mirror of
https://github.com/triqs/dft_tools
synced 2024-12-22 20:34:38 +01:00
Added Tutorial fro basis rotations: Sr2MgOsO6 w/o SOC
This commit is contained in:
parent
ec2184259e
commit
c1fdfd1d8f
@ -1,19 +1,121 @@
|
||||
# Conversion:
|
||||
# Import the modules:
|
||||
from triqs_dft_tools.sumk_dft import *
|
||||
from pytriqs.gf import *
|
||||
from pytriqs.archive import HDFArchive
|
||||
from pytriqs.operators.util import *
|
||||
from pytriqs.operators.util.U_matrix import *
|
||||
from triqs_cthyb import *
|
||||
import pytriqs.utility.mpi as mpi
|
||||
|
||||
# Convert the input
|
||||
from triqs_dft_tools.converters.wien2k_converter import *
|
||||
Converter = Wien2kConverter(filename = "Sr2MgOsO6_noSOC")
|
||||
Converter.convert_dft_input()
|
||||
|
||||
import numpy
|
||||
numpy.set_printoptions(precision=3, suppress=True)
|
||||
# Init the SumK class:
|
||||
filename = 'Sr2MgOsO6_noSOC.h5'
|
||||
SK = SumkDFT(hdf_file=filename,use_dft_blocks=True)
|
||||
|
||||
# Set up SK class:
|
||||
from triqs_dft_tools.sumk_dft import *
|
||||
SK = SumkDFT(hdf_file='Sr2MgOsO6.h5',use_dft_blocks=True)
|
||||
# Find diagonal local basis set:
|
||||
SK.calculate_diagonalization_matrix(prop_to_be_diagonal='eal',calc_in_solver_blocks=True)
|
||||
|
||||
eal = SK.eff_atomic_levels()
|
||||
###########################
|
||||
# Now we pick the orbitals:
|
||||
# BE CAREFUL: THIS NEEDS TO BE DONE PROPERLY
|
||||
# AND IS DIFFERENT FORM CASE TO CASE!
|
||||
indices_to_pick_sumk = [1,3,4]
|
||||
SK.block_structure.pick_gf_struct_solver([{'up_1': [0],'up_2': [0],'up_3': [0],'down_1': [0],'down_2': [0],'down_3': [0]}])
|
||||
###########################
|
||||
|
||||
mat = SK.calculate_diagonalization_matrix(prop_to_be_diagonal='eal')
|
||||
# Now we set up the U matrix, first in cubic (Wien2k) convention:
|
||||
U = 2.0
|
||||
J = 0.2
|
||||
U_mat = U_matrix(l=2,U_int=U,J_hund=J,basis='other', T=SK.T[0].conjugate())
|
||||
|
||||
# Now we transform the U Matrix:
|
||||
U_trans = transform_U_matrix(U_mat, SK.block_structure.transformation[0]['up'].conjugate())
|
||||
# pick out the relevant orbitals:
|
||||
U_red = subarray(U_trans,len(U_trans.shape)*[indices_to_pick_sumk])
|
||||
|
||||
# Finally, set up the Hamiltonian:
|
||||
h_int = h_int_slater(['up','down'], indices_to_pick_sumk, U_red, map_operator_structure=SK.block_structure.sumk_to_solver[0], off_diag=False, complex=False)
|
||||
|
||||
# Solver Init:
|
||||
beta = 40.0
|
||||
S = Solver(beta=beta, gf_struct=SK.block_structure.gf_struct_solver_list[0])
|
||||
|
||||
# Solver parameters:
|
||||
p = {}
|
||||
# solver
|
||||
p["random_seed"] = 123 * mpi.rank + 567
|
||||
p["length_cycle"] = 200
|
||||
p["n_warmup_cycles"] = 100000
|
||||
p["n_cycles"] = 1000000
|
||||
# tail fit
|
||||
p["perform_tail_fit"] = True
|
||||
p["fit_max_moment"] = 4
|
||||
p["fit_min_n"] = 30
|
||||
p["fit_max_n"] = 70
|
||||
|
||||
# double counting correction:
|
||||
dc_type = 0 # FLL
|
||||
# DMFT loops:
|
||||
n_loops = 1
|
||||
|
||||
#for first iteration, add the outout group:
|
||||
if mpi.is_master_node():
|
||||
with HDFArchive(filename) as ar:
|
||||
if (not ar.is_group('dmft_output')):
|
||||
ar.create_group('dmft_output')
|
||||
|
||||
for iteration_number in range(1,n_loops+1):
|
||||
|
||||
mpi.report("Iteration = %s"%iteration_number)
|
||||
|
||||
SK.symm_deg_gf(S.Sigma_iw) # symmetrizing Sigma
|
||||
SK.set_Sigma([ S.Sigma_iw ]) # put Sigma into the SumK class
|
||||
chemical_potential = SK.calc_mu( precision = 0.01 ) # find the chemical potential for given density
|
||||
S.G_iw << SK.extract_G_loc()[0]
|
||||
|
||||
if (iteration_number==1):
|
||||
# Put Hartree energy on Re Sigma
|
||||
dm = S.G_iw.density()
|
||||
SK.calc_dc(dm, U_interact = U, J_hund = J, orb = 0, use_dc_formula = dc_type)
|
||||
S.Sigma_iw << SK.block_structure.convert_matrix(SK.dc_imp[0],space_from='sumk',space_to='solver')['up_1'][0,0]
|
||||
|
||||
mpi.report("Orbital densities of local Green function :")
|
||||
for s,gf in S.G_iw:
|
||||
mpi.report("Orbital %s: %s"%(s,dm[s].real))
|
||||
mpi.report("Total charge of Gloc : %.6f"%S.G_iw.total_density().real)
|
||||
|
||||
# Calculate new G0_iw to input into the solver:
|
||||
S.G0_iw << S.Sigma_iw + inverse(S.G_iw)
|
||||
S.G0_iw << inverse(S.G0_iw)
|
||||
|
||||
# Solve the impurity problem:
|
||||
S.solve(h_int=h_int, **p)
|
||||
|
||||
# Solved. Now do post-solution stuff:
|
||||
dm = S.G_iw.density()
|
||||
mpi.report("Orbital densities of impurity Green function:")
|
||||
for s,gf in S.G_iw:
|
||||
mpi.report("Orbital %s: %s"%(s,dm[s].real))
|
||||
mpi.report("Total charge of impurity problem : %.6f"%S.G_iw.total_density().real)
|
||||
|
||||
# Write the final Sigma and G to the hdf5 archive:
|
||||
if mpi.is_master_node():
|
||||
with HDFArchive(filename) as ar:
|
||||
ar['dmft_output']['iterations'] = iteration_number
|
||||
ar['dmft_output']['G_0'] = S.G0_iw
|
||||
ar['dmft_output']['G_tau'] = S.G_tau
|
||||
ar['dmft_output']['G_iw'] = S.G_iw
|
||||
ar['dmft_output']['Sigma_iw_%s'%iteration_number] = S.Sigma_iw
|
||||
|
||||
# Set the new double counting:
|
||||
dm = S.G_iw.density() # compute the density matrix of the impurity problem
|
||||
SK.calc_dc(dm, U_interact = U, J_hund = J, orb = 0, use_dc_formula = dc_type)
|
||||
|
||||
# Save stuff into the user_data group of hdf5 archive in case of rerun:
|
||||
SK.save(['chemical_potential','dc_imp','dc_energ'])
|
||||
|
||||
|
||||
|
BIN
doc/tutorials/images_scripts/Sr2MgOsO6_noSOC_Sigmas.png
Normal file
BIN
doc/tutorials/images_scripts/Sr2MgOsO6_noSOC_Sigmas.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 76 KiB |
@ -40,7 +40,7 @@ As a next step, we calculate localised orbitals for the d orbitals. We use this
|
||||
|
||||
.. literalinclude:: images_scripts/Sr2MgOsO6_noSOC.indmftpr
|
||||
|
||||
Note that, due to the distortions in the crystal structure, we need to include all five d orbitals in the calculation (line 8 in the input file above).
|
||||
Note that, due to the distortions in the crystal structure, we need to include all five d orbitals in the calculation (line 8 in the input file above). The projection window is set such that all d orbitals are included.
|
||||
|
||||
To prepare the input data for :program:`dmftproj` we execute lapw2 with the `-almd` option ::
|
||||
|
||||
@ -69,6 +69,9 @@ This reads all the data, and stores everything that is necessary for the DMFT ca
|
||||
The DMFT calculation
|
||||
====================
|
||||
|
||||
Rotating the basis
|
||||
------------------
|
||||
|
||||
Before starting the DMFT calculation it is beneficial to look a bit more closely at the block structure of the problem. Eventually, we want to use a basis that is as diagonal as possible, and include only the partially filled orbitals in the correlated problem. All this can be done using the functionalities of the :class:`BlockStructure <dft.block_structure.BlockStructure>` class, see section :ref:`blockstructure`.
|
||||
|
||||
We first initialise the SumK class::
|
||||
@ -90,9 +93,9 @@ We can look at the diagonalisation matrix, it is::
|
||||
[ 0. +0.j 0. +0.j 0. +0.j 0. +0.j 1. +0.j ]]
|
||||
>>>
|
||||
|
||||
This transformation is already stored in the SK.block_structure class. The next step is actually not needed for a DMFT calculation, but lets see what the transformation does to the local Hamiltonian. We can calculate it before rotation, rotate it, and look at the 2x2 block with off-diagonals::
|
||||
This transformation is already stored in the SK.block_structure class. The next step is actually not needed for a DMFT calculation, but it is good to do this check to see what the transformation does to the local Hamiltonian. We can calculate it before rotation, rotate it, and look at the 2x2 block with and without off-diagonals::
|
||||
|
||||
eal = SK.eff_atomnic_levels()
|
||||
eal = SK.eff_atomic_levels()
|
||||
eal2 = SK.block_structure.convert_matrix(eal[0],space_from='sumk', space_to='solver')
|
||||
|
||||
print eal[0]['up'][1:3,1:3] # prints the 2x2 block with offiagonals
|
||||
@ -104,6 +107,106 @@ This transformation is already stored in the SK.block_structure class. The next
|
||||
[0. -0.j 5.028+0.j]]
|
||||
|
||||
So the local Hamiltonian has been diagonalised. From the other entries we can see that the *up_0* block and the [1,1] entry of the *up_1* block correspond to :math:`e_g`-like orbitals, and the others are the
|
||||
:math:`t_{2g}` orbitals that we want to keep.
|
||||
:math:`t_{2g}` orbitals that we want to keep. So we pick the according orbitals in the block structure::
|
||||
|
||||
[TO BE CONTINUED...]
|
||||
SK.block_structure.pick_gf_struct_solver([{'up_1': [0],'up_2': [0],'up_3': [0],'down_1': [0],'down_2': [0],'down_3': [0]}])
|
||||
|
||||
We can now look at the final result::
|
||||
|
||||
print SK.block_structure.convert_matrix(eal[0],space_from='sumk',space_to='solver')
|
||||
{'up_2': array([[0.156-0.j]]), 'up_3': array([[0.156-0.j]]), 'up_1': array([[0.247-0.j]]), 'down_3': array([[0.156-0.j]]), 'down_2': array([[0.156-0.j]]), 'down_1': array([[0.247-0.j]])}
|
||||
|
||||
We see that we arrived at a structure with 3 orbitals per spin only, and blocks of size 1x1.
|
||||
|
||||
The interaction Hamiltonian
|
||||
---------------------------
|
||||
|
||||
We now set up the interaction Hamiltonian. Since we want to rotate the interaction matrix into the local basis, we are using the Slater convention for it::
|
||||
|
||||
from pytriqs.operators.util import *
|
||||
from pytriqs.operators.util.U_matrix import *
|
||||
|
||||
U = 2.0
|
||||
J = 0.2
|
||||
U_mat = U_matrix(l=2,U_int=U,J_hund=J,basis='other', T=SK.T[0].conjugate())
|
||||
|
||||
In the last line we use the Wien2k convention to write the U matrix in the cubic harmonics. Next, we want to rotate it, and pick out only the relevant :math:`t_{2g}` orbitals. At this step we need to give the indices of the wanted orbitals in the *sumk* basis::
|
||||
|
||||
U_trans = transform_U_matrix(U_mat, SK.block_structure.transformation[0]['up'].conjugate())
|
||||
indices_to_pick_sumk = [1,3,4] # these are the relevant indices in the sumk basis
|
||||
U_red = subarray(U_trans,len(U_trans.shape)*[indices_to_pick_sumk])
|
||||
h_int = h_int_slater(['up','down'], indices_to_pick_sumk, U_red, map_operator_structure=SK.block_structure.sumk_to_solver[0], off_diag=False, complex=False)
|
||||
|
||||
Now we have the interaction Hamiltonian for the solver, which we set up next::
|
||||
|
||||
from triqs_cthyb import *
|
||||
import pytriqs.utility.mpi as mpi
|
||||
|
||||
beta = 40.0
|
||||
S = Solver(beta=beta, gf_struct=SK.block_structure.gf_struct_solver_list[0])
|
||||
|
||||
# Solver parameters:
|
||||
p = {}
|
||||
# solver
|
||||
p["random_seed"] = 123 * mpi.rank + 567
|
||||
p["length_cycle"] = 200
|
||||
p["n_warmup_cycles"] = 100000
|
||||
p["n_cycles"] = 1000000
|
||||
# tail fit
|
||||
p["perform_tail_fit"] = True
|
||||
p["fit_max_moment"] = 4
|
||||
p["fit_min_n"] = 40
|
||||
p["fit_max_n"] = 100
|
||||
|
||||
|
||||
The DMFT loop with automatic basis rotations
|
||||
--------------------------------------------
|
||||
|
||||
After these initialisation steps, the formal DMFT cycle is very similar to a calculation without these basis rotations, since these rotations are done automatically, once the :class:`BlockStructure` property *transformation* is set, see :ref:`basisrotation`.
|
||||
|
||||
The DMFT loop itself looks very much the same as in :ref:`SrVO3`::
|
||||
|
||||
# double counting correction:
|
||||
dc_type = 0 # FLL
|
||||
# DMFT loops:
|
||||
n_loops = 1
|
||||
|
||||
for iteration_number in range(1,n_loops+1):
|
||||
|
||||
mpi.report("Iteration = %s"%iteration_number)
|
||||
|
||||
SK.symm_deg_gf(S.Sigma_iw) # symmetrizing Sigma
|
||||
SK.set_Sigma([ S.Sigma_iw ]) # put Sigma into the SumK class
|
||||
chemical_potential = SK.calc_mu( precision = 0.01 ) # find the chemical potential for given density
|
||||
S.G_iw << SK.extract_G_loc()[0]
|
||||
|
||||
if (iteration_number==1):
|
||||
# Put Hartree energy on Re Sigma
|
||||
dm = S.G_iw.density()
|
||||
SK.calc_dc(dm, U_interact = U, J_hund = J, orb = 0, use_dc_formula = dc_type)
|
||||
S.Sigma_iw << SK.block_structure.convert_matrix(SK.dc_imp[0],space_from='sumk',space_to='solver')['up_1'][0,0]
|
||||
|
||||
# Calculate new G0_iw to input into the solver:
|
||||
S.G0_iw << S.Sigma_iw + inverse(S.G_iw)
|
||||
S.G0_iw << inverse(S.G0_iw)
|
||||
|
||||
# Solve the impurity problem:
|
||||
S.solve(h_int=h_int, **p)
|
||||
|
||||
# Solved. Now do post-solution stuff:
|
||||
# Set the new double counting:
|
||||
dm = S.G_iw.density() # compute the density matrix of the impurity problem
|
||||
SK.calc_dc(dm, U_interact = U, J_hund = J, orb = 0, use_dc_formula = dc_type)
|
||||
|
||||
# Save stuff into the user_data group of hdf5 archive in case of rerun:
|
||||
SK.save(['chemical_potential','dc_imp','dc_energ'])
|
||||
|
||||
The only difference to the other example is in the initialisation of the real part of the self energy. We cannot just take an element of the *dc_imp* array, since this array is stored in the *sumk* structure. Therefore, we first need to transform this matrix into *solver* space, and then take the appropriate matrix element. After the first iteration (here done with 24e6 MC sweeps), you should get self energies like this:
|
||||
|
||||
.. image:: images_scripts/Sr2MgOsO6_noSOC_Sigmas.png
|
||||
:width: 600
|
||||
:align: center
|
||||
|
||||
The two :math:`d_{xz}` and :math:`d_{yz}` orbitals are degenerate (blocks *up_2* and *up_3*), whereas the :math:`d_{xy}`-like orbital is different.
|
||||
|
||||
A complete python script for this tutorial, including some more input/output, is available (:download:`Sr2MgOsO6_noSOC.py <images_scripts/Sr2MgOsO6_noSOC.py>`). When running the script, you will encounter warnings during the transformation from the *sumk* to the *solver* basis. These warnings just reflect that the off-diagonal elements of the full Greens function are not zero at all frequencies, although the local Hamiltonian is. In that sense, we still do an approximation when restricting ourselves to the :math:`t_{2g}`-like orbitals.
|
Loading…
Reference in New Issue
Block a user