mirror of
https://github.com/triqs/dft_tools
synced 2024-12-21 11:53:41 +01:00
Modified sumk_dft to work also on real axis
extract_G_loc(), total_density(), and calc_mu() support now real frequency data, which is necessary for DMFT when a real frequency impurity solver is used.
This commit is contained in:
parent
7fe5f0222c
commit
c5a9c9dfbb
@ -561,7 +561,7 @@ class SumkDFT:
|
||||
for icrsh in range(self.n_corr_shells):
|
||||
for bname,gf in SK_Sigma_imp[icrsh]: gf << self.rotloc(icrsh,gf,direction='toGlobal')
|
||||
|
||||
def extract_G_loc(self, mu=None, with_Sigma=True, with_dc=True):
|
||||
def extract_G_loc(self, mu=None, iw_or_w='iw', with_Sigma=True, with_dc=True, broadening=None):
|
||||
r"""
|
||||
Extracts the local downfolded Green function by the Brillouin-zone integration of the lattice Green's function.
|
||||
|
||||
@ -573,6 +573,10 @@ class SumkDFT:
|
||||
If True then the local GF is calculated with the self-energy self.Sigma_imp.
|
||||
with_dc : boolean, optional
|
||||
If True then the double-counting correction is subtracted from the self-energy in calculating the GF.
|
||||
broadening : float, optional
|
||||
Imaginary shift for the axis along which the real-axis GF is calculated.
|
||||
If not provided, broadening will be set to double of the distance between mesh points in 'mesh'.
|
||||
Only relevant for real-frequency GF.
|
||||
|
||||
Returns
|
||||
-------
|
||||
@ -583,19 +587,31 @@ class SumkDFT:
|
||||
"""
|
||||
|
||||
if mu is None: mu = self.chemical_potential
|
||||
G_loc = [ self.Sigma_imp_iw[icrsh].copy() for icrsh in range(self.n_corr_shells) ] # this list will be returned
|
||||
|
||||
if iw_or_w == "iw":
|
||||
G_loc = [ self.Sigma_imp_iw[icrsh].copy() for icrsh in range(self.n_corr_shells) ] # this list will be returned
|
||||
beta = G_loc[0].mesh.beta
|
||||
G_loc_inequiv = [ BlockGf( name_block_generator = [ (block,GfImFreq(indices = inner, mesh = G_loc[0].mesh)) for block,inner in self.gf_struct_solver[ish].iteritems() ],
|
||||
make_copies = False) for ish in range(self.n_inequiv_shells) ]
|
||||
elif iw_or_w == "w":
|
||||
G_loc = [ self.Sigma_imp_w[icrsh].copy() for icrsh in range(self.n_corr_shells) ] # this list will be returned
|
||||
mesh = G_loc[0].mesh
|
||||
G_loc_inequiv = [ BlockGf( name_block_generator = [ (block,GfReFreq(indices = inner, mesh = mesh)) for block,inner in self.gf_struct_solver[ish].iteritems() ],
|
||||
make_copies = False) for ish in range(self.n_inequiv_shells) ]
|
||||
|
||||
for icrsh in range(self.n_corr_shells): G_loc[icrsh].zero() # initialize to zero
|
||||
beta = G_loc[0].mesh.beta
|
||||
|
||||
ikarray = numpy.array(range(self.n_k))
|
||||
for ik in mpi.slice_array(ikarray):
|
||||
|
||||
G_latt_iw = self.lattice_gf(ik=ik, mu=mu, iw_or_w="iw", with_Sigma=with_Sigma, with_dc=with_dc, beta=beta)
|
||||
G_latt_iw *= self.bz_weights[ik]
|
||||
if iw_or_w == 'iw':
|
||||
G_latt = self.lattice_gf(ik=ik, mu=mu, iw_or_w=iw_or_w, with_Sigma=with_Sigma, with_dc=with_dc, beta=beta)
|
||||
elif iw_or_w == 'w':
|
||||
G_latt = self.lattice_gf(ik=ik, mu=mu, iw_or_w=iw_or_w, with_Sigma=with_Sigma, with_dc=with_dc, broadening=broadening, mesh=mesh)
|
||||
G_latt *= self.bz_weights[ik]
|
||||
|
||||
for icrsh in range(self.n_corr_shells):
|
||||
tmp = G_loc[icrsh].copy() # init temporary storage
|
||||
for bname,gf in tmp: tmp[bname] << self.downfold(ik,icrsh,bname,G_latt_iw[bname],gf)
|
||||
for bname,gf in tmp: tmp[bname] << self.downfold(ik,icrsh,bname,G_latt[bname],gf)
|
||||
G_loc[icrsh] += tmp
|
||||
|
||||
# Collect data from mpi
|
||||
@ -613,8 +629,6 @@ class SumkDFT:
|
||||
for bname,gf in G_loc[icrsh]: G_loc[icrsh][bname] << self.rotloc(icrsh,gf,direction='toLocal')
|
||||
|
||||
# transform to CTQMC blocks:
|
||||
G_loc_inequiv = [ BlockGf( name_block_generator = [ (block,GfImFreq(indices = inner, mesh = G_loc[0].mesh)) for block,inner in self.gf_struct_solver[ish].iteritems() ],
|
||||
make_copies = False) for ish in range(self.n_inequiv_shells) ]
|
||||
for ish in range(self.n_inequiv_shells):
|
||||
for block,inner in self.gf_struct_solver[ish].iteritems():
|
||||
for ind1 in inner:
|
||||
@ -1072,14 +1086,14 @@ class SumkDFT:
|
||||
for bl in degsh: gf_to_symm[bl] << ss
|
||||
|
||||
|
||||
def total_density(self, mu=None, with_Sigma=True, with_dc=True):
|
||||
def total_density(self, mu=None, iw_or_w="iw", with_Sigma=True, with_dc=True, broadening=None):
|
||||
r"""
|
||||
Calculates the total charge within the energy window for a given chemical potential.
|
||||
The chemical potential is either given by parameter `mu` or, if it is not specified,
|
||||
taken from `self.chemical_potential`.
|
||||
|
||||
The total charge is calculated from the trace of the GF in the Bloch basis.
|
||||
By deafult, a full interacting GF is used. To use the non-interacting GF, set
|
||||
By default, a full interacting GF is used. To use the non-interacting GF, set
|
||||
parameter `with_Sigma = False`.
|
||||
|
||||
The number of bands within the energy windows generally depends on `k`. The trace is
|
||||
@ -1088,7 +1102,7 @@ class SumkDFT:
|
||||
Since in general n_orbitals depends on k, the calculation is done in the following order:
|
||||
..math:: n_{tot} = \sum_{k} n(k),
|
||||
with
|
||||
..math:: n(k) = Tr G_{\nu\nu'}(k, i\omega_{n}).
|
||||
..math:: n(k) = Tr G_{\nu\nu'}(k, i\omega_{n}).
|
||||
|
||||
The calculation is done in the global coordinate system, if distinction is made between local/global.
|
||||
|
||||
@ -1096,11 +1110,18 @@ class SumkDFT:
|
||||
----------
|
||||
mu : float, optional
|
||||
Input chemical potential. If not specified, `self.chemical_potential` is used instead.
|
||||
iw_or_w : string, optional
|
||||
- `iw_or_w` = 'iw' for a imaginary-frequency self-energy
|
||||
- `iw_or_w` = 'w' for a real-frequency self-energy
|
||||
with_Sigma : boolean, optional
|
||||
If `True` the full interacing GF is evaluated, otherwise the self-energy is not
|
||||
included and the charge would correspond to a non-interacting system.
|
||||
with_dc : boolean, optional
|
||||
Whether or not to subtract the double-counting term from the self-energy.
|
||||
broadening : float, optional
|
||||
Imaginary shift for the axis along which the real-axis GF is calculated.
|
||||
If not provided, broadening will be set to double of the distance between mesh points in 'mesh'.
|
||||
Only relevant for real-frequency GF.
|
||||
|
||||
Returns
|
||||
-------
|
||||
@ -1112,8 +1133,8 @@ class SumkDFT:
|
||||
dens = 0.0
|
||||
ikarray = numpy.array(range(self.n_k))
|
||||
for ik in mpi.slice_array(ikarray):
|
||||
G_latt_iw = self.lattice_gf(ik=ik, mu=mu, iw_or_w="iw", with_Sigma=with_Sigma, with_dc=with_dc)
|
||||
dens += self.bz_weights[ik] * G_latt_iw.total_density()
|
||||
G_latt = self.lattice_gf(ik=ik, mu=mu, iw_or_w=iw_or_w, with_Sigma=with_Sigma, with_dc=with_dc, broadening=broadening)
|
||||
dens += self.bz_weights[ik] * G_latt.total_density()
|
||||
# collect data from mpi:
|
||||
dens = mpi.all_reduce(mpi.world, dens, lambda x,y : x+y)
|
||||
mpi.barrier()
|
||||
@ -1134,7 +1155,7 @@ class SumkDFT:
|
||||
self.chemical_potential = mu
|
||||
|
||||
|
||||
def calc_mu(self, precision=0.01):
|
||||
def calc_mu(self, precision=0.01, iw_or_w='iw',broadening=None):
|
||||
r"""
|
||||
Searches for the chemical potential that gives the DFT total charge.
|
||||
A simple bisection method is used.
|
||||
@ -1143,6 +1164,13 @@ class SumkDFT:
|
||||
----------
|
||||
precision : float, optional
|
||||
A desired precision of the resulting total charge.
|
||||
iw_or_w : string, optional
|
||||
- `iw_or_w` = 'iw' for a imaginary-frequency self-energy
|
||||
- `iw_or_w` = 'w' for a real-frequency self-energy
|
||||
broadening : float, optional
|
||||
Imaginary shift for the axis along which the real-axis GF is calculated.
|
||||
If not provided, broadening will be set to double of the distance between mesh points in 'mesh'.
|
||||
Only relevant for real-frequency GF.
|
||||
|
||||
Returns
|
||||
-------
|
||||
@ -1151,7 +1179,7 @@ class SumkDFT:
|
||||
within specified precision.
|
||||
|
||||
"""
|
||||
F = lambda mu : self.total_density(mu=mu)
|
||||
F = lambda mu : self.total_density(mu=mu,iw_or_w=iw_or_w,broadening=broadening)
|
||||
density = self.density_required - self.charge_below
|
||||
|
||||
self.chemical_potential = dichotomy.dichotomy(function = F,
|
||||
|
Loading…
Reference in New Issue
Block a user