||||
We assume that the DMFT script for SrVO3 is executed on 16 cores. A sufficient set
|
|
||||||
of parameters for a first guess is::
|
|
||||||
|
|
||||||
p = {}
|
|
||||||
# solver
|
|
||||||
p["random_seed"] = 123 * mpi.rank + 567
|
|
||||||
p["length_cycle"] = 200
|
|
||||||
p["n_warmup_cycles"] = 100000
|
|
||||||
p["n_cycles"] = 1000000
|
|
||||||
# tail fit
|
|
||||||
p["perform_tail_fit"] = True
|
|
||||||
p["fit_max_moment"] = 4
|
|
||||||
p["fit_min_n"] = 30
|
|
||||||
p["fit_max_n"] = 60
|
|
||||||
|
|
||||||
Here we use a tail fit to deal with numerical noise of higher Matsubara frequencies.
|
|
||||||
For other options and more details on the solver parameters, we refer the user to
|
|
||||||
the :ref:`CTHYB solver <triqscthyb:welcome>` documentation.
|
|
||||||
It is important to note that the solver parameters have to be adjusted for
|
|
||||||
each material individually. A guide on how to set the tail fit parameters is given
|
|
||||||
:ref:`below <tailfit>`.
|
|
||||||
|
|
||||||
|
|
||||||
The next step is to initialize the
|
|
||||||
:class:`solver class <triqs_cthyb.Solver>`.
|
|
||||||
It consist of two parts:
|
|
||||||
|
|
||||||
#. Calculating the multi-band interaction matrix, and constructing the
|
|
||||||
interaction Hamiltonian.
|
|
||||||
#. Initializing the solver class itself.
|
|
||||||
|
|
||||||
The first step is done using methods of the :ref:`TRIQS <triqslibs:welcome>` library::
|
|
||||||
|
|
||||||
n_orb = SK.corr_shells[0]['dim']
|
|
||||||
l = SK.corr_shells[0]['l']
|
|
||||||
spin_names = ["up","down"]
|
|
||||||
orb_names = [i for i in range(n_orb)]
|
|
||||||
# Use GF structure determined by DFT blocks:
|
|
||||||
gf_struct = [(block, indices) for block, indices in SK.gf_struct_solver[0].iteritems()]
|
|
||||||
# Construct U matrix for density-density calculations:
|
|
||||||
Umat, Upmat = U_matrix_kanamori(n_orb=n_orb, U_int=U, J_hund=J)
|
|
||||||
|
|
||||||
We assumed here that we want to use an interaction matrix with
|
|
||||||
Kanamori definitions of :math:`U` and :math:`J`.
|
|
||||||
|
|
||||||
Next, we construct the Hamiltonian and the solver::
|
|
||||||
|
|
||||||
h_int = h_int_density(spin_names, orb_names, map_operator_structure=SK.sumk_to_solver[0], U=Umat, Uprime=Upmat)
|
|
||||||
S = Solver(beta=beta, gf_struct=gf_struct)
|
|
||||||
|
|
||||||
As you see, we take only density-density interactions into
|
|
||||||
account. Other Hamiltonians with, e.g. with full rotational invariant interactions are:
|
|
||||||
|
|
||||||
* h_int_kanamori
|
|
||||||
* h_int_slater
|
|
||||||
|
|
||||||
For other choices of the interaction matrices (e.g Slater representation) or
|
|
||||||
Hamiltonians, we refer to the reference manual of the :ref:`TRIQS <triqslibs:welcome>`
|
|
||||||
library.
|
|
||||||
|
|
||||||
DMFT cycle
|
|
||||||
----------
|
|
||||||
|
|
||||||
Now we can go to the definition of the self-consistency step. It consists again
|
|
||||||
of the basic steps discussed in the :ref:`previous section <singleshot>`, with
|
|
||||||
some additional refinements::
|
|
||||||
|
|
||||||
for iteration_number in range(1,loops+1):
|
|
||||||
if mpi.is_master_node(): print "Iteration = ", iteration_number
|
|
||||||
|
|
||||||
SK.symm_deg_gf(S.Sigma_iw,orb=0) # symmetrizing Sigma
|
|
||||||
SK.set_Sigma([ S.Sigma_iw ]) # put Sigma into the SumK class
|
|
||||||
chemical_potential = SK.calc_mu( precision = prec_mu ) # find the chemical potential for given density
|
|
||||||
S.G_iw << SK.extract_G_loc()[0] # calc the local Green function
|
|
||||||
mpi.report("Total charge of Gloc : %.6f"%S.G_iw.total_density())
|
|
||||||
|
|
||||||
# Init the DC term and the real part of Sigma, if no previous runs found:
|
|
||||||
if (iteration_number==1 and previous_present==False):
|
|
||||||
dm = S.G_iw.density()
|
|
||||||
SK.calc_dc(dm, U_interact = U, J_hund = J, orb = 0, use_dc_formula = dc_type)
|
|
||||||
S.Sigma_iw << SK.dc_imp[0]['up'][0,0]
|
|
||||||
|
|
||||||
# Calculate new G0_iw to input into the solver:
|
|
||||||
S.G0_iw << S.Sigma_iw + inverse(S.G_iw)
|
|
||||||
S.G0_iw << inverse(S.G0_iw)
|
|
||||||
|
|
||||||
# Solve the impurity problem:
|
|
||||||
S.solve(h_int=h_int, **p)
|
|
||||||
|
|
||||||
# Solved. Now do post-solution stuff:
|
|
||||||
mpi.report("Total charge of impurity problem : %.6f"%S.G_iw.total_density())
|
|
||||||
|
|
||||||
# Now mix Sigma and G with factor mix, if wanted:
|
|
||||||
if (iteration_number>1 or previous_present):
|
|
||||||
if mpi.is_master_node():
|
|
||||||
with HDFArchive(dft_filename+'.h5','r') as ar:
|
|
||||||
mpi.report("Mixing Sigma and G with factor %s"%mix)
|
|
||||||
S.Sigma_iw << mix * S.Sigma_iw + (1.0-mix) * ar['dmft_output']['Sigma_iw']
|
|
||||||
S.G_iw << mix * S.G_iw + (1.0-mix) * ar['dmft_output']['G_iw']
|
|
||||||
S.G_iw << mpi.bcast(S.G_iw)
|
|
||||||
S.Sigma_iw << mpi.bcast(S.Sigma_iw)
|
|
||||||
|
|
||||||
# Write the final Sigma and G to the hdf5 archive:
|
|
||||||
if mpi.is_master_node():
|
|
||||||
with HDFArchive(dft_filename+'.h5','a') as ar:
|
|
||||||
ar['dmft_output']['iterations'] = iteration_number
|
|
||||||
ar['dmft_output']['G_0'] = S.G0_iw
|
|
||||||
ar['dmft_output']['G_tau'] = S.G_tau
|
|
||||||
ar['dmft_output']['G_iw'] = S.G_iw
|
|
||||||
ar['dmft_output']['Sigma_iw'] = S.Sigma_iw
|
|
||||||
|
|
||||||
# Set the new double counting:
|
|
||||||
dm = S.G_iw.density() # compute the density matrix of the impurity problem
|
|
||||||
SK.calc_dc(dm, U_interact = U, J_hund = J, orb = 0, use_dc_formula = dc_type)
|
|
||||||
|
|
||||||
# Save stuff into the user_data group of hdf5 archive in case of rerun:
|
|
||||||
SK.save(['chemical_potential','dc_imp','dc_energ'])
|
|
||||||
|
|
||||||
|
|
||||||
This is all we need for the DFT+DMFT calculation.
|
|
||||||
You can see in this code snippet, that all results of this calculation
|
|
||||||
will be stored in a separate subgroup in the hdf5 file, called `dmft_output`.
|
|
||||||
Note that this script performs 15 DMFT cycles, but does not check for
|
|
||||||
convergence. Of course, it would be possible to build in convergence criteria.
|
|
||||||
A simple check for convergence can be also done if you store multiple quantities
|
|
||||||
of each iteration and analyse the convergence by hand. In general, it is advisable
|
|
||||||
to start with a lower statistics (less measurements), but then increase it at a
|
|
||||||
point close to converged results (e.g. after a few initial iterations). This helps
|
|
||||||
to keep computational costs low during the first iterations.
|
|
||||||
|
|
||||||
Using the Kanamori Hamiltonian and the parameters above (but on 16 cores),
|
|
||||||
your self energy after the **first iteration** should look like the
|
|
||||||
self energy shown below.
|
|
||||||
|
|
||||||
.. image:: images_scripts/SrVO3_Sigma_iw_it1.png
|
|
||||||
:width: 700
|
|
||||||
:align: center
|
|
||||||
|
|
||||||
.. _tailfit:
|
|
||||||
|
|
||||||
Tail fit parameters
|
|
||||||
-------------------
|
|
||||||
|
|
||||||
A good way to identify suitable tail fit parameters is by "human inspection".
|
|
||||||
Therefore disabled the tail fitting first::
|
|
||||||
|
|
||||||
p["perform_tail_fit"] = False
|
|
||||||
|
|
||||||
and perform only one DMFT iteration. The resulting self energy can be tail fitted by hand::
|
|
||||||
|
|
||||||
Sigma_iw_fit = S.Sigma_iw.copy()
|
|
||||||
Sigma_iw_fit << tail_fit(S.Sigma_iw, fit_max_moment = 4, fit_min_n = 40, fit_max_n = 160)[0]
|
|
||||||
|
|
||||||
Plot the self energy and adjust the tail fit parameters such that you obtain a
|
|
||||||
proper fit. The :meth:`fit_tail function <pytriqs.gf.tools.tail_fit>` is part
|
|
||||||
of the :ref:`TRIQS <triqslibs:welcome>` library.
|
|
||||||
|
|
||||||
For a self energy which is going to zero for :math:`i\omega \rightarrow 0` our suggestion is
|
|
||||||
to start the tail fit (:emphasis:`fit_min_n`) at a Matsubara frequency considerable above the minimum
|
|
||||||
of the self energy and to stop (:emphasis:`fit_max_n`) before the noise fully takes over.
|
|
||||||
If it is difficult to find a reasonable fit in this region you should increase
|
|
||||||
your statistics (number of measurements). Keep in mind that :emphasis:`fit_min_n`
|
|
||||||
and :emphasis:`fit_max_n` also depend on :math:`\beta`.
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user