3
0
mirror of https://github.com/triqs/dft_tools synced 2024-11-20 04:52:34 +01:00

uncompleted work on csc NiO tutorial

This commit is contained in:
Malte Schüler 2019-07-19 13:33:11 +02:00
parent 8f184fc963
commit d61b55f0a4
8 changed files with 241 additions and 5 deletions

View File

@ -11,7 +11,7 @@ from triqs_cthyb import *
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
filename = 'vasp'
filename = 'nio'
SK = SumkDFT(hdf_file = filename+'.h5', use_dft_blocks = False)
beta = 5.0

View File

@ -2,7 +2,7 @@ from pytriqs.gf import *
from pytriqs.archive import *
from triqs_maxent import *
filename = 'vasp'
filename = 'nio'
ar = HDFArchive(filename+'.h5','a')
if 'iteration_count' in ar['DMFT_results']:

View File

@ -15,7 +15,7 @@ import triqs_dft_tools.version as dft_tools_version
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
filename = 'vasp'
filename = 'nio'
SK = SumkDFT(hdf_file = filename+'.h5', use_dft_blocks = False)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 24 KiB

After

Width:  |  Height:  |  Size: 25 KiB

View File

@ -0,0 +1,201 @@
from itertools import *
import numpy as np
import pytriqs.utility.mpi as mpi
from pytriqs.archive import *
from pytriqs.gf import *
import sys, pytriqs.version as triqs_version
from triqs_dft_tools.sumk_dft import *
from triqs_dft_tools.sumk_dft_tools import *
from pytriqs.operators.util.hamiltonians import *
from pytriqs.operators.util.U_matrix import *
from triqs_cthyb import *
import triqs_cthyb.version as cthyb_version
import triqs_dft_tools.version as dft_tools_version
from triqs_dft_tools.converters.vasp_converter import *
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
def dmft_cycle():
filename = 'nio'
Converter = VaspConverter(filename=filename)
Converter.convert_dft_input()
SK = SumkDFT(hdf_file = filename+'.h5', use_dft_blocks = False)
beta = 5.0
Sigma = SK.block_structure.create_gf(beta=beta)
SK.put_Sigma([Sigma])
G = SK.extract_G_loc()
SK.analyse_block_structure_from_gf(G, threshold = 1e-2)
for i_sh in range(len(SK.deg_shells)):
num_block_deg_orbs = len(SK.deg_shells[i_sh])
mpi.report('found {0:d} blocks of degenerate orbitals in shell {1:d}'.format(num_block_deg_orbs, i_sh))
for iblock in range(num_block_deg_orbs):
mpi.report('block {0:d} consists of orbitals:'.format(iblock))
for keys in SK.deg_shells[i_sh][iblock].keys():
mpi.report(' '+keys)
# Setup CTQMC Solver
n_orb = SK.corr_shells[0]['dim']
spin_names = ['up','down']
orb_names = [i for i in range(0,n_orb)]
#gf_struct = set_operator_structure(spin_names, orb_names, orb_hyb)
gf_struct = SK.gf_struct_solver[0]
mpi.report('Sumk to Solver: %s'%SK.sumk_to_solver)
mpi.report('GF struct sumk: %s'%SK.gf_struct_sumk)
mpi.report('GF struct solver: %s'%SK.gf_struct_solver)
S = Solver(beta=beta, gf_struct=gf_struct)
# Construct the Hamiltonian and save it in Hamiltonian_store.txt
H = Operator()
U = 8.0
J = 1.0
U_sph = U_matrix(l=2, U_int=U, J_hund=J)
U_cubic = transform_U_matrix(U_sph, spherical_to_cubic(l=2, convention=''))
Umat, Upmat = reduce_4index_to_2index(U_cubic)
H = h_int_density(spin_names, orb_names, map_operator_structure=SK.sumk_to_solver[0], U=Umat, Uprime=Upmat)
# Print some information on the master node
mpi.report('Greens function structure is: %s '%gf_struct)
mpi.report('U Matrix set to:\n%s'%Umat)
mpi.report('Up Matrix set to:\n%s'%Upmat)
# Parameters for the CTQMC Solver
p = {}
p["max_time"] = -1
p["random_name"] = ""
p["random_seed"] = 123 * mpi.rank + 567
p["length_cycle"] = 100
p["n_warmup_cycles"] = 2000
p["n_cycles"] = 20000
p["fit_max_moment"] = 4
p["fit_min_n"] = 30
p["fit_max_n"] = 50
p["perform_tail_fit"] = True
# Double Counting: 0 FLL, 1 Held, 2 AMF
DC_type = 0
DC_value = 59.0
# Prepare hdf file and and check for previous iterations
n_iterations = 1
iteration_offset = 0
if mpi.is_master_node():
ar = HDFArchive(filename+'.h5','a')
if not 'DMFT_results' in ar: ar.create_group('DMFT_results')
if not 'Iterations' in ar['DMFT_results']: ar['DMFT_results'].create_group('Iterations')
if not 'DMFT_input' in ar: ar.create_group('DMFT_input')
if not 'Iterations' in ar['DMFT_input']: ar['DMFT_input'].create_group('Iterations')
if not 'code_versions' in ar['DMFT_input']: ar['DMFT_input'].create_group('code_versio\
ns')
ar['DMFT_input']['code_versions']["triqs_version"] = triqs_version.version
ar['DMFT_input']['code_versions']["triqs_git"] = triqs_version.git_hash
ar['DMFT_input']['code_versions']["cthyb_version"] = cthyb_version.version
ar['DMFT_input']['code_versions']["cthyb_git"] = cthyb_version.cthyb_hash
ar['DMFT_input']['code_versions']["dft_tools_version"] = dft_tools_version.version
ar['DMFT_input']['code_versions']["dft_tools_version"] = dft_tools_version.dft_tools_hash
if 'iteration_count' in ar['DMFT_results']:
iteration_offset = ar['DMFT_results']['iteration_count']+1
S.Sigma_iw = ar['DMFT_results']['Iterations']['Sigma_it'+str(iteration_offset-1)]
SK.dc_imp = ar['DMFT_results']['Iterations']['dc_imp'+str(iteration_offset-1)]
SK.dc_energ = ar['DMFT_results']['Iterations']['dc_energ'+str(iteration_offset-1)]
SK.chemical_potential = ar['DMFT_results']['Iterations']['chemical_potential'+str(iteration_offset-1)].real
ar['DMFT_input']["dmft_script_it"+str(iteration_offset)] = open(sys.argv[0]).read()
iteration_offset = mpi.bcast(iteration_offset)
S.Sigma_iw = mpi.bcast(S.Sigma_iw)
SK.dc_imp = mpi.bcast(SK.dc_imp)
SK.dc_energ = mpi.bcast(SK.dc_energ)
SK.chemical_potential = mpi.bcast(SK.chemical_potential)
# Calc the first G0
SK.symm_deg_gf(S.Sigma_iw,orb=0)
SK.put_Sigma(Sigma_imp = [S.Sigma_iw])
SK.calc_mu(precision=0.01)
S.G_iw << SK.extract_G_loc()[0]
SK.symm_deg_gf(S.G_iw, orb=0)
#Init the DC term and the self-energy if no previous iteration was found
if iteration_offset == 0:
dm = S.G_iw.density()
SK.calc_dc(dm, U_interact=U, J_hund=J, orb=0, use_dc_formula=DC_type,use_dc_value=DC_value)
S.Sigma_iw << SK.dc_imp[0]['up'][0,0]
mpi.report('%s DMFT cycles requested. Starting with iteration %s.'%(n_iterations,iteration_offset))
# The infamous DMFT self consistency cycle
for it in range(iteration_offset, iteration_offset + n_iterations):
mpi.report('Doing iteration: %s'%it)
# Get G0
S.G0_iw << inverse(S.Sigma_iw + inverse(S.G_iw))
# Solve the impurity problem
S.solve(h_int = H, **p)
if mpi.is_master_node():
ar['DMFT_input']['Iterations']['solver_dict_it'+str(it)] = p
ar['DMFT_results']['Iterations']['Gimp_it'+str(it)] = S.G_iw
ar['DMFT_results']['Iterations']['Gtau_it'+str(it)] = S.G_tau
ar['DMFT_results']['Iterations']['Sigma_uns_it'+str(it)] = S.Sigma_iw
# Calculate double counting
dm = S.G_iw.density()
SK.calc_dc(dm, U_interact=U, J_hund=J, orb=0, use_dc_formula=DC_type,use_dc_value=DC_value)
# Get new G
SK.symm_deg_gf(S.Sigma_iw,orb=0)
SK.put_Sigma(Sigma_imp=[S.Sigma_iw])
SK.calc_mu(precision=0.01)
S.G_iw << SK.extract_G_loc()[0]
# print densities
for sig,gf in S.G_iw:
mpi.report("Orbital %s density: %.6f"%(sig,dm[sig][0,0]))
mpi.report('Total charge of Gloc : %.6f'%S.G_iw.total_density())
if mpi.is_master_node():
ar['DMFT_results']['iteration_count'] = it
ar['DMFT_results']['Iterations']['Sigma_it'+str(it)] = S.Sigma_iw
ar['DMFT_results']['Iterations']['Gloc_it'+str(it)] = S.G_iw
ar['DMFT_results']['Iterations']['G0loc_it'+str(it)] = S.G0_iw
ar['DMFT_results']['Iterations']['dc_imp'+str(it)] = SK.dc_imp
ar['DMFT_results']['Iterations']['dc_energ'+str(it)] = SK.dc_energ
ar['DMFT_results']['Iterations']['chemical_potential'+str(it)] = SK.chemical_potential
if mpi.is_master_node():
print 'calculating mu...'
SK.chemical_potential = SK.calc_mu( precision = 0.000001 )
if mpi.is_master_node():
print 'calculating GAMMA'
SK.calc_density_correction(dm_type='vasp')
if mpi.is_master_node():
print 'calculating energy corrections'
correnerg = 0.5 * (S.G_iw * S.Sigma_iw).total_density()
dm = S.G_iw.density() # compute the density matrix of the impurity problem
SK.calc_dc(dm, U_interact=U, J_hund=J, orb=0, use_dc_formula=DC_type,use_dc_value=DC_value)
dc_energ = SK.dc_energ[0]
if mpi.is_master_node():
ar['DMFT_results']['Iterations']['corr_energy_it'+str(it)] = correnerg
ar['DMFT_results']['Iterations']['dc_energy_it'+str(it)] = dc_energ
if mpi.is_master_node(): del ar
return correnerg, dc_energ

View File

@ -0,0 +1,9 @@
.. _nio_csc.py:
nio_csc.py
-------------
Download :download:`nio_csc.py <./nio_csc.py>`.
.. literalinclude:: nio_csc.py
:language: python

View File

@ -7,6 +7,7 @@ SHELLS = 1 2
EWINDOW = -9 2
NORMION = False
NORMALIZE = True
BANDS = 2 10
[Shell 1] # Ni d shell
LSHELL = 2

View File

@ -3,7 +3,8 @@
DFT and projections
==================================================
We will perform charge self-consitent DFT+DMFT calcluations for the charge-transfer insulator NiO. We start from scratch and provide all necessary input files to do the calculations: First for doing a single-shot calculation and then for charge-selfconsistency.
We will perform DFT+DMFT calcluations for the charge-transfer insulator NiO. We start from scratch and provide all necessary input files to do the calculations: First for doing a single-shot calculation.
.. (and then for charge-selfconsistency).
VASP setup
-------------------------------
@ -62,7 +63,7 @@ For sensible results run this script in parallel on at least 20 cores. As a quic
Local lattice Green's function for all projected orbitals
----------------------
We calculate the local lattice Green's function - now also for the uncorrelated orbitals, i.e., the O p states, for what we use the script :ref:`NiO_local_lattice_GF.py`. The result is saved in the h5 file as `G_latt_orb_it<n_it>`, where `n_it>` is the number of the last DMFT iteration.
We calculate the local lattice Green's function - now also for the uncorrelated orbitals, i.e., the O p states, for what we use the script :ref:`NiO_local_lattice_GF.py`. The result is saved in the h5 file as `G_latt_orb_it<n_it>`, where `<n_it>` is the number of the last DMFT iteration.
Spectral function on real axis: MaxEnt
----------------------
@ -72,3 +73,27 @@ To compare to results from literature we make use of the `maxent triqs applicati
.. image:: images_scripts/nio_Aw.png
:width: 400
:align: center
.. Charge self-consistent DMFT
.. ==================================================
.. In this part we will perform charge self-consistent DMFT calculations. To do so we have to adapt the VASP `INCAR` such that :program:`VASP` reads the updated charge density after each step. We add the lines
.. ICHARG = 5
.. NELM = 1000
.. NELMIN = 1000
.. which makes VASP wait after each step of its iterative diagonalization until the file vasp.lock is created. It then reads the update of the charge density in the file `GAMMA`. It is terminated by an external script after a desired amount of steps, such that we deactivate all automatic stoping criterion by setting the number of steps to a very high number.
.. We take the respective converged DFT and DMFT calculations from before as a starting point. I.e., we copy the `CHGCAR` and `nio.h5` together with the other :program:`VASP` input files and :file:`plo.cfg` in a new directory. We use a script called :program:`vasp_dmft` to invoke :program:`VASP` in the background and start the DMFT calculation together with :program:`plovasp` and the converter. This script assumes that the dmft sript contains a function `dmft_cycle()` and also the conversion from text files to the h5 file. Additionally we have to add a few lines to calculate the density correction and calculate the correlation energy. We adapt the script straightforardly and call it :ref:`nio_csc.py`. The most important new lines are
.. SK.chemical_potential = SK.calc_mu( precision = 0.000001 )
.. SK.calc_density_correction(dm_type='vasp')
.. correnerg = 0.5 * (S.G_iw * S.Sigma_iw).total_density()
.. where the chemical potential is determined to a greater precision than before, the correction to the dft density matrix is calculated and output to the file :file:`GAMMA`. The correlation energy is calculated via Migdal-Galitzki formula. We also slightly increase the tolerance for the detection of blocks since the DFT calculation now includes some QMC noise.
.. We can start the whole machinery by excectuing
.. vasp_dmft -n <n_procs> -i <n_iters> -p <vasp_exec> nio_csc.py