3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-25 22:03:43 +01:00

documentation for tail (python+c++) and for profiling

This commit is contained in:
tayral 2013-12-22 19:48:45 +00:00 committed by Michel Ferrero
parent f7fad85fca
commit c74105636c
5 changed files with 219 additions and 1 deletions

View File

@ -18,3 +18,4 @@ C++
det_manip/contents det_manip/contents
parameters/parameters parameters/parameters
utilities/contents utilities/contents
using_the_lib/profiling

View File

@ -5,3 +5,68 @@
High frequency tail High frequency tail
=========================== ===========================
Definition
----------------------
The tail of a Green's function is defined as the behavior of the Green's
function :math:`G` at large Matsubara frequencies, namely
.. math:: \mathbf{G}(i\omega_n) \stackrel {=}{\infty} \mathbf{a}_{-1}\cdot i\omega_n + \mathbf{a}_{0} +\mathbf{a}_{1}\cdot \frac{1}{ i\omega_n} +\mathbf{a}_{2}\cdot \frac{1}{ (i\omega_n)^2} +\dots
Generically, the tail is parametrized by matrix-valued coefficients
:math:`\mathbf{a}_{i}` (of size :math:`N_1\times N_2`\ )
.. math:: t = \sum_{i=o_{min}}^{o_{max}} \mathbf{a}_i (i\omega_n)^{-i}
Implementation
--------------
In TRIQS, the tail is implemented as an object ``tail``. Here is a simple example of use:
.. compileblock::
#include <Python.h>
#include <iostream>
#include <triqs/gfs/local/tail.hpp>
int main(){
int N1=1, N2=1;
triqs::gfs::local::tail t(N1,N2);
t.mask_view() = 5;//only coeffs from -1 to 5 are meaningful
std::cout << t(0) << std::endl;
t(2) = .5;
std::cout << t << std::endl;
}
API
****
+---------------------------------+----------------------------------------------------------------------------------------+--------------------------+
| Member | Description | Type |
+=================================+========================================================================================+==========================+
| data() | 3-dim array of the coefficients: ``data(i,n,m)`` :math:`=(\mathbf{a}_{i+o_{min}})_{nm}` | data_view_type |
+---------------------------------+----------------------------------------------------------------------------------------+--------------------------+
| mask_view() | 2-dim (:math:`N_1 \times N_2`) array of the maximum non-zero indices | mask_view_type |
+---------------------------------+----------------------------------------------------------------------------------------+--------------------------+
| order_min() | minimum order | long |
+---------------------------------+----------------------------------------------------------------------------------------+--------------------------+
| order_max() | maximum order | long |
+---------------------------------+----------------------------------------------------------------------------------------+--------------------------+
| size() | first dim of data() | size_t |
+---------------------------------+----------------------------------------------------------------------------------------+--------------------------+
| shape() | shape of data() | shape_type |
+---------------------------------+----------------------------------------------------------------------------------------+--------------------------+
| smallest_nonzeros() | order of the smallest_nonzero coefficient | long |
+---------------------------------+----------------------------------------------------------------------------------------+--------------------------+
| is_decreasing_at_infinity() | true if the tail is decreasing at infinity | bool |
+---------------------------------+----------------------------------------------------------------------------------------+--------------------------+
| operator() (int n) | matrix_valued coefficient :math:`(\mathbf{a}_i)_{nm}` | mv_type |
+---------------------------------+----------------------------------------------------------------------------------------+--------------------------+
| get_or_zero (int n) | matrix_valued coefficient :math:`(\mathbf{a}_i)_{nm}` | const_mv_type |
+---------------------------------+----------------------------------------------------------------------------------------+--------------------------+
| evaluate(dcomplex const &omega) | value of the tail at frequency omega | arrays::matrix<dcomplex> |
+---------------------------------+----------------------------------------------------------------------------------------+--------------------------+
The tail is DefaultConstructible, H5Serializable and BoostSerializable.

View File

@ -0,0 +1,35 @@
Profiling
##########
One can easily profile c++ and Python code using `Google perftools <http://code.google.com/p/gperftools/>`_. In Ubuntu: ::
libgoogle-perftools-dev
google-perftools
One must link the executable with the profiling library with the flag ``-lprofiler``.
C++
-------
First run the C++ executable (here ``simple_tests``) after setting the environment variable ``CPUPROFILE``: ::
CPUPROFILE=profile_test.prof ./simple_tests
Then, analyze the results (stored in `profile_test.prof`) with ``google-pprof``: ::
google-pprof --text ./simple_tests profile_test.prof | less
See the documentation of `Google perftools <http://code.google.com/p/gperftools/>`_ for more information.
Python
--------
One needs to install the python package `yep <https://pypi.python.org/pypi/yep>`_ (e.g ``easy_install yep``)
First, run your script (``my_test.py``): ::
pytriqs -myep -v my_test.py
Then, analyze the results (stored in `my_test.py.prof`) with ``google-pprof``: ::
google-pprof --text my_test.py my_test.py.prof | less

View File

@ -35,4 +35,4 @@ and then proceed with the general Green's function and its block structure.
block block
transforms transforms
full full
tail

View File

@ -0,0 +1,117 @@
High-Frequency Tail (``TailGf``)
=========================================
Definition
----------------------
The tail of a Green's function is defined as the behavior of the Green's
function :math:`G` at large Matsubara frequencies, namely
.. math:: \mathbf{G}(i\omega_n) \stackrel {=}{\infty} \mathbf{a}_{-1}\cdot i\omega_n + \mathbf{a}_{0} +\mathbf{a}_{1}\cdot \frac{1}{ i\omega_n} +\mathbf{a}_{2}\cdot \frac{1}{ (i\omega_n)^2} +\dots
Generically, the tail is parametrized by matrix-valued coefficients
:math:`\mathbf{a}_{i}` (of size :math:`N_1\times N_2`\ )
.. math:: t = \sum_{i=o_{min}}^{o_{max}} \mathbf{a}_i (i\omega_n)^{-i}
Implementation
--------------
In TRIQS, the tail is contained in an Python object ``TailGf`` with the
following members:
- ``data`` is a numpy array representing :math:`\mathbf{a}_{i}` :
``data[i,m,n]`` :math:`= (\mathbf{a}_i)_{m,n}`\ .
- ``mask`` is the :math:`N_1\times N_2` numpy array of the maximal
index :math:`i_{nm}` of the known coefficients (``order_max`` may be
larger than ``mask``, but all coefficients of indices greater than
``mask`` are irrelevant)
- ``N1`` and ``N2`` give the size of each tail coefficient
:math:`\mathbf{a}_{i}` : :math:`N_1\times N_2`
- ``size`` is the number of coefficients of the tail.
- ``__getitem__``and ``__setitem__`` operators: access and set the ith
coefficient :math:`\mathbf{a}_{i}` with the bracket operator
- ``__call__`` operator: evaluate the tail at a given frequency
Example
-------
Basic ``TailGf`` object
~~~~~~~~~~~~~~~~~~~~~~~
.. runblock:: python
from pytriqs.gf.local import *
t = TailGf(shape=(1,1))
print "t = ",t
print "t.data.shape = ",t.data.shape
print "t.order_min = ",t.order_min
print "t.order_max = ",t.order_max
print "t.mask = ",t.mask
print "t[1] = ",t[1]
t[1]=[1]
print "t = ",t
t[-1]=.25
print "t = ",t
print "t(100) = ",t(100)
As a member of a Green's function
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Basic access
^^^^^^^^^^^^
.. runblock:: python
from pytriqs.gf.local import *
# Create the Matsubara-frequency Green's function and initialize it
g = GfImFreq(indices = [1], beta = 50, n_points = 1000, name = "imp")
g <<= inverse( iOmega_n + 0.5 )
print "g.tail = ", g.tail
print "g.tail[2] = ",g.tail[2]
Fitting tails: ``fit_tail``
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Green's functions have a method ``fit_tail`` allowing to fit the data
contained in the Green's function. ``fit_tail`` is called in the
following way:
``fit_tail(fixed_coeff, order_max, fit_start, fit_stop)`` where
- ``fixed_coeff`` is the :math:`n\times N_1 \times N_2` numpy array of
know coefficients
(``fixed_coeff[i,n,m]``:math:`\equiv (\mathbf{a}_{-1+i})_{nm}`\ )
- ``order_max`` is the maximal index of the coefficients to be
determined
- ``fit_start`` and ``fit_stop`` are the frequencies between which to
fit the data
In the following example, the Green's function ``g`` defined above is
fitted between :math:`\omega_n=10` and :math:`\omega_n = 20` with fixed
coefficients :math:`(\mathbf{a}_{-1})_{00} = 0`\ ,
:math:`(\mathbf{a}_{0})_{00} = 0` and :math:`(\mathbf{a}_{1})_{00} = 1`
.. runblock:: python
from pytriqs.gf.local import *
g = GfImFreq(indices = [1], beta = 50, n_points = 1000, name = "imp")
g <<= inverse( iOmega_n + 0.5 )
g.tail.zero()
fixed_coeff=numpy.zeros([1,1,3],float)
fixed_coeff[0,0,0]=0.
fixed_coeff[0,0,1]=0.
fixed_coeff[0,0,2]=1.
order_max = 4
fit_start = 10.
fit_stop = 20.
g.fit_tail(fixed_coeff, order_max, fit_start, fit_stop)
print "g.tail = ", g.tail