mirror of
https://github.com/triqs/dft_tools
synced 2025-01-05 19:08:45 +01:00
uncompleted work on csc NiO tutorial
This commit is contained in:
parent
8f184fc963
commit
d61b55f0a4
@ -11,7 +11,7 @@ from triqs_cthyb import *
|
|||||||
import warnings
|
import warnings
|
||||||
warnings.filterwarnings("ignore", category=FutureWarning)
|
warnings.filterwarnings("ignore", category=FutureWarning)
|
||||||
|
|
||||||
filename = 'vasp'
|
filename = 'nio'
|
||||||
SK = SumkDFT(hdf_file = filename+'.h5', use_dft_blocks = False)
|
SK = SumkDFT(hdf_file = filename+'.h5', use_dft_blocks = False)
|
||||||
|
|
||||||
beta = 5.0
|
beta = 5.0
|
||||||
|
@ -2,7 +2,7 @@ from pytriqs.gf import *
|
|||||||
from pytriqs.archive import *
|
from pytriqs.archive import *
|
||||||
from triqs_maxent import *
|
from triqs_maxent import *
|
||||||
|
|
||||||
filename = 'vasp'
|
filename = 'nio'
|
||||||
|
|
||||||
ar = HDFArchive(filename+'.h5','a')
|
ar = HDFArchive(filename+'.h5','a')
|
||||||
if 'iteration_count' in ar['DMFT_results']:
|
if 'iteration_count' in ar['DMFT_results']:
|
||||||
|
@ -15,7 +15,7 @@ import triqs_dft_tools.version as dft_tools_version
|
|||||||
import warnings
|
import warnings
|
||||||
warnings.filterwarnings("ignore", category=FutureWarning)
|
warnings.filterwarnings("ignore", category=FutureWarning)
|
||||||
|
|
||||||
filename = 'vasp'
|
filename = 'nio'
|
||||||
|
|
||||||
SK = SumkDFT(hdf_file = filename+'.h5', use_dft_blocks = False)
|
SK = SumkDFT(hdf_file = filename+'.h5', use_dft_blocks = False)
|
||||||
|
|
||||||
|
Binary file not shown.
Before Width: | Height: | Size: 24 KiB After Width: | Height: | Size: 25 KiB |
201
doc/tutorials/images_scripts/nio_csc.py
Normal file
201
doc/tutorials/images_scripts/nio_csc.py
Normal file
@ -0,0 +1,201 @@
|
|||||||
|
from itertools import *
|
||||||
|
import numpy as np
|
||||||
|
import pytriqs.utility.mpi as mpi
|
||||||
|
from pytriqs.archive import *
|
||||||
|
from pytriqs.gf import *
|
||||||
|
import sys, pytriqs.version as triqs_version
|
||||||
|
from triqs_dft_tools.sumk_dft import *
|
||||||
|
from triqs_dft_tools.sumk_dft_tools import *
|
||||||
|
from pytriqs.operators.util.hamiltonians import *
|
||||||
|
from pytriqs.operators.util.U_matrix import *
|
||||||
|
from triqs_cthyb import *
|
||||||
|
import triqs_cthyb.version as cthyb_version
|
||||||
|
import triqs_dft_tools.version as dft_tools_version
|
||||||
|
from triqs_dft_tools.converters.vasp_converter import *
|
||||||
|
|
||||||
|
|
||||||
|
import warnings
|
||||||
|
warnings.filterwarnings("ignore", category=FutureWarning)
|
||||||
|
|
||||||
|
|
||||||
|
def dmft_cycle():
|
||||||
|
filename = 'nio'
|
||||||
|
|
||||||
|
Converter = VaspConverter(filename=filename)
|
||||||
|
Converter.convert_dft_input()
|
||||||
|
|
||||||
|
SK = SumkDFT(hdf_file = filename+'.h5', use_dft_blocks = False)
|
||||||
|
|
||||||
|
beta = 5.0
|
||||||
|
|
||||||
|
Sigma = SK.block_structure.create_gf(beta=beta)
|
||||||
|
SK.put_Sigma([Sigma])
|
||||||
|
G = SK.extract_G_loc()
|
||||||
|
SK.analyse_block_structure_from_gf(G, threshold = 1e-2)
|
||||||
|
for i_sh in range(len(SK.deg_shells)):
|
||||||
|
num_block_deg_orbs = len(SK.deg_shells[i_sh])
|
||||||
|
mpi.report('found {0:d} blocks of degenerate orbitals in shell {1:d}'.format(num_block_deg_orbs, i_sh))
|
||||||
|
for iblock in range(num_block_deg_orbs):
|
||||||
|
mpi.report('block {0:d} consists of orbitals:'.format(iblock))
|
||||||
|
for keys in SK.deg_shells[i_sh][iblock].keys():
|
||||||
|
mpi.report(' '+keys)
|
||||||
|
|
||||||
|
# Setup CTQMC Solver
|
||||||
|
|
||||||
|
n_orb = SK.corr_shells[0]['dim']
|
||||||
|
spin_names = ['up','down']
|
||||||
|
orb_names = [i for i in range(0,n_orb)]
|
||||||
|
|
||||||
|
#gf_struct = set_operator_structure(spin_names, orb_names, orb_hyb)
|
||||||
|
gf_struct = SK.gf_struct_solver[0]
|
||||||
|
mpi.report('Sumk to Solver: %s'%SK.sumk_to_solver)
|
||||||
|
mpi.report('GF struct sumk: %s'%SK.gf_struct_sumk)
|
||||||
|
mpi.report('GF struct solver: %s'%SK.gf_struct_solver)
|
||||||
|
|
||||||
|
S = Solver(beta=beta, gf_struct=gf_struct)
|
||||||
|
|
||||||
|
# Construct the Hamiltonian and save it in Hamiltonian_store.txt
|
||||||
|
H = Operator()
|
||||||
|
U = 8.0
|
||||||
|
J = 1.0
|
||||||
|
|
||||||
|
|
||||||
|
U_sph = U_matrix(l=2, U_int=U, J_hund=J)
|
||||||
|
U_cubic = transform_U_matrix(U_sph, spherical_to_cubic(l=2, convention=''))
|
||||||
|
Umat, Upmat = reduce_4index_to_2index(U_cubic)
|
||||||
|
|
||||||
|
H = h_int_density(spin_names, orb_names, map_operator_structure=SK.sumk_to_solver[0], U=Umat, Uprime=Upmat)
|
||||||
|
|
||||||
|
# Print some information on the master node
|
||||||
|
mpi.report('Greens function structure is: %s '%gf_struct)
|
||||||
|
mpi.report('U Matrix set to:\n%s'%Umat)
|
||||||
|
mpi.report('Up Matrix set to:\n%s'%Upmat)
|
||||||
|
|
||||||
|
# Parameters for the CTQMC Solver
|
||||||
|
p = {}
|
||||||
|
p["max_time"] = -1
|
||||||
|
p["random_name"] = ""
|
||||||
|
p["random_seed"] = 123 * mpi.rank + 567
|
||||||
|
p["length_cycle"] = 100
|
||||||
|
p["n_warmup_cycles"] = 2000
|
||||||
|
p["n_cycles"] = 20000
|
||||||
|
p["fit_max_moment"] = 4
|
||||||
|
p["fit_min_n"] = 30
|
||||||
|
p["fit_max_n"] = 50
|
||||||
|
p["perform_tail_fit"] = True
|
||||||
|
|
||||||
|
# Double Counting: 0 FLL, 1 Held, 2 AMF
|
||||||
|
DC_type = 0
|
||||||
|
DC_value = 59.0
|
||||||
|
|
||||||
|
# Prepare hdf file and and check for previous iterations
|
||||||
|
n_iterations = 1
|
||||||
|
|
||||||
|
iteration_offset = 0
|
||||||
|
if mpi.is_master_node():
|
||||||
|
ar = HDFArchive(filename+'.h5','a')
|
||||||
|
if not 'DMFT_results' in ar: ar.create_group('DMFT_results')
|
||||||
|
if not 'Iterations' in ar['DMFT_results']: ar['DMFT_results'].create_group('Iterations')
|
||||||
|
if not 'DMFT_input' in ar: ar.create_group('DMFT_input')
|
||||||
|
if not 'Iterations' in ar['DMFT_input']: ar['DMFT_input'].create_group('Iterations')
|
||||||
|
if not 'code_versions' in ar['DMFT_input']: ar['DMFT_input'].create_group('code_versio\
|
||||||
|
ns')
|
||||||
|
ar['DMFT_input']['code_versions']["triqs_version"] = triqs_version.version
|
||||||
|
ar['DMFT_input']['code_versions']["triqs_git"] = triqs_version.git_hash
|
||||||
|
ar['DMFT_input']['code_versions']["cthyb_version"] = cthyb_version.version
|
||||||
|
ar['DMFT_input']['code_versions']["cthyb_git"] = cthyb_version.cthyb_hash
|
||||||
|
ar['DMFT_input']['code_versions']["dft_tools_version"] = dft_tools_version.version
|
||||||
|
ar['DMFT_input']['code_versions']["dft_tools_version"] = dft_tools_version.dft_tools_hash
|
||||||
|
if 'iteration_count' in ar['DMFT_results']:
|
||||||
|
iteration_offset = ar['DMFT_results']['iteration_count']+1
|
||||||
|
S.Sigma_iw = ar['DMFT_results']['Iterations']['Sigma_it'+str(iteration_offset-1)]
|
||||||
|
SK.dc_imp = ar['DMFT_results']['Iterations']['dc_imp'+str(iteration_offset-1)]
|
||||||
|
SK.dc_energ = ar['DMFT_results']['Iterations']['dc_energ'+str(iteration_offset-1)]
|
||||||
|
SK.chemical_potential = ar['DMFT_results']['Iterations']['chemical_potential'+str(iteration_offset-1)].real
|
||||||
|
ar['DMFT_input']["dmft_script_it"+str(iteration_offset)] = open(sys.argv[0]).read()
|
||||||
|
iteration_offset = mpi.bcast(iteration_offset)
|
||||||
|
S.Sigma_iw = mpi.bcast(S.Sigma_iw)
|
||||||
|
SK.dc_imp = mpi.bcast(SK.dc_imp)
|
||||||
|
SK.dc_energ = mpi.bcast(SK.dc_energ)
|
||||||
|
SK.chemical_potential = mpi.bcast(SK.chemical_potential)
|
||||||
|
|
||||||
|
# Calc the first G0
|
||||||
|
SK.symm_deg_gf(S.Sigma_iw,orb=0)
|
||||||
|
SK.put_Sigma(Sigma_imp = [S.Sigma_iw])
|
||||||
|
SK.calc_mu(precision=0.01)
|
||||||
|
S.G_iw << SK.extract_G_loc()[0]
|
||||||
|
SK.symm_deg_gf(S.G_iw, orb=0)
|
||||||
|
|
||||||
|
#Init the DC term and the self-energy if no previous iteration was found
|
||||||
|
if iteration_offset == 0:
|
||||||
|
dm = S.G_iw.density()
|
||||||
|
SK.calc_dc(dm, U_interact=U, J_hund=J, orb=0, use_dc_formula=DC_type,use_dc_value=DC_value)
|
||||||
|
S.Sigma_iw << SK.dc_imp[0]['up'][0,0]
|
||||||
|
|
||||||
|
mpi.report('%s DMFT cycles requested. Starting with iteration %s.'%(n_iterations,iteration_offset))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# The infamous DMFT self consistency cycle
|
||||||
|
for it in range(iteration_offset, iteration_offset + n_iterations):
|
||||||
|
mpi.report('Doing iteration: %s'%it)
|
||||||
|
|
||||||
|
# Get G0
|
||||||
|
S.G0_iw << inverse(S.Sigma_iw + inverse(S.G_iw))
|
||||||
|
# Solve the impurity problem
|
||||||
|
S.solve(h_int = H, **p)
|
||||||
|
if mpi.is_master_node():
|
||||||
|
ar['DMFT_input']['Iterations']['solver_dict_it'+str(it)] = p
|
||||||
|
ar['DMFT_results']['Iterations']['Gimp_it'+str(it)] = S.G_iw
|
||||||
|
ar['DMFT_results']['Iterations']['Gtau_it'+str(it)] = S.G_tau
|
||||||
|
ar['DMFT_results']['Iterations']['Sigma_uns_it'+str(it)] = S.Sigma_iw
|
||||||
|
# Calculate double counting
|
||||||
|
dm = S.G_iw.density()
|
||||||
|
SK.calc_dc(dm, U_interact=U, J_hund=J, orb=0, use_dc_formula=DC_type,use_dc_value=DC_value)
|
||||||
|
# Get new G
|
||||||
|
SK.symm_deg_gf(S.Sigma_iw,orb=0)
|
||||||
|
SK.put_Sigma(Sigma_imp=[S.Sigma_iw])
|
||||||
|
SK.calc_mu(precision=0.01)
|
||||||
|
S.G_iw << SK.extract_G_loc()[0]
|
||||||
|
|
||||||
|
# print densities
|
||||||
|
for sig,gf in S.G_iw:
|
||||||
|
mpi.report("Orbital %s density: %.6f"%(sig,dm[sig][0,0]))
|
||||||
|
mpi.report('Total charge of Gloc : %.6f'%S.G_iw.total_density())
|
||||||
|
|
||||||
|
if mpi.is_master_node():
|
||||||
|
ar['DMFT_results']['iteration_count'] = it
|
||||||
|
ar['DMFT_results']['Iterations']['Sigma_it'+str(it)] = S.Sigma_iw
|
||||||
|
ar['DMFT_results']['Iterations']['Gloc_it'+str(it)] = S.G_iw
|
||||||
|
ar['DMFT_results']['Iterations']['G0loc_it'+str(it)] = S.G0_iw
|
||||||
|
ar['DMFT_results']['Iterations']['dc_imp'+str(it)] = SK.dc_imp
|
||||||
|
ar['DMFT_results']['Iterations']['dc_energ'+str(it)] = SK.dc_energ
|
||||||
|
ar['DMFT_results']['Iterations']['chemical_potential'+str(it)] = SK.chemical_potential
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if mpi.is_master_node():
|
||||||
|
print 'calculating mu...'
|
||||||
|
SK.chemical_potential = SK.calc_mu( precision = 0.000001 )
|
||||||
|
|
||||||
|
if mpi.is_master_node():
|
||||||
|
print 'calculating GAMMA'
|
||||||
|
SK.calc_density_correction(dm_type='vasp')
|
||||||
|
|
||||||
|
if mpi.is_master_node():
|
||||||
|
print 'calculating energy corrections'
|
||||||
|
|
||||||
|
correnerg = 0.5 * (S.G_iw * S.Sigma_iw).total_density()
|
||||||
|
|
||||||
|
dm = S.G_iw.density() # compute the density matrix of the impurity problem
|
||||||
|
SK.calc_dc(dm, U_interact=U, J_hund=J, orb=0, use_dc_formula=DC_type,use_dc_value=DC_value)
|
||||||
|
dc_energ = SK.dc_energ[0]
|
||||||
|
|
||||||
|
if mpi.is_master_node():
|
||||||
|
ar['DMFT_results']['Iterations']['corr_energy_it'+str(it)] = correnerg
|
||||||
|
ar['DMFT_results']['Iterations']['dc_energy_it'+str(it)] = dc_energ
|
||||||
|
|
||||||
|
if mpi.is_master_node(): del ar
|
||||||
|
|
||||||
|
return correnerg, dc_energ
|
9
doc/tutorials/images_scripts/nio_csc.py.rst
Normal file
9
doc/tutorials/images_scripts/nio_csc.py.rst
Normal file
@ -0,0 +1,9 @@
|
|||||||
|
.. _nio_csc.py:
|
||||||
|
|
||||||
|
nio_csc.py
|
||||||
|
-------------
|
||||||
|
|
||||||
|
Download :download:`nio_csc.py <./nio_csc.py>`.
|
||||||
|
|
||||||
|
.. literalinclude:: nio_csc.py
|
||||||
|
:language: python
|
@ -7,6 +7,7 @@ SHELLS = 1 2
|
|||||||
EWINDOW = -9 2
|
EWINDOW = -9 2
|
||||||
NORMION = False
|
NORMION = False
|
||||||
NORMALIZE = True
|
NORMALIZE = True
|
||||||
|
BANDS = 2 10
|
||||||
|
|
||||||
[Shell 1] # Ni d shell
|
[Shell 1] # Ni d shell
|
||||||
LSHELL = 2
|
LSHELL = 2
|
||||||
|
@ -3,7 +3,8 @@
|
|||||||
DFT and projections
|
DFT and projections
|
||||||
==================================================
|
==================================================
|
||||||
|
|
||||||
We will perform charge self-consitent DFT+DMFT calcluations for the charge-transfer insulator NiO. We start from scratch and provide all necessary input files to do the calculations: First for doing a single-shot calculation and then for charge-selfconsistency.
|
We will perform DFT+DMFT calcluations for the charge-transfer insulator NiO. We start from scratch and provide all necessary input files to do the calculations: First for doing a single-shot calculation.
|
||||||
|
.. (and then for charge-selfconsistency).
|
||||||
|
|
||||||
VASP setup
|
VASP setup
|
||||||
-------------------------------
|
-------------------------------
|
||||||
@ -62,7 +63,7 @@ For sensible results run this script in parallel on at least 20 cores. As a quic
|
|||||||
|
|
||||||
Local lattice Green's function for all projected orbitals
|
Local lattice Green's function for all projected orbitals
|
||||||
----------------------
|
----------------------
|
||||||
We calculate the local lattice Green's function - now also for the uncorrelated orbitals, i.e., the O p states, for what we use the script :ref:`NiO_local_lattice_GF.py`. The result is saved in the h5 file as `G_latt_orb_it<n_it>`, where `n_it>` is the number of the last DMFT iteration.
|
We calculate the local lattice Green's function - now also for the uncorrelated orbitals, i.e., the O p states, for what we use the script :ref:`NiO_local_lattice_GF.py`. The result is saved in the h5 file as `G_latt_orb_it<n_it>`, where `<n_it>` is the number of the last DMFT iteration.
|
||||||
|
|
||||||
Spectral function on real axis: MaxEnt
|
Spectral function on real axis: MaxEnt
|
||||||
----------------------
|
----------------------
|
||||||
@ -72,3 +73,27 @@ To compare to results from literature we make use of the `maxent triqs applicati
|
|||||||
.. image:: images_scripts/nio_Aw.png
|
.. image:: images_scripts/nio_Aw.png
|
||||||
:width: 400
|
:width: 400
|
||||||
:align: center
|
:align: center
|
||||||
|
|
||||||
|
.. Charge self-consistent DMFT
|
||||||
|
.. ==================================================
|
||||||
|
|
||||||
|
|
||||||
|
.. In this part we will perform charge self-consistent DMFT calculations. To do so we have to adapt the VASP `INCAR` such that :program:`VASP` reads the updated charge density after each step. We add the lines
|
||||||
|
|
||||||
|
.. ICHARG = 5
|
||||||
|
.. NELM = 1000
|
||||||
|
.. NELMIN = 1000
|
||||||
|
|
||||||
|
.. which makes VASP wait after each step of its iterative diagonalization until the file vasp.lock is created. It then reads the update of the charge density in the file `GAMMA`. It is terminated by an external script after a desired amount of steps, such that we deactivate all automatic stoping criterion by setting the number of steps to a very high number.
|
||||||
|
|
||||||
|
.. We take the respective converged DFT and DMFT calculations from before as a starting point. I.e., we copy the `CHGCAR` and `nio.h5` together with the other :program:`VASP` input files and :file:`plo.cfg` in a new directory. We use a script called :program:`vasp_dmft` to invoke :program:`VASP` in the background and start the DMFT calculation together with :program:`plovasp` and the converter. This script assumes that the dmft sript contains a function `dmft_cycle()` and also the conversion from text files to the h5 file. Additionally we have to add a few lines to calculate the density correction and calculate the correlation energy. We adapt the script straightforardly and call it :ref:`nio_csc.py`. The most important new lines are
|
||||||
|
|
||||||
|
.. SK.chemical_potential = SK.calc_mu( precision = 0.000001 )
|
||||||
|
.. SK.calc_density_correction(dm_type='vasp')
|
||||||
|
.. correnerg = 0.5 * (S.G_iw * S.Sigma_iw).total_density()
|
||||||
|
|
||||||
|
.. where the chemical potential is determined to a greater precision than before, the correction to the dft density matrix is calculated and output to the file :file:`GAMMA`. The correlation energy is calculated via Migdal-Galitzki formula. We also slightly increase the tolerance for the detection of blocks since the DFT calculation now includes some QMC noise.
|
||||||
|
|
||||||
|
.. We can start the whole machinery by excectuing
|
||||||
|
|
||||||
|
.. vasp_dmft -n <n_procs> -i <n_iters> -p <vasp_exec> nio_csc.py
|
||||||
|
Loading…
Reference in New Issue
Block a user