3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-05 19:08:45 +01:00

Removing examples from source code directories.

This commit is contained in:
Alexander Hampel 2019-12-05 11:14:09 -05:00
parent 18abc77e33
commit c591fe351e
43 changed files with 0 additions and 25401 deletions

View File

@ -1,9 +0,0 @@
*
!.gitignore
!INCAR
!POSCAR
!POTCAR
!KPOINTS
!plo.cfg
!*.sh
!*.py

View File

@ -1,49 +0,0 @@
ADDGRID = TRUE
AMIX = 0.1
AMIN = 0.01
BMIX = 0.0001
#IMIX = 1
#MIXFIRST = True
ALGO = NORMAL
EDIFF = 0.00001
EDIFFG = -0.002
EMAX = 13.0
EMIN = -2.0
ENCUT = 600
ENAUG = 1100
IBRION = -1
ICHARG = 5
ISIF = 4
ISMEAR = 2
ISPIN = 2
ISYM = -1
LASPH = TRUE
LCHARG = TRUE
LDAU = True
LDAUJ = 0
LDAUL = 3
LDAUTYPE = 2
LDAUU = 0.0
LDAUPRINT = 2
LMAXMIX = 6
LORBIT = 13
LREAL = False
ROPT = 1e-3 1e-3 1e-3
LWAVE = TRUE
MAGMOM = 1.1
#NBANDS = 16
NEDOS = 501
NELM = 100
NELMDL = -7
NELMIN = 1
NPAR = 4
NSIM = 1
NSW = 0
POTIM = 0.4
PREC = Accurate
SIGMA = 0.1
SMASS = 0.5
SYMPREC = 1.0e-6
# Projectors
LOCPROJ = 1 : f : Pr 1

View File

@ -1,4 +0,0 @@
Automatic kpoint scheme
0
Gamma
4 4 4

View File

@ -1,9 +0,0 @@
gamma-Ce
1.0
2.5790000000000000 2.5790000000000000 0.0000000000000000
0.0000000000000000 2.5790000000000000 2.5790000000000000
2.5790000000000000 0.0000000000000000 2.5790000000000000
Ce
1
Direct
0.0 0.0 0.0

File diff suppressed because it is too large Load Diff

View File

@ -1,252 +0,0 @@
from math import sqrt
from scipy.misc import factorial as fact
from itertools import product
import numpy as np
# The interaction matrix in desired basis
# U^{spherical}_{m1 m2 m3 m4} = \sum_{k=0}^{2l} F_k angular_matrix_element(l, k, m1, m2, m3, m4)
def U_matrix(l, radial_integrals=None, U_int=None, J_hund=None, basis="spherical", T=None):
"""Calculate U matrix being given either radial_integrals or U_int and J_hund.
l = angular momentum of shell being treated (l=2 for d shell, l=3 for f shell)
radial_integrals = [F0,F2,F4,..] (default None)
U_int, J_hund = values to use to compute radial_integrals (default None),
basis = "spherical", "cubic", or "other",
T = transformation matrix from spherical to desired basis, if basis='other' (default None)"""
# Check all necessary information is present and consistent
if radial_integrals is None and (U_int is None and J_hund is None):
raise ValueError("U_matrix: provide either the radial_integrals or U_int and J_hund.")
if radial_integrals is None and (U_int is not None and J_hund is not None):
radial_integrals = U_J_to_radial_integrals(l, U_int, J_hund)
if radial_integrals is not None and (U_int is not None and J_hund is not None):
if len(radial_integrals)-1 != l:
raise ValueError("U_matrix: inconsistency in l and number of radial_integrals provided.")
if (radial_integrals - U_J_to_radial_integrals(l, U_int, J_hund)).any() != 0.0:
print "Warning: U_matrix: radial_integrals provided do not match U_int and J_hund. Using radial_integrals to calculate spherical U_matrix."
# Full interaction matrix
# Basis of spherical harmonics Y_{-2}, Y_{-1}, Y_{0}, Y_{1}, Y_{2}
# U^{spherical}_{m1 m2 m3 m4} = \sum_{k=0}^{2l} F_k angular_matrix_element(l, k, m1, m2, m3, m4)
U_matrix = np.zeros((2*l+1,2*l+1,2*l+1,2*l+1),dtype=float)
m_range = range(-l,l+1)
for n, F in enumerate(radial_integrals):
k = 2*n
for m1, m2, m3, m4 in product(m_range,m_range,m_range,m_range):
U_matrix[m1+l,m2+l,m3+l,m4+l] += F * angular_matrix_element(l,k,m1,m2,m3,m4)
# Transform from spherical basis if needed
if basis == "cubic": T = spherical_to_cubic(l)
if basis == "other" and T is None:
raise ValueError("U_matrix: provide T for other bases.")
if T is not None: U_matrix = transform_U_matrix(U_matrix, T)
return U_matrix
# Convert full 4-index U matrix to 2-index density-density form
def reduce_4index_to_2index(U_4index):
"""Reduces the four-index matrix to two-index matrices."""
size = len(U_4index) # 2l+1
U = np.zeros((size,size),dtype=float) # matrix for same spin
Uprime = np.zeros((size,size),dtype=float) # matrix for opposite spin
m_range = range(size)
for m,mp in product(m_range,m_range):
U[m,mp] = U_4index[m,mp,m,mp].real - U_4index[m,mp,mp,m].real
Uprime[m,mp] = U_4index[m,mp,m,mp].real
return U, Uprime
# Construct the 2-index matrices for the density-density form
def U_matrix_kanamori(n_orb, U_int, J_hund):
"""Calculate the Kanamori U and Uprime matrices."""
U = np.zeros((n_orb,n_orb),dtype=float) # matrix for same spin
Uprime = np.zeros((n_orb,n_orb),dtype=float) # matrix for opposite spin
m_range = range(n_orb)
for m,mp in product(m_range,m_range):
if m == mp:
Uprime[m,mp] = U_int
else:
U[m,mp] = U_int - 3.0*J_hund
Uprime[m,mp] = U_int - 2.0*J_hund
return U, Uprime
# Get t2g or eg components
def t2g_submatrix(U, convention=''):
"""Return only the t2g part of the full d-manifold two- or four-index U matrix."""
if convention == 'wien2k':
return subarray(U, len(U.shape)*[(2,3,4)])
else:
return subarray(U, len(U.shape)*[(0,1,3)])
def eg_submatrix(U, convention=''):
"""Return only the eg part of the full d-manifold two- or four-index U matrix."""
if convention == 'wien2k':
return subarray(U, len(U.shape)*[(0,1)])
else:
return subarray(U, len(U.shape)*[(2,4)])
# Transform the interaction matrix into another basis
def transform_U_matrix(U_matrix, T):
"""Transform the interaction matrix into another basis by applying matrix T."""
return np.einsum("ij,kl,jlmo,mn,op",np.conj(T),np.conj(T),U_matrix,np.transpose(T),np.transpose(T))
# Rotation matrices: complex harmonics to cubic harmonics
# Complex harmonics basis: ..., Y_{-2}, Y_{-1}, Y_{0}, Y_{1}, Y_{2}, ...
def spherical_to_cubic(l, convention=''):
"""Returns the spherical harmonics to cubic harmonics rotation matrix."""
size = 2*l+1
T = np.zeros((size,size),dtype=complex)
if convention != 'wien2k' and l == 2:
raise ValueError("spherical_to_cubic: standard convention not implemented for l=1")
if l == 0:
cubic_names = ("s")
elif l == 1:
cubic_names = ("x","y","z")
T[0,0] = 1.0/sqrt(2); T[0,2] = -1.0/sqrt(2)
T[1,0] = 1j/sqrt(2); T[1,2] = 1j/sqrt(2)
T[2,1] = 1.0
elif l == 2:
if convention == 'wien2k':
cubic_names = ("z^2","x^2-y^2","xy","yz","xz")
T[0,2] = 1.0
T[1,0] = 1.0/sqrt(2); T[1,4] = 1.0/sqrt(2)
T[2,0] = -1j/sqrt(2); T[2,4] = 1j/sqrt(2)
T[3,1] = 1j/sqrt(2); T[3,3] = -1j/sqrt(2)
T[4,1] = 1.0/sqrt(2); T[4,3] = 1.0/sqrt(2)
else:
cubic_names = ("xy","yz","z^2","xz","x^2-y^2")
T[0,0] = 1j/sqrt(2); T[0,4] = -1j/sqrt(2)
T[1,1] = 1j/sqrt(2); T[1,3] = 1j/sqrt(2)
T[2,2] = 1.0
T[3,1] = 1.0/sqrt(2); T[3,3] = -1.0/sqrt(2)
T[4,0] = 1.0/sqrt(2); T[4,4] = 1.0/sqrt(2)
elif l == 3:
if convention == 'wien2k':
cubic_names = ("x(x^2-3y^2)","z(x^2-y^2)","xz^2","z^3","yz^2","xyz","y(3x^2-y^2)")
T[0,0] = 1.0/sqrt(2); T[0,6] = -1.0/sqrt(2)
T[1,1] = 1.0/sqrt(2); T[1,5] = 1.0/sqrt(2)
T[2,2] = 1.0/sqrt(2); T[2,4] = -1.0/sqrt(2)
T[3,5] = 1.0
T[4,2] = 1j/sqrt(2); T[4,4] = 1j/sqrt(2)
T[5,1] = 1j/sqrt(2); T[5,5] = -1j/sqrt(2)
T[6,0] = 1j/sqrt(2); T[6,6] = 1j/sqrt(2)
else:
cubic_names = ("y(3x^2-y^2)","xyz","yz^2","z^3","xz^2","z(x^2-y^2)","x(x^2-3y^2)")
# Verified with the matrix generated in VASP
T[0,0] = 1j/sqrt(2); T[0,6] = 1j/sqrt(2)
T[1,1] = 1j/sqrt(2); T[1,5] = -1j/sqrt(2)
T[2,2] = 1j/sqrt(2); T[2,4] = 1j/sqrt(2)
T[3,3] = 1.0
T[4,2] = 1.0/sqrt(2); T[4,4] = -1.0/sqrt(2)
T[5,1] = 1.0/sqrt(2); T[5,5] = 1.0/sqrt(2)
T[6,0] = 1.0/sqrt(2); T[6,6] = -1.0/sqrt(2)
else: raise ValueError("spherical_to_cubic: implemented only for l=0,1,2,3")
return T
# Names of cubic harmonics
def cubic_names(l):
if l == 0 or l == 's':
return ("s")
elif l == 1 or l == 'p':
return ("x","y","z")
elif l == 2 or l == 'd':
return ("xy","yz","z^2","xz","x^2-y^2")
elif l == 't2g':
return ("xy","yz","xz")
elif l == 'eg':
return ("z^2","x^2-y^2")
elif l == 3 or l == 'f':
return ("x(x^2-3y^2)","z(x^2-y^2)","xz^2","z^3","yz^2","xyz","y(3x^2-y^2)")
else: raise ValueError("cubic_names: implemented only for l=0,1,2,3")
# Convert U,J -> radial integrals F_k
def U_J_to_radial_integrals(l, U_int, J_hund):
"""Determines the radial integrals F_k from U_int and J_hund."""
F = np.zeros((l+1),dtype=float)
if l == 2:
F[0] = U_int
F[1] = J_hund * 14.0 / (1.0 + 0.63)
F[2] = 0.630 * F[1]
elif l == 3:
F[0] = U_int
F[1] = 6435.0 * J_hund / (286.0 + 195.0 * 451.0 / 675.0 + 250.0 * 1001.0 / 2025.0)
F[2] = 451.0 * F[1] / 675.0
F[3] = 1001.0 * F[1] / 2025.0
else: raise ValueError("U_J_to_radial_integrals: implemented only for l=2,3")
return F
# Convert radial integrals F_k -> U,J
def radial_integrals_to_U_J(l, F):
"""Determines U_int and J_hund from the radial integrals."""
if l == 2:
U_int = F[0]
J_hund = F[1] * (1.0 + 0.63) / 14.0
elif l == 3:
U_int = F[0]
J_hund = F[1] * (286.0 + 195.0 * 451.0 / 675.0 + 250.0 * 1001.0 / 2025.0) / 6435.0
else: raise ValueError("radial_integrals_to_U_J: implemented only for l=2,3")
return U_int,J_hund
# Angular matrix elements of particle-particle interaction
# (2l+1)^2 ((l 0) (k 0) (l 0))^2 \sum_{q=-k}^{k} (-1)^{m1+m2+q} ((l -m1) (k q) (l m3)) ((l -m2) (k -q) (l m4))
def angular_matrix_element(l, k, m1, m2, m3, m4):
result = 0
for q in range(-k,k+1):
result += three_j_symbol((l,-m1),(k,q),(l,m3))*three_j_symbol((l,-m2),(k,-q),(l,m4))*(-1.0 if (m1+q+m2) % 2 else 1.0)
result *= (2*l+1)**2 * (three_j_symbol((l,0),(k,0),(l,0))**2)
return result
# Wigner 3-j symbols
# ((j1 m1) (j2 m2) (j3 m3))
def three_j_symbol(jm1, jm2, jm3):
j1, m1 = jm1
j2, m2 = jm2
j3, m3 = jm3
if (m1+m2+m3 != 0 or
m1 < -j1 or m1 > j1 or
m2 < -j2 or m2 > j2 or
m3 < -j3 or m3 > j3 or
j3 > j1 + j2 or
j3 < abs(j1-j2)):
return .0
result = -1.0 if (j1-j2-m3) % 2 else 1.0
result *= sqrt(fact(j1+j2-j3)*fact(j1-j2+j3)*fact(-j1+j2+j3)/fact(j1+j2+j3+1))
result *= sqrt(fact(j1-m1)*fact(j1+m1)*fact(j2-m2)*fact(j2+m2)*fact(j3-m3)*fact(j3+m3))
t_min = max(j2-j3-m1,j1-j3+m2,0)
t_max = min(j1-m1,j2+m2,j1+j2-j3)
t_sum = 0
for t in range(t_min,t_max+1):
t_sum += (-1.0 if t % 2 else 1.0)/(fact(t)*fact(j3-j2+m1+t)*fact(j3-j1-m2+t)*fact(j1+j2-j3-t)*fact(j1-m1-t)*fact(j2+m2-t))
result *= t_sum
return result
# Clebsch-Gordan coefficients
# < j1 m1 j2 m2 | j3 m3 > = (-1)^{j1-j2+m3} \sqrt{2j3+1} ((j1 m1) (j2 m2) (j3 -m3))
def clebsch_gordan(jm1, jm2, jm3):
norm = sqrt(2*jm3[0]+1)*(-1 if jm1[0]-jm2[0]+jm3[1] % 2 else 1)
return norm*three_j_symbol(jm1,jm2,(jm3[0],-jm3[1]))
# Create subarray containing columns in idxlist
# e.g. idxlist = [(0),(2,3),(0,1,2,3)] gives
# column 0 for 1st dim,
# columns 2 and 3 for 2nd dim,
# columns 0,1,2 and 3 for 3rd dim.
def subarray(a,idxlist,n=None) :
if n is None: n = len(a.shape)-1
sa = a[tuple(slice(x) for x in a.shape[:n]) + (idxlist[n],)]
return subarray(sa,idxlist, n-1) if n > 0 else sa

View File

@ -1,335 +0,0 @@
################################################################################
#
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
#
# Copyright (C) 2011 by M. Ferrero, O. Parcollet
#
# TRIQS is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
#
################################################################################
from types import *
#from triqs_dft_tools.U_matrix import *
from U_matrix import *
from pytriqs.gf import *
#from hubbard_I import gf_hi_fullu, sigma_atomic_fullu
import pytriqs.utility.mpi as mpi
from itertools import izip
import numpy
import copy
class Solver:
"""
Hartree-Fock Solver
"""
# initialisation:
def __init__(self, beta, l, n_msb=1025, use_spin_orbit=False, Nmoments=5, dudarev=False):
self.name = "Hartree-Fock"
self.beta = beta
self.l = l
self.Nmsb = n_msb
self.UseSpinOrbit = use_spin_orbit
self.Converged = False
self.Nspin = 2
self.Nmoments=Nmoments
self.dudarev = dudarev
assert use_spin_orbit == False, "Spin-orbit is not implemented"
self.Nlm = 2*l+1
if (use_spin_orbit):
# no blocks!
self.gf_struct = [ ('ud', range(2*self.Nlm)) ]
else:
# up/down blocks:
self.gf_struct = [ ('up', range(self.Nlm)), ('down', range(self.Nlm)) ]
# construct Greens functions:
self.a_list = [a for a,al in self.gf_struct]
glist = lambda : [ GfImFreq(indices = al, beta = self.beta, n_points = self.Nmsb) for a,al in self.gf_struct]
self.G = BlockGf(name_list = self.a_list, block_list = glist(),make_copies=False)
self.G_Old = self.G.copy()
self.G0 = self.G.copy()
self.Sigma = self.G.copy()
self.Sigma_Old = self.G.copy()
def solve(self, U_int, J_hund, T=None, verbosity=0, Iteration_Number=1, Test_Convergence=0.0001):
"""Calculation of the impurity Greens function using Hubbard-I"""
if self.Converged :
mpi.report("Solver %(name)s has already converged: SKIPPING"%self.__dict__)
return
if mpi.is_master_node():
self.verbosity = verbosity
else:
self.verbosity = 0
#self.Nmoments = 5
ur,ujmn,umn=self.__set_umatrix(U=U_int,J=J_hund,T=T)
M = [x for x in self.G.mesh]
self.zmsb = numpy.array([x for x in M],numpy.complex_)
# # for the tails:
# tailtempl={}
# for sig,g in self.G:
# tailtempl[sig] = copy.deepcopy(g.tail)
# for i in range(9): tailtempl[sig][i] *= 0.0
# self.__save_eal('eal.dat',Iteration_Number)
# mpi.report( "Starting Fortran solver %(name)s"%self.__dict__)
self.Sigma_Old <<= self.Sigma
self.G_Old <<= self.G
# # call the fortran solver:
# temp = 1.0/self.beta
# gf,tail,self.atocc,self.atmag = gf_hi_fullu(e0f=self.ealmat, ur=ur, umn=umn, ujmn=ujmn,
# zmsb=self.zmsb, nmom=self.Nmoments, ns=self.Nspin, temp=temp, verbosity = self.verbosity)
#self.sig = sigma_atomic_fullu(gf=self.gf,e0f=self.eal,zmsb=self.zmsb,ns=self.Nspin,nlm=self.Nlm)
def print_matrix(m):
for row in m:
print ''.join(map("{0:12.7f}".format, row))
# Hartree-Fock solver
self.Sigma.zero()
dm = self.G.density()
if mpi.is_master_node():
# print
# print " Reduced U-matrix:"
# print " U:"
# print_matrix(ujmn)
# print " Up:"
# print_matrix(umn)
#
## sig_test = {bl: numpy.zeros((self.Nlm, self.Nlm)) for bl in dm}
# sig_test = {}
# sig_test['up'] = numpy.dot(umn, dm['up'].real) + numpy.dot(ujmn, dm['down'].real)
# sig_test['down'] = numpy.dot(umn, dm['down'].real) + numpy.dot(ujmn, dm['up'].real)
# print " Sigma test:"
# print_matrix(sig_test['up'])
print
print " Density matrix (up):"
print_matrix(dm['up'])
print
print " Density matrix (down):"
print_matrix(dm['down'])
if self.dudarev:
Ueff = U_int - J_hund
corr_energy = 0.0
dft_dc = 0.0
for bl1 in dm:
# (U - J) * (1/2 - n)
self.Sigma[bl1] << Ueff * (0.5 * numpy.identity(self.Nlm) - dm[bl1])
# 1/2 (U - J) * \sum_{\sig} [\sum_{m} n_{m,m \sig} - \sum_{m1,m2} n_{m1,m2 \sig} n_{m2,m1 \sig}]
corr_energy += 0.5 * Ueff * (dm[bl1].trace() - (dm[bl1]*dm[bl1].conj()).sum()).real
# V[n] * n^{\dagger}
dft_dc += (self.Sigma[bl1](0) * dm[bl1].conj()).sum().real
else:
# !!!!!
# !!!!! Mind the order of indices in the 4-index matrix!
# !!!!!
for il1 in xrange(self.Nlm):
for il2 in xrange(self.Nlm):
for il3 in xrange(self.Nlm):
for il4 in xrange(self.Nlm):
for bl1 in dm:
for bl2 in dm:
self.Sigma[bl1][il1, il2] += ur[il1, il3, il2, il4] * dm[bl2][il3, il4]
if bl1 == bl2:
self.Sigma[bl1][il1, il2] -= ur[il1, il3, il4, il2] * dm[bl1][il3, il4]
if mpi.is_master_node() and self.verbosity > 0:
print
print " Sigma (up):"
print_matrix(self.Sigma['up'](0).real)
print
print " Sigma (down):"
print_matrix(self.Sigma['down'](0).real)
# if (self.verbosity==0):
# # No fortran output, so give basic results here
# mpi.report("Atomic occupancy in Hubbard I Solver : %s"%self.atocc)
# mpi.report("Atomic magn. mom. in Hubbard I Solver : %s"%self.atmag)
# transfer the data to the GF class:
if (self.UseSpinOrbit):
nlmtot = self.Nlm*2 # only one block in this case!
else:
nlmtot = self.Nlm
# M={}
# isp=-1
# for a,al in self.gf_struct:
# isp+=1
# M[a] = numpy.array(gf[isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot,:]).transpose(2,0,1).copy()
# for i in range(min(self.Nmoments,8)):
# tailtempl[a][i+1] = tail[i][isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot]
#
# #glist = lambda : [ GfImFreq(indices = al, beta = self.beta, n_points = self.Nmsb, data =M[a], tail =self.tailtempl[a])
# # for a,al in self.gf_struct]
# glist = lambda : [ GfImFreq(indices = al, beta = self.beta, n_points = self.Nmsb) for a,al in self.gf_struct]
# self.G = BlockGf(name_list = self.a_list, block_list = glist(),make_copies=False)
#
# self.__copy_Gf(self.G,M,tailtempl)
#
# # Self energy:
# self.G0 <<= iOmega_n
#
# M = [ self.ealmat[isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot] for isp in range((2*self.Nlm)/nlmtot) ]
# self.G0 -= M
# self.Sigma <<= self.G0 - inverse(self.G)
#
# # invert G0
# self.G0.invert()
def test_distance(G1,G2, dist) :
def f(G1,G2) :
#print abs(G1.data - G2.data)
dS = max(abs(G1.data - G2.data).flatten())
aS = max(abs(G1.data).flatten())
if mpi.is_master_node():
print " Distances:", dS, " vs ", aS * dist
return dS <= aS*dist
return reduce(lambda x,y : x and y, [f(g1,g2) for (i1,g1),(i2,g2) in izip(G1,G2)])
mpi.report("\nChecking Sigma for convergence...\nUsing tolerance %s"%Test_Convergence)
self.Converged = test_distance(self.Sigma,self.Sigma_Old,Test_Convergence)
if self.Converged :
mpi.report("Solver HAS CONVERGED")
else :
mpi.report("Solver has not yet converged")
return corr_energy, dft_dc
def GF_realomega(self, ommin, ommax, N_om, U_int, J_hund, T=None, verbosity=0, broadening=0.01):
"""Calculates the GF and spectral function on the real axis."""
delta_om = (ommax-ommin)/(1.0*(N_om-1))
omega = numpy.zeros([N_om],numpy.complex_)
ur,umn,ujmn=self.__set_umatrix(U=U_int,J=J_hund,T=T)
for i in range(N_om):
omega[i] = ommin + delta_om * i + 1j * broadening
tailtempl={}
for sig,g in self.G:
tailtempl[sig] = copy.deepcopy(g.tail)
for i in range(9): tailtempl[sig][i] *= 0.0
temp = 1.0/self.beta
gf,tail,self.atocc,self.atmag = gf_hi_fullu(e0f=self.ealmat, ur=ur, umn=umn, ujmn=ujmn,
zmsb=omega, nmom=self.Nmoments, ns=self.Nspin, temp=temp, verbosity = verbosity)
# transfer the data to the GF class:
if (self.UseSpinOrbit):
nlmtot = self.Nlm*2 # only one block in this case!
else:
nlmtot = self.Nlm
M={}
isp=-1
for a,al in self.gf_struct:
isp+=1
M[a] = numpy.array(gf[isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot,:]).transpose(2,0,1).copy()
for i in range(min(self.Nmoments,8)):
tailtempl[a][i+1] = tail[i][isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot]
#glist = lambda : [ GfReFreq(indices = al, window = (ommin, ommax), n_points = N_om, data = M[a], tail = self.tailtempl[a])
# for a,al in self.gf_struct] # Indices for the upfolded G
glist = lambda : [ GfReFreq(indices = al, window = (ommin, ommax), n_points = N_om) for a,al in self.gf_struct]
self.G = BlockGf(name_list = self.a_list, block_list = glist(),make_copies=False)
self.__copy_Gf(self.G,M,tailtempl)
# Self energy:
self.G0 = self.G.copy()
self.Sigma = self.G.copy()
self.G0 <<= Omega + 1j*broadening
M = [ self.ealmat[isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot] for isp in range((2*self.Nlm)/nlmtot) ]
self.G0 -= M
self.Sigma <<= self.G0 - inverse(self.G)
self.Sigma.note='ReFreq' # This is important for the put_Sigma routine!!!
#sigmamat = sigma_atomic_fullu(gf=gf,e0f=self.ealmat,zmsb=omega,nlm=self.Nlm,ns=self.Nspin)
#return omega,gf,sigmamat
def __save_eal(self,Filename,it):
f=open(Filename,'a')
f.write('\neff. atomic levels, Iteration %s\n'%it)
for i in range(self.Nlm*self.Nspin):
for j in range(self.Nlm*self.Nspin):
f.write("%10.6f %10.6f "%(self.ealmat[i,j].real,self.ealmat[i,j].imag))
f.write("\n")
f.close()
def __copy_Gf(self,G,data,tail):
""" Copies data and tail to Gf object GF """
for s,g in G:
g.data[:,:,:]=data[s][:,:,:]
for imom in range(1,min(self.Nmoments,8)):
g.tail.data[1+imom,:,:]=tail[s][imom]
def set_atomic_levels(self,eal):
""" Helps to set correctly the variables for the atomic levels from a dictionary."""
assert (type(eal)==DictType), "Give a dictionary to set_atomic_levels!"
cnt = 0
self.ealmat[:,:] *= 0.0
for ind in eal:
self.Eff_Atomic_Levels[ind] = copy.deepcopy(eal[ind])
if self.UseSpinOrbit:
for ii in range(self.Nlm*2):
for jj in range(self.Nlm*2):
self.ealmat[ii,jj] = self.Eff_Atomic_Levels[ind][ii,jj]
else:
for ii in range(self.Nlm):
for jj in range(self.Nlm):
self.ealmat[cnt*self.Nlm + ii,cnt*self.Nlm + jj] = self.Eff_Atomic_Levels[ind][ii,jj]
cnt += 1
def __set_umatrix(self,U,J,T=None):
# U matrix:
# l = (Nlm-1)/2
# If T is specified, it is used to transform the Basis set
Umat = U_matrix(l=self.l, U_int=U, J_hund=J, basis='cubic', T=T)
U, Up = reduce_4index_to_2index(Umat)
return Umat, U, Up

View File

@ -1,15 +0,0 @@
[General]
#EFERMI =
#BASENAME = plo_vasp
#DOSMESH = -5.0 10.0 4001
[Group 1]
SHELLS = 1
NORMALIZE = False
EWINDOW = -41.45 41.8
[Shell 1]
LSHELL = 3
IONS = 1

View File

@ -1,2 +0,0 @@
#!/bin/bash
PYTHONPATH=$HOME/Codes/triqs/triqs1.2/applications/dft_tools/dev_src/python:$HOME/Codes/triqs/triqs1.2/applications/dft_tools/dev_src/c:$PYTHONPATH pytriqs $@

View File

@ -1,2 +0,0 @@
PLOVASP_PATH=$HOME/Codes/triqs/triqs1.2/applications/dft_tools/dev_src
PYTHONPATH=$PLOVASP_PATH/python:$PLOVASP_PATH/c:$PYTHONPATH pytriqs $PLOVASP_PATH/python/converters/plovasp/main.py $@

View File

@ -1,164 +0,0 @@
import os
import errno
import signal
import sys
import time
import pytriqs.utility.mpi as mpi
import converters.plovasp.main as plovasp
from test_ham_hf import dmft_cycle
debug = True
#
# Helper functions
#
def sigint_handler(signal, frame):
raise SystemExit(1)
def is_vasp_lock_present():
return os.path.isfile('./vasp.lock')
def is_vasp_running(vasp_pid):
"""
Tests if VASP initial process is still alive.
"""
pid_exists = False
if mpi.is_master_node():
try:
os.kill(vasp_pid, 0)
except OSError, e:
pid_exists = e.errno == errno.EPERM
else:
pid_exists = True
pid_exists = mpi.bcast(pid_exists)
return pid_exists
def get_dft_energy():
"""
Reads energy from the last line of OSZICAR.
"""
with open('OSZICAR', 'r') as f:
nextline = f.readline()
while nextline.strip():
line = nextline
nextline = f.readline()
# print "OSZICAR: ", line[:-1]
try:
dft_energy = float(line.split()[2])
except ValueError:
print "Cannot read energy from OSZICAR, setting it to zero"
dft_energy = 0.0
return dft_energy
class bcolors:
MAGENTA = '\033[95m'
BLUE = '\033[94m'
GREEN = '\033[92m'
YELLOW = '\033[93m'
RED = '\033[91m'
ENDC = '\033[0m'
#
# Main self-consistent cycle
#
def run_all(vasp_pid):
"""
"""
mpi.report(" Waiting for VASP lock to appear...")
while not is_vasp_lock_present():
time.sleep(1)
vasp_running = True
while vasp_running:
if debug: print bcolors.RED + "rank %s"%(mpi.rank) + bcolors.ENDC
mpi.report(" Waiting for VASP lock to disappear...")
mpi.barrier()
while is_vasp_lock_present():
time.sleep(1)
# if debug: print bcolors.YELLOW + " waiting: rank %s"%(mpi.rank) + bcolors.ENDC
if not is_vasp_running(vasp_pid):
mpi.report(" VASP stopped")
vasp_running = False
break
if debug: print bcolors.MAGENTA + "rank %s"%(mpi.rank) + bcolors.ENDC
err = 0
exc = None
try:
if debug: print bcolors.BLUE + "plovasp: rank %s"%(mpi.rank) + bcolors.ENDC
if mpi.is_master_node():
plovasp.generate_and_output_as_text('plo.cfg', vasp_dir='./')
# Read energy from OSZICAR
dft_energy = get_dft_energy()
except Exception, exc:
err = 1
err = mpi.bcast(err)
if err:
if mpi.is_master_node():
raise exc
else:
raise SystemExit(1)
mpi.barrier()
try:
if debug: print bcolors.GREEN + "rank %s"%(mpi.rank) + bcolors.ENDC
corr_energy, dft_dc = dmft_cycle()
except:
if mpi.is_master_node():
print " master forwarding the exception..."
raise
else:
print " rank %i exiting..."%(mpi.rank)
raise SystemExit(1)
mpi.barrier()
if mpi.is_master_node():
total_energy = dft_energy + corr_energy - dft_dc
print
print "="*80
print " Total energy: ", total_energy
print " DFT energy: ", dft_energy
print " Corr. energy: ", corr_energy
print " DFT DC: ", dft_dc
print "="*80
print
if mpi.is_master_node() and vasp_running:
open('./vasp.lock', 'a').close()
if mpi.is_master_node():
total_energy = dft_energy + corr_energy - dft_dc
with open('TOTENERGY', 'w') as f:
f.write(" Total energy: %s\n"%(total_energy))
f.write(" DFT energy: %s\n"%(dft_energy))
f.write(" Corr. energy: %s\n"%(corr_energy))
f.write(" DFT DC: %s\n"%(dft_dc))
f.write(" Energy correction: %s\n"%(corr_energy - dft_dc))
mpi.report("***Done")
if __name__ == '__main__':
try:
vasp_pid = int(sys.argv[1])
except (ValueError, KeyError):
if mpi.is_master_node():
print "VASP process pid must be provided as the first argument"
raise
# if len(sys.argv) > 1:
# vasp_path = sys.argv[1]
# else:
# try:
# vasp_path = os.environ['VASP_DIR']
# except KeyError:
# if mpi.is_master_node():
# print "Path to VASP must be specified either as an argument of in VASP_DIR"
# raise
signal.signal(signal.SIGINT, sigint_handler)
run_all(vasp_pid)

View File

@ -1,9 +0,0 @@
#/bin/bash
NPROC=8
rm -f vasp.lock
stdbuf -o 0 mpirun -np $NPROC ~/Codes/vasp/build_20151202/vasp.5.4.2/build/std/vasp &
mpirun -np $NPROC ./run_build.sh sc_dmft.py $(jobs -p) || kill %1

View File

@ -1,28 +0,0 @@
#!/bin/bash -l
#
#SBATCH --job-name="JOBNAME"
#SBATCH --time=36:00:00
##SBATCH --nodes=8
#SBATCH --ntasks=8
#SBATCH --partition=qmac
##SBATCH --mem-per-cpu=1024
#SBATCH --output=job.%j.o
#SBATCH --error=job.%j.e
#======START=====
# source $HOME/.profile
# export KMP_AFFINITY=none
# module load slurm
source /cm/shared/apps/intel/composer_xe/composer_xe_2015.0.090/mkl/bin/mklvars.sh intel64
# module switch PrgEnv-gnu PrgEnv-intel
# module load intel/14.0.2.144
#module load intel/mkl/64/11.2/2015.0.090
export OMP_NUM_THREADS=1
VASP_DIR=$HOME/Codes/vasp/build_20151202/vasp.5.4.2/build/std
#mpirun -np $SLURM_NTASKS $VASP_DIR/vasp
./sc_dmft.sh

View File

@ -1,437 +0,0 @@
#from triqs_dft_tools.sumk_dft import *
from sumk_dft import *
#from triqs_dft_tools.converters.wien2k_converter import *
from converters.vasp_converter import *
#from pytriqs.applications.impurity_solvers.hubbard_I.hubbard_solver import Solver
from hf_solver import Solver
import shutil
class TestSumkDFT(SumkDFT):
# calculate and save occupancy matrix in the Bloch basis for VASP charge denity recalculation
def calc_density_correction(self, filename='GAMMA', dm_type='wien2k'):
r"""
Calculates the charge density correction and stores it into a file.
The charge density correction is needed for charge-self-consistent DFT+DMFT calculations.
It represents a density matrix of the interacting system defined in Bloch basis
and it is calculated from the sum over Matsubara frequecies of the full GF,
..math:: N_{\nu\nu'}(k) = \sum_{i\omega_{n}} G_{\nu\nu'}(k, i\omega_{n})
The density matrix for every `k`-point is stored into a file.
Parameters
----------
filename : string
Name of the file to store the charge density correction.
Returns
-------
(deltaN, dens) : tuple
Returns a tuple containing the density matrix `deltaN` and
the corresponing total charge `dens`.
"""
assert type(filename) == StringType, "calc_density_correction: filename has to be a string!"
assert dm_type in ('vasp', 'wien2k'), "'type' must be either 'vasp' or 'wienk'"
ntoi = self.spin_names_to_ind[self.SO]
spn = self.spin_block_names[self.SO]
dens = {sp: 0.0 for sp in spn}
# Fetch Fermi weights and energy window band indices
if dm_type == 'vasp':
fermi_weights = 0
band_window = 0
if mpi.is_master_node():
with HDFArchive(self.hdf_file,'r') as ar:
fermi_weights = ar['dft_misc_input']['dft_fermi_weights']
band_window = ar['dft_misc_input']['band_window']
fermi_weights = mpi.bcast(fermi_weights)
band_window = mpi.bcast(band_window)
# Convert Fermi weights to a density matrix
dens_mat_dft = {}
for sp in spn:
dens_mat_dft[sp] = [fermi_weights[ik, ntoi[sp], :].astype(numpy.complex_) for ik in xrange(self.n_k)]
# Set up deltaN:
deltaN = {}
for sp in spn:
deltaN[sp] = [numpy.zeros([self.n_orbitals[ik,ntoi[sp]],self.n_orbitals[ik,ntoi[sp]]], numpy.complex_) for ik in range(self.n_k)]
ikarray = numpy.array(range(self.n_k))
for ik in mpi.slice_array(ikarray):
G_latt_iw = self.lattice_gf(ik = ik, mu = self.chemical_potential, iw_or_w = "iw")
for bname,gf in G_latt_iw:
deltaN[bname][ik][:, :] = G_latt_iw[bname].density()
dens[bname] += self.bz_weights[ik] * G_latt_iw[bname].total_density()
if dm_type == 'vasp':
# In 'vasp'-mode subtract the DFT density matrix
diag_inds = numpy.diag_indices(self.n_orbitals[ik, ntoi[bname]])
deltaN[bname][ik][diag_inds] -= dens_mat_dft[bname][ik]
dens[bname] -= self.bz_weights[ik] * dens_mat_dft[bname][ik].sum().real
# mpi reduce:
for bname in deltaN:
for ik in range(self.n_k):
deltaN[bname][ik] = mpi.all_reduce(mpi.world, deltaN[bname][ik], lambda x,y : x+y)
dens[bname] = mpi.all_reduce(mpi.world, dens[bname], lambda x,y : x+y)
mpi.barrier()
# now save to file:
if dm_type == 'wien2k':
if mpi.is_master_node():
if self.SP == 0:
f = open(filename,'w')
else:
f = open(filename+'up','w')
f1 = open(filename+'dn','w')
# write chemical potential (in Rydberg):
f.write("%.14f\n"%(self.chemical_potential/self.energy_unit))
if self.SP != 0: f1.write("%.14f\n"%(self.chemical_potential/self.energy_unit))
# write beta in rydberg-1
f.write("%.14f\n"%(G_latt_iw.mesh.beta*self.energy_unit))
if self.SP != 0: f1.write("%.14f\n"%(G_latt_iw.mesh.beta*self.energy_unit))
if self.SP == 0: # no spin-polarization
for ik in range(self.n_k):
f.write("%s\n"%self.n_orbitals[ik,0])
for inu in range(self.n_orbitals[ik,0]):
for imu in range(self.n_orbitals[ik,0]):
valre = (deltaN['up'][ik][inu,imu].real + deltaN['down'][ik][inu,imu].real) / 2.0
valim = (deltaN['up'][ik][inu,imu].imag + deltaN['down'][ik][inu,imu].imag) / 2.0
f.write("%.14f %.14f "%(valre,valim))
f.write("\n")
f.write("\n")
f.close()
elif self.SP == 1: # with spin-polarization
# dict of filename: (spin index, block_name)
if self.SO == 0: to_write = {f: (0, 'up'), f1: (1, 'down')}
if self.SO == 1: to_write = {f: (0, 'ud'), f1: (0, 'ud')}
for fout in to_write.iterkeys():
isp, sp = to_write[fout]
for ik in range(self.n_k):
fout.write("%s\n"%self.n_orbitals[ik,isp])
for inu in range(self.n_orbitals[ik,isp]):
for imu in range(self.n_orbitals[ik,isp]):
fout.write("%.14f %.14f "%(deltaN[sp][ik][inu,imu].real,deltaN[sp][ik][inu,imu].imag))
fout.write("\n")
fout.write("\n")
fout.close()
elif dm_type == 'vasp':
# assert self.SP == 0, "Spin-polarized density matrix is not implemented"
if mpi.is_master_node():
with open(filename, 'w') as f:
f.write(" %i -1 ! Number of k-points, default number of bands\n"%(self.n_k))
for sp in spn:
for ik in xrange(self.n_k):
ib1 = band_window[0][ik, 0]
ib2 = band_window[0][ik, 1]
f.write(" %i %i %i\n"%(ik + 1, ib1, ib2))
for inu in xrange(self.n_orbitals[ik, 0]):
for imu in xrange(self.n_orbitals[ik, 0]):
if self.SP == 0:
valre = (deltaN['up'][ik][inu, imu].real + deltaN['down'][ik][inu, imu].real) / 2.0
valim = (deltaN['up'][ik][inu, imu].imag + deltaN['down'][ik][inu, imu].imag) / 2.0
else:
valre = deltaN[sp][ik][inu, imu].real
valim = deltaN[sp][ik][inu, imu].imag
f.write(" %.14f %.14f"%(valre, valim))
f.write("\n")
else:
raise NotImplementedError("Unknown density matrix type: '%s'"%(dm_type))
return deltaN, dens
def calc_hamiltonian_correction(self, filename='GAMMA'):
r"""
Calculates the charge density correction and stores it into a file.
The charge density correction is needed for charge-self-consistent DFT+DMFT calculations.
It represents a density matrix of the interacting system defined in Bloch basis
and it is calculated from the sum over Matsubara frequecies of the full GF,
..math:: N_{\nu\nu'}(k) = \sum_{i\omega_{n}} G_{\nu\nu'}(k, i\omega_{n})
The density matrix for every `k`-point is stored into a file.
Parameters
----------
filename : string
Name of the file to store the charge density correction.
Returns
-------
(deltaN, dens) : tuple
Returns a tuple containing the density matrix `deltaN` and
the corresponing total charge `dens`.
"""
assert type(filename) == StringType, "calc_density_correction: filename has to be a string!"
ntoi = self.spin_names_to_ind[self.SO]
spn = self.spin_block_names[self.SO]
dens = {sp: 0.0 for sp in spn}
# Fetch Fermi weights and energy window band indices
fermi_weights = 0
band_window = 0
if mpi.is_master_node():
with HDFArchive(self.hdf_file,'r') as ar:
fermi_weights = ar['dft_misc_input']['dft_fermi_weights']
band_window = ar['dft_misc_input']['band_window']
fermi_weights = mpi.bcast(fermi_weights)
band_window = mpi.bcast(band_window)
# Set up deltaH:
deltaH = {}
for sp in spn:
deltaH[sp] = [numpy.zeros([self.n_orbitals[ik,ntoi[sp]],self.n_orbitals[ik,ntoi[sp]]], numpy.complex_) for ik in range(self.n_k)]
ikarray = numpy.array(range(self.n_k))
for ik in mpi.slice_array(ikarray):
sigma_minus_dc = [s.copy() for s in self.Sigma_imp_iw]
sigma_minus_dc = self.add_dc('iw')
beta = self.Sigma_imp_iw[0].mesh.beta # override beta if Sigma_iw is present
n_iw = len(self.Sigma_imp_iw[0].mesh)
block_structure = [ range(self.n_orbitals[ik,ntoi[sp]]) for sp in spn ]
gf_struct = [ (spn[isp], block_structure[isp]) for isp in range(self.n_spin_blocks[self.SO]) ]
block_ind_list = [block for block,inner in gf_struct]
glist = lambda : [ GfImFreq(indices=inner,beta=beta,n_points=n_iw) for block,inner in gf_struct]
G_latt = BlockGf(name_list = block_ind_list, block_list = glist(), make_copies = False)
G_latt.zero()
for icrsh in range(self.n_corr_shells):
for bname, gf in G_latt:
gf += self.upfold(ik,icrsh,bname,sigma_minus_dc[icrsh][bname],gf)
for sp in spn:
deltaH[sp][ik][:, :] = G_latt[sp](0) # Any Matsubara frequency will do
# G_latt_iw = self.lattice_gf(ik = ik, mu = self.chemical_potential, iw_or_w = "iw")
# for bname,gf in G_latt_iw:
# deltaN[bname][ik][:, :] = G_latt_iw[bname].density()
# dens[bname] += self.bz_weights[ik] * G_latt_iw[bname].total_density()
# if dm_type == 'vasp':
## In 'vasp'-mode subtract the DFT density matrix
# diag_inds = numpy.diag_indices(self.n_orbitals[ik, ntoi[bname]])
# deltaN[bname][ik][diag_inds] -= dens_mat_dft[bname][ik]
# dens[bname] -= self.bz_weights[ik] * dens_mat_dft[bname][ik].sum().real
# mpi reduce:
for bname in deltaH:
for ik in range(self.n_k):
deltaH[bname][ik] = mpi.all_reduce(mpi.world, deltaH[bname][ik], lambda x,y : x+y)
mpi.barrier()
# now save to file:
if mpi.is_master_node():
with open(filename, 'w') as f:
f.write("H %i -1 ! Number of k-points, default number of bands\n"%(self.n_k))
for sp in spn:
for ik in xrange(self.n_k):
ib1 = band_window[0][ik, 0]
ib2 = band_window[0][ik, 1]
f.write(" %i %i %i\n"%(ik + 1, ib1, ib2))
for inu in xrange(self.n_orbitals[ik, 0]):
for imu in xrange(self.n_orbitals[ik, 0]):
if self.SP == 0:
valre = (deltaH['up'][ik][inu, imu].real + deltaH['down'][ik][inu, imu].real) / 2.0
valim = (deltaH['up'][ik][inu, imu].imag + deltaH['down'][ik][inu, imu].imag) / 2.0
else:
valre = deltaH[sp][ik][inu, imu].real
valim = deltaH[sp][ik][inu, imu].imag
f.write(" %.14f %.14f"%(valre, valim))
f.write("\n")
return deltaH
def dmft_cycle():
lda_filename = 'vasp'
beta = 400
U_int = 4.00
J_hund = 0.70
Loops = 1 # Number of DMFT sc-loops
Mix = 1.0 # Mixing factor in QMC
DC_type = 0 # 0...FLL, 1...Held, 2... AMF, 3...Lichtenstein
DC_Mix = 1.0 # 1.0 ... all from imp; 0.0 ... all from Gloc
useBlocs = False # use bloc structure from LDA input
useMatrix = True # use the U matrix calculated from Slater coefficients instead of (U+2J, U, U-J)
chemical_potential_init=-0.0 # initial chemical potential
use_dudarev = True
HDFfilename = lda_filename+'.h5'
# Convert DMFT input:
# Can be commented after the first run
Converter = VaspConverter(filename=lda_filename)
Converter.convert_dft_input()
#check if there are previous runs:
previous_runs = 0
previous_present = False
if mpi.is_master_node():
with HDFArchive(HDFfilename,'a') as ar:
if 'iterations' in ar:
previous_present = True
previous_runs = ar['iterations']
else:
previous_runs = 0
previous_present = False
mpi.barrier()
previous_runs = mpi.bcast(previous_runs)
previous_present = mpi.bcast(previous_present)
# Init the SumK class
#SK=SumkDFT(hdf_file=lda_filename+'.h5',use_dft_blocks=False)
SK=TestSumkDFT(hdf_file=lda_filename+'.h5',use_dft_blocks=False)
Norb = SK.corr_shells[0]['dim']
l = SK.corr_shells[0]['l']
# Init the Hubbard-I solver:
S = Solver(beta = beta, l = l, dudarev=use_dudarev)
# DEBUG
#SK.put_Sigma(Sigma_imp=[S.Sigma])
#dH = SK.calc_hamiltonian_correction(filename='GAMMA')
# END DEBUG
chemical_potential=chemical_potential_init
# load previous data: old self-energy, chemical potential, DC correction
if (previous_present):
mpi.report("Using stored data for initialisation")
if (mpi.is_master_node()):
with HDFArchive(HDFfilename,'a') as ar:
S.Sigma <<= ar['SigmaF']
things_to_load=['chemical_potential','dc_imp']
old_data=SK.load(things_to_load)
chemical_potential=old_data[0]
SK.dc_imp=old_data[1]
S.Sigma = mpi.bcast(S.Sigma)
chemical_potential=mpi.bcast(chemical_potential)
SK.dc_imp=mpi.bcast(SK.dc_imp)
# DMFT loop:
for Iteration_Number in range(1,Loops+1):
itn = Iteration_Number + previous_runs
# put Sigma into the SumK class:
S.Sigma.zero() # !!!!
SK.put_Sigma(Sigma_imp = [ S.Sigma ])
# Compute the SumK, possibly fixing mu by dichotomy
if SK.density_required and (Iteration_Number > 1):
chemical_potential = SK.calc_mu( precision = 0.001 )
else:
mpi.report("No adjustment of chemical potential\nTotal density = %.3f"%SK.total_density(mu=chemical_potential))
# Density:
S.G <<= SK.extract_G_loc()[0]
mpi.report("Total charge of Gloc : %.6f"%S.G.total_density())
# calculated DC at the first run to have reasonable initial non-interacting atomic level positions
if ((Iteration_Number==1)and(previous_present==False)):
if use_dudarev:
dc_value_init = 0.0
else:
dc_value_init=U_int/2.0
dm=S.G.density()
SK.calc_dc( dm, U_interact = U_int, J_hund = J_hund, orb = 0, use_dc_formula = DC_type, use_dc_value=dc_value_init)
# calculate non-interacting atomic level positions:
# eal = SK.eff_atomic_levels()[0]
# S.set_atomic_levels( eal = eal )
# solve it:
corr_energy, dft_dc = S.solve(U_int = U_int, J_hund = J_hund, verbosity = 1)
# Now mix Sigma and G:
if ((itn>1)or(previous_present)):
if (mpi.is_master_node()and (Mix<1.0)):
with HDFArchive(HDFfilename,'r') as ar:
mpi.report("Mixing Sigma and G with factor %s"%Mix)
if ('SigmaF' in ar):
S.Sigma <<= Mix * S.Sigma + (1.0-Mix) * ar['SigmaF']
if ('GF' in ar):
S.G <<= Mix * S.G + (1.0-Mix) * ar['GF']
S.G = mpi.bcast(S.G)
S.Sigma = mpi.bcast(S.Sigma)
# after the Solver has finished, set new double counting:
# dm = S.G.density()
# if not use_dudarev:
# SK.calc_dc( dm, U_interact = U_int, J_hund = J_hund, orb = 0, use_dc_formula = DC_type )
# correlation energy calculations:
correnerg = 0.5 * (S.G * S.Sigma).total_density()
mpi.report("Corr. energy = %s"%correnerg)
# store the impurity self-energy, GF as well as correlation energy in h5
if (mpi.is_master_node()):
with HDFArchive(HDFfilename,'a') as ar:
ar['iterations'] = itn
ar['chemical_cotential%s'%itn] = chemical_potential
ar['SigmaF'] = S.Sigma
ar['GF'] = S.G
ar['correnerg%s'%itn] = correnerg
ar['DCenerg%s'%itn] = SK.dc_energ
#Save essential SumkDFT data:
things_to_save=['chemical_potential','dc_energ','dc_imp']
SK.save(things_to_save)
# print out occupancy matrix of Ce 4f
# mpi.report("Orbital densities of impurity Green function:")
# for s in dm:
# mpi.report("Block %s: "%s)
# for ii in range(len(dm[s])):
# str = ''
# for jj in range(len(dm[s])):
# if (dm[s][ii,jj].real>0):
# str += " %.4f"%(dm[s][ii,jj].real)
# else:
# str += " %.4f"%(dm[s][ii,jj].real)
# mpi.report(str)
mpi.report("Total charge of impurity problem : %.6f"%S.G.total_density())
# find exact chemical potential
#if (SK.density_required):
# SK.chemical_potential = SK.calc_mu( precision = 0.000001 )
# SK.chemical_potential = SK.calc_mu( precision = 0.01 )
#dN, d = SK.calc_density_correction(filename='GAMMA', dm_type='vasp')
#mpi.report("Trace of Density Matrix: %s"%d)
mpi.report("Storing Hamiltonian correction GAMMA...")
SK.put_Sigma(Sigma_imp=[S.Sigma])
dH = SK.calc_hamiltonian_correction(filename='GAMMA')
# shutil.copyfile('GAMMA', 'it%i.GAMMA'%(itn))
# store correlation energy contribution to be read by Wien2ki and then included to DFT+DMFT total energy
if (mpi.is_master_node()):
with HDFArchive(HDFfilename) as ar:
itn = ar['iterations']
correnerg = ar['correnerg%s'%itn]
DCenerg = ar['DCenerg%s'%itn]
correnerg -= DCenerg[0]
f=open(lda_filename+'.qdmft','a')
f.write("%.16f\n"%correnerg)
f.close()
return corr_energy, dft_dc
if __name__ == '__main__':
dmft_cycle()

View File

@ -1,11 +0,0 @@
*
!.gitignore
!INCAR
!POSCAR
!POTCAR
!KPOINTS
!plo.cfg
!run_plovasp.sh
!conv_example.py
!rotations
!rot_dz2_dx2

View File

@ -1,39 +0,0 @@
ADDGRID = TRUE
ALGO = NORMAL
EDIFF = 0.00001
EDIFFG = -0.01
EMAX = 13.0
EMIN = -3.0
ENCUT = 500
IBRION = -1
ICHARG = 11
ISIF = 2
ISMEAR = -5
ISPIN = 1
ISYM = -1
LASPH = FALSE
LCHARG = TRUE
LDAU = FALSE
LDAUJ = 0 0 0 0 0
LDAUL = 0 2 0 0 0
LDAUTYPE = 2
LDAUU = 0 6.2 0 0 0
LMAXMIX = 6
LORBIT = 0
LREAL = Auto
ROPT = 1e-3 1e-3 1e-3
LWAVE = FALSE
NEDOS = 1001
NELM = 100
NELMDL = -9
NELMIN = 5
NPAR = 4
NSIM = 1
NSW = 0
POTIM = 0.1
PREC = Accurate
SIGMA = 0.05
SMASS = 0.5
SYMPREC = 1.0e-12
LOCPROJ = 5 6 7 8 : d : Hy

View File

@ -1,4 +0,0 @@
Automatic kpoint scheme
0
Gamma
5 5 3

View File

@ -1,28 +0,0 @@
LuNiO3, exp. low-T
1.0
5.1234998703 0.0000000000 0.0000000000
0.0000000000 5.5089001656 0.0000000000
-0.0166880521 0.0000000000 7.3551808822
Lu Ni O
4 4 12
Direct
0.977199972 0.077000000 0.252999991
0.022800028 0.922999978 0.746999979
0.522800028 0.577000022 0.247000009
0.477199972 0.423000008 0.753000021
0.500000000 0.000000000 0.000000000
0.000000000 0.500000000 0.500000000
0.500000000 0.000000000 0.500000000
0.000000000 0.500000000 0.000000000
0.110100001 0.462700009 0.244100004
0.889899969 0.537299991 0.755900025
0.389899999 0.962700009 0.255899996
0.610100031 0.037299991 0.744099975
0.693300009 0.313699991 0.053900000
0.306699991 0.686300039 0.946099997
0.806699991 0.813699961 0.446099997
0.193300009 0.186300009 0.553900003
0.185100004 0.201600000 0.943799973
0.814899981 0.798399985 0.056200027
0.314899981 0.701600015 0.556200027
0.685100019 0.298399985 0.443799973

File diff suppressed because it is too large Load Diff

View File

@ -1,12 +0,0 @@
[General]
DOSMESH = 401
[Shell 1]
EWINDOW = -8.6 2.7
#EWINDOW = -0.6 2.7
LSHELL = 2
IONS = 5..8
NORMION = True
TRANSFILE = rotations
#TRANSFILE = rot_dz2_dx2
NORMALIZE = True

View File

@ -1,18 +0,0 @@
# Rotations to the local frames
# Atom 1, Euler angles: 44.57639968 16.85783381 -11.27701880
0.02793493813 -0.09400347991 0.87385177595 -0.47142545676 0.06726141074
-0.87830274777 -0.28356545426 0.00107688253 0.06072810673 0.38011294872
# Atom 2, Euler angles: 47.67919913 16.85783423 11.27702026
-0.02793494291 0.09400349403 0.87385176987 -0.47142546468 0.06726141256
-0.84565748799 -0.27808790765 -0.00680142052 -0.08187952499 -0.44808482755
# Atom 3, Euler angles:-133.92682764 17.32502138 165.73386489
0.03668336697 0.12133769713 0.86698007031 0.47720500874 0.06747170631
-0.85519672598 0.29102955535 -0.00287628125 -0.06301365234 0.42421853379
# Atom 4, Euler angles:-135.60182669 17.32502172 -165.73386378
-0.03668337098 -0.12133770845 0.86698006522 0.47720501465 0.06747170748
-0.84809293709 0.29001625337 0.00161325481 0.06758002057 -0.43824568573

View File

@ -1,30 +0,0 @@
# Rotations to the local frames
# Atom 1, Euler angles: 44.57639968 16.85783381 -11.27701880
0.38045444863 0.05847209742 0.07282374934 0.27130935338 0.87916060116
-0.26548421431 0.78270891327 0.33738843326 0.43922773606 -0.10066245585
0.02793493813 -0.09400347991 0.87385177595 -0.47142545676 0.06726141074
0.11214484811 -0.54286439359 0.34241445738 0.71241867354 -0.26064104853
-0.87830274777 -0.28356545426 0.00107688253 0.06072810673 0.38011294872
# Atom 2, Euler angles: 47.67919913 16.85783423 11.27702026
-0.44835779602 -0.08059449489 0.07251344244 0.26569233153 0.84653954413
-0.10160916307 0.51163832768 0.35542791179 0.72915358208 -0.26440093208
-0.02793494291 0.09400349403 0.87385176987 -0.47142546468 0.06726141256
0.26969226294 -0.80346823694 0.32365046757 0.41084840677 -0.09032628101
-0.84565748799 -0.27808790765 -0.00680142052 -0.08187952499 -0.44808482755
# Atom 3, Euler angles:-133.92682764 17.32502138 165.73386489
0.42474364412 -0.05919623743 0.07674521204 -0.27806951500 0.85608186496
0.27929719729 0.78784591591 -0.35463192502 0.41101628718 0.08120158747
0.03668336697 0.12133769713 0.86698007031 0.47720500874 0.06747170631
-0.09422739956 -0.52571244938 -0.34158989281 0.72252862625 0.27571062205
-0.85519672598 0.29102955535 -0.00287628125 -0.06301365234 0.42421853379
# Atom 4, Euler angles:-135.60182669 17.32502172 -165.73386378
-0.43875616246 0.06397634469 0.07678214913 -0.27699516110 0.84898659561
0.09192658044 0.51921347838 -0.34449569877 0.72588538389 0.27636930122
-0.03668337098 -0.12133770845 0.86698006522 0.47720501465 0.06747170748
-0.28006291089 -0.79214400488 -0.35180986204 0.40505852046 0.07893071297
-0.84809293709 0.29001625337 0.00161325481 0.06758002057 -0.43824568573

View File

@ -1,2 +0,0 @@
PLOVASP_PATH=/path/to/triqs1.2/applications/dft_tools/src
PYTHONPATH=$PLOVASP_PATH/python:$PLOVASP_PATH/c:$PYTHONPATH pytriqs $PLOVASP_PATH/python/converters/plovasp/main.py $@

View File

@ -1,7 +0,0 @@
*
!example.cfg
!INCAR
!KPOINTS
!POSCAR
!POTCAR
!conv_example.py

View File

@ -1,42 +0,0 @@
ADDGRID = TRUE
ALGO = NORMAL
EDIFF = 0.00001
EDIFFG = -0.002
EMAX = 13.0
EMIN = -2.0
ENCUT = 550
ENAUG = 1100
IBRION = -1
ICHARG = 11
ISIF = 4
ISMEAR = -5
ISPIN = 1
ISYM = -1
LASPH = TRUE
LCHARG = TRUE
LDAU = False
LDAUJ = 0 1.0 0 0 0
LDAUL = -1 2 -1
LDAUTYPE = 1
LDAUU = 0 5.0 0 0 0
LDAUPRINT = 1
LMAXMIX = 6
LORBIT = 0
LREAL = False
ROPT = 1e-3 1e-3 1e-3
LWAVE = FALSE
NBANDS = 16
NEDOS = 501
NELM = 100
NELMDL = -7
NELMIN = 7
NPAR = 4
NSIM = 8
NSW = 0
POTIM = 0.4
PREC = Accurate
SIGMA = 0.1
SMASS = 0.5
SYMPREC = 1.0e-6
LOCPROJ = 1 : d : Hy

View File

@ -1,4 +0,0 @@
Automatic kpoint scheme
0
Gamma
2 2 2

View File

@ -1,10 +0,0 @@
V SF test
2.9878
-0.5 0.5 0.5
0.5 -0.5 0.5
0.5 0.5 -0.5
V
1
Direct
0.0 0.0 0.0

File diff suppressed because it is too large Load Diff

View File

@ -1,7 +0,0 @@
from vasp_converter import VaspConverter
if __name__ == '__main__':
conv = VaspConverter('vasp')
conv.convert_dft_input()

View File

@ -1,7 +0,0 @@
[Shell 1]
LSHELL = 2
IONS = 1
EWINDOW = -15.0 5.0

View File

@ -1,9 +0,0 @@
*
!.gitignore
!INCAR
!POSCAR
!POTCAR
!KPOINTS
!plo.cfg
!run_plovasp.sh
!conv_example.py

View File

@ -1,43 +0,0 @@
ADDGRID = TRUE
ALGO = NORMAL
EDIFF = 0.00001
EDIFFG = -0.002
EMAX = 13.0
EMIN = -2.0
ENCUT = 550
ENAUG = 1100
IBRION = -1
ICHARG = 11
ISIF = 4
ISMEAR = -5
ISPIN = 1
ISYM = -1
LASPH = TRUE
LCHARG = TRUE
LDAU = False
LDAUJ = 0 1.0 0 0 0
LDAUL = -1 2 -1
LDAUTYPE = 1
LDAUU = 0 5.0 0 0 0
LDAUPRINT = 1
LMAXMIX = 6
LORBIT = 0
LREAL = False
ROPT = 1e-3 1e-3 1e-3
LWAVE = FALSE
NBANDS = 32
NEDOS = 501
NELM = 100
NELMDL = -7
NELMIN = 7
NPAR = 1
NSIM = 8
NSW = 0
POTIM = 0.4
PREC = Accurate
SIGMA = 0.1
SMASS = 0.5
SYMPREC = 1.0e-6
# Projectors
LOCPROJ = 2 : d : Hy

View File

@ -1,4 +0,0 @@
Automatic kpoint scheme
0
Gamma
3 3 3

View File

@ -1,13 +0,0 @@
SrVO3
3.841
1.0000000000000000 0.0000000000000000 0.0000000000000000
0.0000000000000000 1.0000000000000000 0.0000000000000000
0.0000000000000000 0.0000000000000000 1.0000000000000000
Sr V O
1 1 3
Direct
0.5 0.5 0.5
0.0 0.0 0.0
0.5 0.0 0.0
0.0 0.5 0.0
0.0 0.0 0.5

File diff suppressed because it is too large Load Diff

View File

@ -1,51 +0,0 @@
import numpy as np
from pytriqs.gf import *
#from sumk_dft import SumkDFT
from sumk_dft_tools import SumkDFTTools
from converters.vasp_converter import VaspConverter
np.set_printoptions(suppress=True)
def density_matrix_and_overlap(sk):
glist = [GfImFreq(indices=inds,beta=1000.0) for bl, inds in sk.gf_struct_sumk[0]]
sigma = BlockGf(name_list=[bl for bl, inds in sk.gf_struct_sumk[0]], block_list=glist)
sigma.zero()
sk.put_Sigma(Sigma_imp=[sigma])
print "Overlap matrix:"
dm_blocks = sk.check_projectors()
print dm_blocks[0].real
sk.calc_mu(precision=0.001)
print
print "Denisty matrix:"
dm_blocks = sk.density_matrix(method='using_gf', beta=1000.0)
ntot = 0.0
for bl in dm_blocks[0]:
print
print bl
print dm_blocks[0][bl].real
ntot += dm_blocks[0][bl].real.trace()
print
print " Impurity density:", ntot
def density_of_states(sk):
glist = [GfReFreq(indices=inds, window=(-10.0, 10.0), n_points=2000) for bl, inds in sk.gf_struct_sumk[0]]
sigma = BlockGf(name_list=[bl for bl, inds in sk.gf_struct_sumk[0]], block_list=glist)
sigma.zero()
sk.put_Sigma(Sigma_imp=[sigma])
print " Evaluating DOS..."
sk.dos_wannier_basis(broadening=0.03, with_dc=False)
if __name__ == '__main__':
conv = VaspConverter('vasp')
conv.convert_dft_input()
sk = SumkDFTTools(hdf_file='vasp.h5')
density_matrix_and_overlap(sk)
# density_of_states(sk)

View File

@ -1,16 +0,0 @@
[General]
DOSMESH = -3.0 5.0 4001
[Group 1]
SHELLS = 1
NORMALIZE = True
EWINDOW = -1.45 1.8
[Shell 1]
LSHELL = 2
IONS = 2
TRANSFORM = 1.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0

View File

@ -1,2 +0,0 @@
PLOVASP_PATH=/path/to/triqs1.2/applications/dft_tools/src
PYTHONPATH=$PLOVASP_PATH/python:$PLOVASP_PATH/c:$PYTHONPATH pytriqs $PLOVASP_PATH/python/converters/plovasp/main.py $@

View File

@ -1,42 +0,0 @@
ADDGRID = TRUE
ALGO = NORMAL
EDIFF = 0.00001
EDIFFG = -0.002
EMAX = 13.0
EMIN = -2.0
ENCUT = 550
ENAUG = 1100
IBRION = -1
ICHARG = 11
ISIF = 4
ISMEAR = -5
ISPIN = 1
ISYM = -1
LASPH = TRUE
LCHARG = TRUE
LDAU = False
LDAUJ = 0 1.0 0 0 0
LDAUL = -1 2 -1
LDAUTYPE = 1
LDAUU = 0 5.0 0 0 0
LDAUPRINT = 1
LMAXMIX = 6
LORBIT = 0
LREAL = False
ROPT = 1e-3 1e-3 1e-3
LWAVE = FALSE
NBANDS = 32
NEDOS = 501
NELM = 100
NELMDL = -7
NELMIN = 7
NPAR = 4
NSIM = 8
NSW = 0
POTIM = 0.4
PREC = Accurate
SIGMA = 0.1
SMASS = 0.5
SYMPREC = 1.0e-6
LOCPROJ = 1 2 : d : Hy

View File

@ -1,4 +0,0 @@
Automatic kpoint scheme
0
Gamma
2 2 2

View File

@ -1,11 +0,0 @@
V SF test
2.9878
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0
V
2
Direct
0.0 0.0 0.0
0.5 0.5 0.5

File diff suppressed because it is too large Load Diff

View File

@ -1,7 +0,0 @@
[Shell 1]
LSHELL = 2
IONS = 1
EWINDOW = -15.0 5.0