mirror of
https://github.com/triqs/dft_tools
synced 2025-01-08 20:33:16 +01:00
Merge branch 'gernotsandmychanges' into HEAD
This commit is contained in:
commit
b9a20200ca
@ -33,6 +33,8 @@ DFT+DMFT
|
||||
|
||||
guide/dftdmft_singleshot
|
||||
guide/dftdmft_selfcons
|
||||
guide/Sr2RuO4
|
||||
guide/BasisRotation
|
||||
|
||||
Postprocessing
|
||||
--------------
|
||||
|
76
doc/guide/BasisRotation.rst
Normal file
76
doc/guide/BasisRotation.rst
Normal file
@ -0,0 +1,76 @@
|
||||
.. _plovasp:
|
||||
|
||||
Numerical Treatment of the Sign-Problem: Basis Rotations
|
||||
=======
|
||||
|
||||
When performing calculations with off-diagonal complex hybridisation or local Hamiltonian, one is
|
||||
often limited by the fermionic sign-problem. However, as the sign is no
|
||||
physical observable, one can try to improve the calculation by rotating
|
||||
to another basis.
|
||||
|
||||
While the choice of basis to perform the calculation in can be chosen
|
||||
arbitrarily, two choices which have shown good results are the basis
|
||||
which diagonalizes the local Hamiltonian or the density matrix of then
|
||||
system.
|
||||
|
||||
The transformation matrix can be stored in the :class:`BlockStructure` and the
|
||||
transformation is automatically performed when using :class:`SumkDFT`'s :meth:`extract_G_loc`
|
||||
and :meth:`put_Sigma` (see below).
|
||||
|
||||
|
||||
Finding the Transformation Matrix
|
||||
-----------------
|
||||
|
||||
The :class:`TransBasis` class offers a simple mehod to calculate the transformation
|
||||
matrices to a basis where either the local Hamiltonian or the density matrix
|
||||
is diagonal::
|
||||
|
||||
from triqs_dft_tools.trans_basis import TransBasis
|
||||
TB = TransBasis(SK)
|
||||
TB.calculate_diagonalisation_matrix(prop_to_be_diagonal='eal', calc_in_solver_blocks = True)
|
||||
|
||||
SK.block_structure.transformation = [{'ud':TB.w}]
|
||||
|
||||
|
||||
|
||||
Transforming Green's functions manually
|
||||
-----------------
|
||||
|
||||
One can transform Green's functions manually using the :meth:`convert_gf` method::
|
||||
|
||||
# Rotate a Green's function from solver-space to sumk-space
|
||||
new_gf = block_structure.convert_gf(old_gf, space_from='solver', space_to='sumk')
|
||||
|
||||
|
||||
|
||||
Automatic transformation during the DMFT loop
|
||||
-----------------
|
||||
|
||||
During a DMFT loop one is switching back and forth between Sumk-Space and Solver-Space
|
||||
in each iteration. Once the block_structure.transformation property is set, this can be
|
||||
done automatically::
|
||||
|
||||
for it in range(iteration_offset, iteration_offset + n_iterations):
|
||||
# every GF is in solver space here
|
||||
S.G0_iw << inverse(S.Sigma_iw + inverse(S.G_iw))
|
||||
|
||||
# solve the impurity in solver space -> hopefully better sign
|
||||
S.solve(h_int = H, **p)
|
||||
|
||||
# calc_dc(..., transform = True) by default
|
||||
SK.calc_dc(S.G_iw.density(), U_interact=U, J_hund=J, orb=0, use_dc_formula=DC_type)
|
||||
|
||||
# put_Sigma(..., transform_to_sumk_blocks = True) by default
|
||||
SK.put_Sigma([S.Sigma_iw])
|
||||
|
||||
SK.calc_mu()
|
||||
|
||||
# extract_G_loc(..., transform_to_solver_blocks = True) by default
|
||||
S.G_iw << SK.extract_G_loc()[0]
|
||||
|
||||
.. warning::
|
||||
One must not forget to also transform the interaction Hamiltonian to the diagonal basis!
|
||||
This can be done with the :meth:`transform_U_matrix` method. However, due to different
|
||||
conventions in this method, one must pass the conjugated version of the transformation matrix::
|
||||
|
||||
U_trans = transform_U_matrix(U, SK.block_structure.transformation[0]['ud'].conjugate())
|
40
doc/guide/Sr2RuO4.rst
Normal file
40
doc/guide/Sr2RuO4.rst
Normal file
@ -0,0 +1,40 @@
|
||||
.. _Sr2RuO4:
|
||||
|
||||
Spin-orbit coupled calculations (single-shot)
|
||||
=============================================
|
||||
|
||||
There are two main ways of including the spin-orbit coupling (SO) term into
|
||||
DFT+DMFT calculations:
|
||||
|
||||
- by performing a DFT calculation including SO and then doing a DMFT calculation on top, or
|
||||
- by performing a DFT calculation without SO and then adding the SO term on the model level.
|
||||
|
||||
Treatment of SO in DFT
|
||||
----------------------
|
||||
|
||||
For now, TRIQS/DFTTools does only work with Wien2k when performing calculations with SO.
|
||||
Of course, the general Hk framework is also possible.
|
||||
But the way VASP treats SO is fundamentally different to the way Wien2k treats it and the interface does not handle that at the moment.
|
||||
|
||||
Therefore, this guide assumes that Wien2k is being used.
|
||||
|
||||
First, a Wien2k calculation including SO has to be performed.
|
||||
For details, we refer the reader to the documentation of Wien2k.
|
||||
The interface to Wien2k only works when the DFT calculation is done both spin-polarized and with SO (that means that you have to initialize the Wien2k calculation accordingly and then run with ``runsp -sp``).
|
||||
|
||||
Performing the projection
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Note that the final ``x lapw2 -almd -so -up`` and ``x lapw2 -almd -so -dn`` have to be run *on a single core*, which implies that, before, ``x lapw1 -up``, ``x lapw2 -dn``, and ``x lapwso -up`` have to be run in single-core mode (once).
|
||||
|
||||
In the ``case.indmftpr`` file, the spin-orbit flag has to be set to ``1`` for the correlated atoms.
|
||||
For example, for the compound Sr\ :sub:`2`\ RuO\ :sub:`4`, with the struct file :download:`Sr2RuO4.struct <Sr2RuO4/Sr2RuO4.struct>`, we would e.g. use the ``indmftpr`` file :download:`found here <Sr2RuO4/Sr2RuO4.indmftpr>`.
|
||||
Then, ``dmftproj -sp -so`` has to be called.
|
||||
As usual, it is important to check for warnings (e.g., about eigenvalues of the overlap matrix) in the output of ``dmftproj`` and adapt the window until these warnings disappear.
|
||||
|
||||
Note that in presence of SO, it is not possible to project only onto the :math:`t_{2g}` subshell because it is not an irreducible representation.
|
||||
A redesign of the orthonormalization procedure might happen in the long term, which might allow that.
|
||||
|
||||
We strongly suggest using the :py:meth:`.dos_wannier_basis` functionality of the :py:class:`.SumkDFTTools` class (see :download:`calculate_dos_wannier_basis.py <Sr2RuO4/calculate_dos_wannier_basis.py>`) and compare the Wannier-projected orbitals to the original DFT DOS (they should be more or less equal).
|
||||
Note that, with SO, there are usually off-diagonal elements of the spectral function, which can also be imaginary.
|
||||
The imaginary part can be found in the third column of the files ``DOS_wann_...``.
|
17
doc/guide/Sr2RuO4/Sr2RuO4.indmftpr
Normal file
17
doc/guide/Sr2RuO4/Sr2RuO4.indmftpr
Normal file
@ -0,0 +1,17 @@
|
||||
4 ! Nsort
|
||||
2 1 2 2 ! Multiplicities
|
||||
3 ! lmax
|
||||
complex ! Sr
|
||||
0 0 0 0
|
||||
0 0 0 0
|
||||
cubic ! Ru
|
||||
0 0 2 0 ! include d-shell as correlated
|
||||
0 0 0 0 ! there are no irreps with SO
|
||||
1 ! SO-flag
|
||||
complex ! O1
|
||||
0 0 0 0
|
||||
0 0 0 0
|
||||
complex ! O2
|
||||
0 0 0 0
|
||||
0 0 0 0
|
||||
-0.7 1.4 ! energy window (Ry)
|
96
doc/guide/Sr2RuO4/Sr2RuO4.struct
Normal file
96
doc/guide/Sr2RuO4/Sr2RuO4.struct
Normal file
@ -0,0 +1,96 @@
|
||||
Sr2RuO4 s-o calc. M|| 0.00 0.00 1.00
|
||||
B 4 39_I
|
||||
RELA
|
||||
7.300012 7.300012 24.044875 90.000000 90.000000 90.000000
|
||||
ATOM -1: X=0.00000000 Y=0.00000000 Z=0.35240000
|
||||
MULT= 2 ISPLIT=-2
|
||||
-1: X=0.00000000 Y=0.00000000 Z=0.64760000
|
||||
Sr2+ NPT= 781 R0=.000010000 RMT= 2.26000 Z: 38.00000
|
||||
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
|
||||
0.0000000 1.0000000 0.0000000
|
||||
0.0000000 0.0000000 1.0000000
|
||||
ATOM -2: X=0.00000000 Y=0.00000000 Z=0.00000000
|
||||
MULT= 1 ISPLIT=-2
|
||||
Ru4+ NPT= 781 R0=.000010000 RMT= 1.95000 Z: 44.00000
|
||||
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
|
||||
0.0000000 1.0000000 0.0000000
|
||||
0.0000000 0.0000000 1.0000000
|
||||
ATOM -3: X=0.50000000 Y=0.00000000 Z=0.00000000
|
||||
MULT= 2 ISPLIT= 8
|
||||
-3: X=0.00000000 Y=0.50000000 Z=0.00000000
|
||||
O 2- NPT= 781 R0=.000100000 RMT= 1.68000 Z: 8.00000
|
||||
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
|
||||
0.0000000 1.0000000 0.0000000
|
||||
0.0000000 0.0000000 1.0000000
|
||||
ATOM -4: X=0.00000000 Y=0.00000000 Z=0.16350000
|
||||
MULT= 2 ISPLIT=-2
|
||||
-4: X=0.00000000 Y=0.00000000 Z=0.83650000
|
||||
O 2- NPT= 781 R0=.000100000 RMT= 1.68000 Z: 8.00000
|
||||
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
|
||||
0.0000000 1.0000000 0.0000000
|
||||
0.0000000 0.0000000 1.0000000
|
||||
16 NUMBER OF SYMMETRY OPERATIONS
|
||||
0-1 0 0.00000000
|
||||
1 0 0 0.00000000
|
||||
0 0-1 0.00000000
|
||||
1 A 2 so. oper. type orig. index
|
||||
-1 0 0 0.00000000
|
||||
0-1 0 0.00000000
|
||||
0 0-1 0.00000000
|
||||
2 A 3
|
||||
1 0 0 0.00000000
|
||||
0 1 0 0.00000000
|
||||
0 0-1 0.00000000
|
||||
3 A 6
|
||||
0-1 0 0.00000000
|
||||
1 0 0 0.00000000
|
||||
0 0 1 0.00000000
|
||||
4 A 8
|
||||
0 1 0 0.00000000
|
||||
-1 0 0 0.00000000
|
||||
0 0-1 0.00000000
|
||||
5 A 9
|
||||
-1 0 0 0.00000000
|
||||
0-1 0 0.00000000
|
||||
0 0 1 0.00000000
|
||||
6 A 11
|
||||
1 0 0 0.00000000
|
||||
0 1 0 0.00000000
|
||||
0 0 1 0.00000000
|
||||
7 A 14
|
||||
0 1 0 0.00000000
|
||||
-1 0 0 0.00000000
|
||||
0 0 1 0.00000000
|
||||
8 A 15
|
||||
1 0 0 0.00000000
|
||||
0-1 0 0.00000000
|
||||
0 0-1 0.00000000
|
||||
9 B 1
|
||||
0 1 0 0.00000000
|
||||
1 0 0 0.00000000
|
||||
0 0-1 0.00000000
|
||||
10 B 4
|
||||
0-1 0 0.00000000
|
||||
-1 0 0 0.00000000
|
||||
0 0-1 0.00000000
|
||||
11 B 5
|
||||
1 0 0 0.00000000
|
||||
0-1 0 0.00000000
|
||||
0 0 1 0.00000000
|
||||
12 B 7
|
||||
-1 0 0 0.00000000
|
||||
0 1 0 0.00000000
|
||||
0 0-1 0.00000000
|
||||
13 B 10
|
||||
0 1 0 0.00000000
|
||||
1 0 0 0.00000000
|
||||
0 0 1 0.00000000
|
||||
14 B 12
|
||||
0-1 0 0.00000000
|
||||
-1 0 0 0.00000000
|
||||
0 0 1 0.00000000
|
||||
15 B 13
|
||||
-1 0 0 0.00000000
|
||||
0 1 0 0.00000000
|
||||
0 0 1 0.00000000
|
||||
16 B 16
|
15
doc/guide/Sr2RuO4/calculate_dos_wannier_basis.py
Normal file
15
doc/guide/Sr2RuO4/calculate_dos_wannier_basis.py
Normal file
@ -0,0 +1,15 @@
|
||||
from triqs_dft_tools.converters.wien2k_converter import Wien2kConverter
|
||||
from triqs_dft_tools import SumkDFTTools
|
||||
|
||||
filename = 'Sr2RuO4'
|
||||
|
||||
conv = Wien2kConverter(filename = filename,hdf_filename=filename+'.h5')
|
||||
conv.convert_dft_input()
|
||||
|
||||
SK = SumkDFTTools(filename+'.h5')
|
||||
mesh = (-10.0,10.0,500)
|
||||
SK.dos_wannier_basis(broadening=(mesh[1]-mesh[0])/float(mesh[2]),
|
||||
mesh=mesh,
|
||||
save_to_file=True,
|
||||
with_Sigma=False,
|
||||
with_dc=False)
|
@ -19,4 +19,3 @@ The block structure can also be written to and read from HDF files.
|
||||
.. autoclass:: triqs_dft_tools.block_structure.BlockStructure
|
||||
:members:
|
||||
:show-inheritance:
|
||||
|
||||
|
@ -1,9 +1,36 @@
|
||||
|
||||
##########################################################################
|
||||
#
|
||||
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
#
|
||||
# Copyright (C) 2018 by G. J. Kraberger
|
||||
# Copyright (C) 2018 by Simons Foundation
|
||||
# Authors: G. J. Kraberger, O. Parcollet
|
||||
#
|
||||
# TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
# terms of the GNU General Public License as published by the Free Software
|
||||
# Foundation, either version 3 of the License, or (at your option) any later
|
||||
# version.
|
||||
#
|
||||
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
# details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along with
|
||||
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
##########################################################################
|
||||
|
||||
|
||||
import copy
|
||||
import numpy as np
|
||||
from pytriqs.gf import GfImFreq, BlockGf
|
||||
from ast import literal_eval
|
||||
import pytriqs.utility.mpi as mpi
|
||||
from warnings import warn
|
||||
from collections import defaultdict
|
||||
|
||||
|
||||
class BlockStructure(object):
|
||||
""" Contains information about the Green function structure.
|
||||
@ -36,19 +63,268 @@ class BlockStructure(object):
|
||||
|
||||
maps from the solver block to the sumk block
|
||||
for *inequivalent* correlated shell ish
|
||||
deg_shells : list of lists of lists OR list of lists of dicts
|
||||
In the simple format, ``deg_shells[ish][grp]`` is a list of
|
||||
block names; ``ish`` is the index of the inequivalent correlated shell,
|
||||
``grp`` is the index of the group of symmetry-related blocks.
|
||||
When the name of two blocks is in the same group, that means that
|
||||
these two blocks are the same by symmetry.
|
||||
|
||||
In the more general format, ``deg_shells[ish][grp]`` is a
|
||||
dictionary whose keys are the block names that are part of the
|
||||
group. The values of the dict for each key are tuples ``(v, conj)``,
|
||||
where ``v`` is a transformation matrix with the same matrix dimensions
|
||||
as the block and ``conj`` is a bool (whether or not to conjugate).
|
||||
Two blocks with ``v_1, conj_1`` and ``v_2, conj_2`` being in the same
|
||||
symmetry group means that
|
||||
|
||||
.. math::
|
||||
|
||||
C_1(v_1^\dagger G_1 v_1) = C_2(v_2^\dagger G_2 v_2),
|
||||
|
||||
where the :math:`G_i` are the Green's functions of the block,
|
||||
and the functions :math:`C_i` conjugate their argument if the bool
|
||||
``conj_i`` is ``True``.
|
||||
corr_to_inequiv : list
|
||||
a list where, for each correlated shell, the index of the corresponding
|
||||
inequivalent correlated shell is given
|
||||
transformation : list of numpy.array or list of dict
|
||||
a list with entries for each ``ish`` giving transformation matrices
|
||||
that are used on the Green's function in ``sumk`` space when before
|
||||
converting to the ``solver`` space
|
||||
Up to the change in block structure,
|
||||
|
||||
.. math::
|
||||
|
||||
G_{solver} = T G_{sumk} T^\dagger
|
||||
|
||||
if :math:`T` is the ``transformation`` of that particular shell.
|
||||
|
||||
Note that for each shell this can either be a numpy array which
|
||||
applies to all blocks or a dict with a transformation matrix for
|
||||
each block.
|
||||
"""
|
||||
def __init__(self,gf_struct_sumk=None,
|
||||
gf_struct_solver=None,
|
||||
solver_to_sumk=None,
|
||||
sumk_to_solver=None,
|
||||
solver_to_sumk_block=None,
|
||||
deg_shells=None):
|
||||
|
||||
def __init__(self, gf_struct_sumk=None,
|
||||
gf_struct_solver=None,
|
||||
solver_to_sumk=None,
|
||||
sumk_to_solver=None,
|
||||
solver_to_sumk_block=None,
|
||||
deg_shells=None,
|
||||
corr_to_inequiv = None,
|
||||
transformation=None):
|
||||
self.gf_struct_sumk = gf_struct_sumk
|
||||
self.gf_struct_solver = gf_struct_solver
|
||||
self.solver_to_sumk = solver_to_sumk
|
||||
self.sumk_to_solver = sumk_to_solver
|
||||
self.solver_to_sumk_block = solver_to_sumk_block
|
||||
self.deg_shells = deg_shells
|
||||
self.corr_to_inequiv = corr_to_inequiv
|
||||
self.transformation = transformation
|
||||
|
||||
@property
|
||||
def gf_struct_solver_list(self):
|
||||
""" The structure of the solver Green's function
|
||||
|
||||
This is returned as a
|
||||
list (for each shell)
|
||||
of lists (for each block)
|
||||
of tuples (block_name, block_indices).
|
||||
|
||||
That is,
|
||||
``gf_struct_solver_list[ish][b][0]``
|
||||
is the name of the block number ``b`` of shell ``ish``, and
|
||||
``gf_struct_solver_list[ish][b][1]``
|
||||
is a list of its indices.
|
||||
|
||||
The list for each shell is sorted alphabetically by block name.
|
||||
"""
|
||||
if self.gf_struct_solver is None:
|
||||
return None
|
||||
# we sort by block name in order to get a reproducible result
|
||||
return [sorted([(k, v) for k, v in gfs.iteritems()], key=lambda x: x[0])
|
||||
for gfs in self.gf_struct_solver]
|
||||
|
||||
@property
|
||||
def gf_struct_sumk_list(self):
|
||||
""" The structure of the sumk Green's function
|
||||
|
||||
This is returned as a
|
||||
list (for each shell)
|
||||
of lists (for each block)
|
||||
of tuples (block_name, block_indices)
|
||||
|
||||
That is,
|
||||
``gf_struct_sumk_list[ish][b][0]``
|
||||
is the name of the block number ``b`` of shell ``ish``, and
|
||||
``gf_struct_sumk_list[ish][b][1]``
|
||||
is a list of its indices.
|
||||
"""
|
||||
return self.gf_struct_sumk
|
||||
|
||||
@property
|
||||
def gf_struct_solver_dict(self):
|
||||
""" The structure of the solver Green's function
|
||||
|
||||
This is returned as a
|
||||
list (for each shell)
|
||||
of dictionaries.
|
||||
|
||||
That is,
|
||||
``gf_struct_solver_dict[ish][bname]``
|
||||
is a list of the indices of block ``bname`` of shell ``ish``.
|
||||
"""
|
||||
return self.gf_struct_solver
|
||||
|
||||
@property
|
||||
def gf_struct_sumk_dict(self):
|
||||
""" The structure of the sumk Green's function
|
||||
|
||||
This is returned as a
|
||||
list (for each shell)
|
||||
of dictionaries.
|
||||
|
||||
That is,
|
||||
``gf_struct_sumk_dict[ish][bname]``
|
||||
is a list of the indices of block ``bname`` of shell ``ish``.
|
||||
"""
|
||||
if self.gf_struct_sumk is None:
|
||||
return None
|
||||
return [{block: indices for block, indices in gfs}
|
||||
for gfs in self.gf_struct_sumk]
|
||||
|
||||
@property
|
||||
def inequiv_to_corr(self):
|
||||
""" A list mapping an inequivalent correlated shell to a correlated shell
|
||||
"""
|
||||
|
||||
if self.corr_to_inequiv is None:
|
||||
return None
|
||||
N_solver = len(np.unique(self.corr_to_inequiv))
|
||||
if self.gf_struct_solver is not None:
|
||||
assert N_solver == len(self.gf_struct_solver)
|
||||
assert sorted(np.unique(self.corr_to_inequiv)) == range(N_solver),\
|
||||
"an inequivalent shell is missing in corr_to_inequiv"
|
||||
return [self.corr_to_inequiv.index(icrsh)
|
||||
for icrsh in range(N_solver)]
|
||||
|
||||
@inequiv_to_corr.setter
|
||||
def inequiv_to_corr(self, value):
|
||||
# a check for backward compatibility
|
||||
if value is None:
|
||||
return
|
||||
assert self.inequiv_to_corr == value, "Trying to set incompatible inequiv_to_corr"
|
||||
|
||||
@property
|
||||
def sumk_to_solver_block(self):
|
||||
if self.inequiv_to_corr is None:
|
||||
return None
|
||||
ret = []
|
||||
for ish, icrsh in enumerate(self.inequiv_to_corr):
|
||||
d = defaultdict(list)
|
||||
for block_solver, block_sumk in self.solver_to_sumk_block[ish].iteritems():
|
||||
d[block_sumk].append(block_solver)
|
||||
ret.append(d)
|
||||
return ret
|
||||
|
||||
@property
|
||||
def effective_transformation_sumk(self):
|
||||
""" Return the effective transformation matrix
|
||||
|
||||
A list of dicts, one for every correlated shell. In the dict,
|
||||
there is a transformation matrix (as numpy array) for each
|
||||
block in sumk space, that is used to transform the block.
|
||||
"""
|
||||
trans = copy.deepcopy(self.transformation)
|
||||
if self.gf_struct_sumk is None:
|
||||
raise Exception('gf_struct_sumk not set.')
|
||||
if self.gf_struct_solver is None:
|
||||
raise Exception('gf_struct_solver not set.')
|
||||
|
||||
if trans is None:
|
||||
trans = [{block: np.eye(len(indices)) for block, indices in gfs}
|
||||
for gfs in self.gf_struct_sumk]
|
||||
|
||||
assert isinstance(trans, list),\
|
||||
"transformation has to be a list"
|
||||
|
||||
assert len(trans) == len(self.gf_struct_sumk),\
|
||||
"give one transformation per correlated shell"
|
||||
|
||||
for icrsh in range(len(trans)):
|
||||
ish = self.corr_to_inequiv[icrsh]
|
||||
if trans[icrsh] is None:
|
||||
trans[icrsh] = {block: np.eye(len(indices))
|
||||
for block, indices in self.gf_struct_sumk[icrsh]}
|
||||
|
||||
if not isinstance(trans[icrsh], dict):
|
||||
trans[icrsh] = {block: copy.deepcopy(trans[icrsh])
|
||||
for block, indices in self.gf_struct_sumk[icrsh]}
|
||||
|
||||
assert trans[icrsh].keys() == self.gf_struct_sumk_dict[icrsh].keys(),\
|
||||
"wrong block names used in transformation (icrsh = {})".format(icrsh)
|
||||
|
||||
for block in trans[icrsh]:
|
||||
assert trans[icrsh][block].shape[0] == trans[icrsh][block].shape[1],\
|
||||
"Transformation has to be quadratic; throwing away orbitals can be achieved on the level of the mapping. (icrsh = {}, block = {})".format(icrsh, block)
|
||||
|
||||
assert trans[icrsh][block].shape[0] == len(self.gf_struct_sumk_dict[icrsh][block]),\
|
||||
"Transformation block shape does not match gf_struct_sumk. (icrsh = {}, block = {})".format(icrsh, block)
|
||||
|
||||
# zero out all the lines of the transformation that are
|
||||
# not included in gf_struct_solver
|
||||
for iorb, norb in enumerate(self.gf_struct_sumk_dict[icrsh][block]):
|
||||
if self.sumk_to_solver[ish][(block, norb)][0] is None:
|
||||
trans[icrsh][block][iorb, :] = 0.0
|
||||
return trans
|
||||
|
||||
@property
|
||||
def effective_transformation_solver(self):
|
||||
""" Return the effective transformation matrix
|
||||
|
||||
A list of dicts, one for every inequivalent correlated shell.
|
||||
In the dict, there is a transformation matrix (as numpy array)
|
||||
for each block in solver space, that is used to transform from
|
||||
the sumk block (see :py:meth:`.solver_to_sumk_block`) to the
|
||||
solver block.
|
||||
|
||||
|
||||
For a solver block ``b`` for inequivalent correlated shell ``ish``,
|
||||
the corresponding block of the solver Green's function is::
|
||||
|
||||
# the effective transformation matrix for the block
|
||||
T = block_structure.effective_transformation_solver[ish][b]
|
||||
# the index of the correlated shell
|
||||
icrsh = block_structure.inequiv_to_corr[ish]
|
||||
# the name of the corresponding sumk block
|
||||
block_sumk = block_structure.solver_to_sumk_block[icrsh][b]
|
||||
# transform the Green's function
|
||||
G_solver[ish][b].from_L_G_R(T, G_sumk[icrsh][block_sumk], T.conjugate().transpose())
|
||||
|
||||
The functionality of that code block is implemented in
|
||||
:py:meth:`.convert_gf` (i.e., you don't need to use this directly).
|
||||
"""
|
||||
|
||||
eff_trans_sumk = self.effective_transformation_sumk
|
||||
|
||||
ets = []
|
||||
for ish in range(len(self.gf_struct_solver)):
|
||||
icrsh = self.inequiv_to_corr[ish]
|
||||
ets.append(dict())
|
||||
for block in self.gf_struct_solver[ish]:
|
||||
block_sumk = self.solver_to_sumk_block[ish][block]
|
||||
T = eff_trans_sumk[icrsh][block_sumk]
|
||||
ets[ish][block] = np.zeros((len(self.gf_struct_solver[ish][block]),
|
||||
len(T)),
|
||||
dtype=T.dtype)
|
||||
for i in self.gf_struct_solver[ish][block]:
|
||||
i_sumk = self.solver_to_sumk[ish][block, i]
|
||||
assert i_sumk[0] == block_sumk,\
|
||||
"Wrong block in solver_to_sumk"
|
||||
i_sumk = i_sumk[1]
|
||||
ets[ish][block][i, :] = T[i_sumk, :]
|
||||
return ets
|
||||
|
||||
|
||||
@classmethod
|
||||
def full_structure(cls,gf_struct,corr_to_inequiv):
|
||||
@ -103,9 +379,10 @@ class BlockStructure(object):
|
||||
solver_to_sumk = copy.deepcopy(solver_to_sumk),
|
||||
sumk_to_solver = solver_to_sumk,
|
||||
solver_to_sumk_block = s2sblock,
|
||||
deg_shells = [[] for ish in range(len(gf_struct))])
|
||||
deg_shells = [[] for ish in range(len(gf_struct))],
|
||||
corr_to_inequiv = corr_to_inequiv)
|
||||
|
||||
def pick_gf_struct_solver(self,new_gf_struct):
|
||||
def pick_gf_struct_solver(self, new_gf_struct):
|
||||
""" Pick selected orbitals within blocks.
|
||||
|
||||
This throws away parts of the Green's function that (for some
|
||||
@ -143,28 +420,57 @@ class BlockStructure(object):
|
||||
gf_struct = new_gf_struct[ish]
|
||||
|
||||
# create new solver_to_sumk
|
||||
so2su={}
|
||||
so2su = {}
|
||||
so2su_block = {}
|
||||
for blk,idxs in gf_struct.items():
|
||||
for blk, idxs in gf_struct.items():
|
||||
for i in range(len(idxs)):
|
||||
so2su[(blk,i)]=self.solver_to_sumk[ish][(blk,idxs[i])]
|
||||
so2su_block[blk]=so2su[(blk,i)][0]
|
||||
so2su[(blk, i)] = self.solver_to_sumk[ish][(blk, idxs[i])]
|
||||
so2su_block[blk] = so2su[(blk, i)][0]
|
||||
self.solver_to_sumk[ish] = so2su
|
||||
self.solver_to_sumk_block[ish] = so2su_block
|
||||
# create new sumk_to_solver
|
||||
for k,v in self.sumk_to_solver[ish].items():
|
||||
blk,ind=v
|
||||
for k, v in self.sumk_to_solver[ish].items():
|
||||
blk, ind = v
|
||||
if blk in gf_struct and ind in gf_struct[blk]:
|
||||
new_ind = gf_struct[blk].index(ind)
|
||||
self.sumk_to_solver[ish][k]=(blk,new_ind)
|
||||
self.sumk_to_solver[ish][k] = (blk, new_ind)
|
||||
else:
|
||||
self.sumk_to_solver[ish][k]=(None,None)
|
||||
self.sumk_to_solver[ish][k] = (None, None)
|
||||
# adapt deg_shells
|
||||
|
||||
self.adapt_deg_shells(gf_struct, ish)
|
||||
|
||||
|
||||
# reindexing gf_struct so that it starts with 0
|
||||
for k in gf_struct:
|
||||
gf_struct[k]=range(len(gf_struct[k]))
|
||||
self.gf_struct_solver[ish]=gf_struct
|
||||
gf_struct[k] = range(len(gf_struct[k]))
|
||||
self.gf_struct_solver[ish] = gf_struct
|
||||
|
||||
def pick_gf_struct_sumk(self,new_gf_struct):
|
||||
def adapt_deg_shells(self, gf_struct, ish=0):
|
||||
""" Adapts the deg_shells to a new gf_struct
|
||||
Internally called when using pick_gf_struct and map_gf_struct
|
||||
"""
|
||||
if self.deg_shells is not None:
|
||||
for degsh in self.deg_shells[ish]:
|
||||
if isinstance(degsh, dict):
|
||||
for key in degsh.keys():
|
||||
if not key in gf_struct:
|
||||
del degsh[key]
|
||||
continue
|
||||
if gf_struct[key] != self.gf_struct_solver[ish][key]:
|
||||
v, C = degsh[key]
|
||||
degsh[key][0] = \
|
||||
v[gf_struct[key], :][:, gf_struct[key]]
|
||||
warn(
|
||||
'Removing shells from degenerate shell {}. Cannot guarantee that they continue to be equivalent.')
|
||||
else: # degshell is list
|
||||
degsh1 = copy.deepcopy(degsh) # in order to not remove a key while iterating
|
||||
for key in degsh1:
|
||||
if not key in gf_struct:
|
||||
warn('Removing shells from degenerate shell {}.')
|
||||
degsh.remove(key)
|
||||
|
||||
def pick_gf_struct_sumk(self, new_gf_struct):
|
||||
""" Pick selected orbitals within blocks.
|
||||
|
||||
This throws away parts of the Green's function that (for some
|
||||
@ -199,25 +505,50 @@ class BlockStructure(object):
|
||||
However, the indices are not according to the solver Gf
|
||||
but the sumk Gf.
|
||||
"""
|
||||
eff_trans_sumk = self.effective_transformation_sumk
|
||||
|
||||
assert len(eff_trans_sumk) == len(new_gf_struct),\
|
||||
"new_gf_struct has the wrong length"
|
||||
|
||||
new_gf_struct_transformed = copy.deepcopy(new_gf_struct)
|
||||
|
||||
# when there is a transformation matrix, this first zeroes out
|
||||
# the corresponding rows of (a copy of) T and then applies
|
||||
# pick_gf_struct_solver for all lines of T that have at least
|
||||
# one non-zero entry
|
||||
|
||||
for icrsh in range(len(new_gf_struct)):
|
||||
for block, indices in self.gf_struct_sumk[icrsh]:
|
||||
if not block in new_gf_struct[icrsh]:
|
||||
#del new_gf_struct_transformed[block] # this MUST be wrong, as new_gf_struct_transformed needs to have a integer index for icrsh... # error when index is not kept at all
|
||||
continue
|
||||
T = eff_trans_sumk[icrsh][block]
|
||||
for index in indices:
|
||||
if not index in new_gf_struct[icrsh][block]:
|
||||
T[:, index] = 0.0
|
||||
new_indices = []
|
||||
for index in indices:
|
||||
if np.any(np.abs(T[index, :]) > 1.e-15):
|
||||
new_indices.append(index)
|
||||
new_gf_struct_transformed[icrsh][block] = new_indices
|
||||
|
||||
gfs = []
|
||||
# construct gfs, which is the equivalent of new_gf_struct
|
||||
# but according to the solver Gf, by using the sumk_to_solver
|
||||
# mapping
|
||||
for ish in range(len(new_gf_struct)):
|
||||
for icrsh in range(len(new_gf_struct_transformed)):
|
||||
ish = self.corr_to_inequiv[icrsh]
|
||||
gfs.append({})
|
||||
for block in new_gf_struct[ish].keys():
|
||||
for ind in new_gf_struct[ish][block]:
|
||||
ind_sol = self.sumk_to_solver[ish][(block,ind)]
|
||||
if not ind_sol[0] in gfs[ish]:
|
||||
gfs[ish][ind_sol[0]]=[]
|
||||
gfs[ish][ind_sol[0]].append(ind_sol[1])
|
||||
for block in new_gf_struct_transformed[icrsh].keys():
|
||||
for ind in new_gf_struct_transformed[icrsh][block]:
|
||||
ind_sol = self.sumk_to_solver[ish][(block, ind)]
|
||||
if not ind_sol[0] in gfs[icrsh]:
|
||||
gfs[icrsh][ind_sol[0]] = []
|
||||
gfs[icrsh][ind_sol[0]].append(ind_sol[1])
|
||||
self.pick_gf_struct_solver(gfs)
|
||||
|
||||
|
||||
def map_gf_struct_solver(self,mapping):
|
||||
""" Map the Green function structure from one struct to another.
|
||||
def map_gf_struct_solver(self, mapping):
|
||||
r""" Map the Green function structure from one struct to another.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
@ -225,38 +556,61 @@ class BlockStructure(object):
|
||||
the dict consists of elements
|
||||
(from_block,from_index) : (to_block,to_index)
|
||||
that maps from one structure to the other
|
||||
(one for each shell; use a mapping ``None`` for a shell
|
||||
you want to leave unchanged)
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
Consider a `gf_struct_solver` consisting of two :math:`1 \times 1`
|
||||
blocks, `block_1` and `block_2`. Say you want to have a new block
|
||||
structure where you merge them into one block because you want to
|
||||
introduce an off-diagonal element. You could perform the mapping
|
||||
via::
|
||||
|
||||
map_gf_struct_solver([{('block_1',0) : ('block', 0)
|
||||
('block_2',0) : ('block', 1)}])
|
||||
"""
|
||||
|
||||
for ish in range(len(mapping)):
|
||||
if mapping[ish] is None:
|
||||
continue
|
||||
gf_struct = {}
|
||||
so2su = {}
|
||||
su2so = {}
|
||||
so2su_block = {}
|
||||
for frm,to in mapping[ish].iteritems():
|
||||
for frm, to in mapping[ish].iteritems():
|
||||
if not to[0] in gf_struct:
|
||||
gf_struct[to[0]]=[]
|
||||
gf_struct[to[0]] = []
|
||||
gf_struct[to[0]].append(to[1])
|
||||
|
||||
so2su[to]=self.solver_to_sumk[ish][frm]
|
||||
su2so[self.solver_to_sumk[ish][frm]]=to
|
||||
so2su[to] = self.solver_to_sumk[ish][frm]
|
||||
su2so[self.solver_to_sumk[ish][frm]] = to
|
||||
if to[0] in so2su_block:
|
||||
if so2su_block[to[0]] != \
|
||||
self.solver_to_sumk_block[ish][frm[0]]:
|
||||
self.solver_to_sumk_block[ish][frm[0]]:
|
||||
warn("solver block '{}' maps to more than one sumk block: '{}', '{}'".format(
|
||||
to[0],so2su_block[to[0]],self.solver_to_sumk_block[ish][frm[0]]))
|
||||
to[0], so2su_block[to[0]], self.solver_to_sumk_block[ish][frm[0]]))
|
||||
else:
|
||||
so2su_block[to[0]]=\
|
||||
so2su_block[to[0]] =\
|
||||
self.solver_to_sumk_block[ish][frm[0]]
|
||||
for k in self.sumk_to_solver[ish].keys():
|
||||
if not k in su2so:
|
||||
su2so[k] = (None,None)
|
||||
self.gf_struct_solver[ish]=gf_struct
|
||||
self.solver_to_sumk[ish]=so2su
|
||||
self.sumk_to_solver[ish]=su2so
|
||||
self.solver_to_sumk_block[ish]=so2su_block
|
||||
su2so[k] = (None, None)
|
||||
|
||||
def create_gf(self,ish=0,gf_function=GfImFreq,**kwargs):
|
||||
""" Create a zero BlockGf having the gf_struct_solver structure.
|
||||
self.adapt_deg_shells(gf_struct, ish)
|
||||
|
||||
self.gf_struct_solver[ish] = gf_struct
|
||||
self.solver_to_sumk[ish] = so2su
|
||||
self.sumk_to_solver[ish] = su2so
|
||||
self.solver_to_sumk_block[ish] = so2su_block
|
||||
self.deg_shells[ish] = []
|
||||
|
||||
def create_gf(self, ish=0, gf_function=GfImFreq, space='solver', **kwargs):
|
||||
""" Create a zero BlockGf having the correct structure.
|
||||
|
||||
For ``space='solver'``, the structure is according to
|
||||
``gf_struct_solver``, else according to ``gf_struct_sumk``.
|
||||
|
||||
When using GfImFreq as gf_function, typically you have to
|
||||
supply beta as keyword argument.
|
||||
@ -265,24 +619,158 @@ class BlockStructure(object):
|
||||
----------
|
||||
ish : int
|
||||
shell index
|
||||
If ``space='solver'``, the index of the of the inequivalent correlated shell,
|
||||
if ``space='sumk'``, the index of the correlated shell
|
||||
gf_function : constructor
|
||||
function used to construct the Gf objects constituting the
|
||||
individual blocks; default: GfImFreq
|
||||
space : 'solver' or 'sumk'
|
||||
which space the structure should correspond to
|
||||
**kwargs :
|
||||
options passed on to the Gf constructor for the individual
|
||||
blocks
|
||||
"""
|
||||
|
||||
names = self.gf_struct_solver[ish].keys()
|
||||
blocks=[]
|
||||
return self._create_gf_or_matrix(ish, gf_function, BlockGf, space, **kwargs)
|
||||
|
||||
def create_matrix(self, ish=0, space='solver', dtype=np.complex_):
|
||||
""" Create a zero matrix having the correct structure.
|
||||
|
||||
For ``space='solver'``, the structure is according to
|
||||
``gf_struct_solver``, else according to ``gf_struct_sumk``.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ish : int
|
||||
shell index
|
||||
If ``space='solver'``, the index of the of the inequivalent correlated shell,
|
||||
if ``space='sumk'``, the index of the correlated shell
|
||||
space : 'solver' or 'sumk'
|
||||
which space the structure should correspond to
|
||||
"""
|
||||
|
||||
def gf_function(indices):
|
||||
return np.zeros((len(indices), len(indices)), dtype=dtype)
|
||||
|
||||
def block_function(name_list, block_list):
|
||||
d = dict()
|
||||
for i in range(len(name_list)):
|
||||
d[name_list[i]] = block_list[i]
|
||||
return d
|
||||
|
||||
return self._create_gf_or_matrix(ish, gf_function, block_function, space)
|
||||
|
||||
def _create_gf_or_matrix(self, ish=0, gf_function=GfImFreq, block_function=BlockGf, space='solver', **kwargs):
|
||||
if space == 'solver':
|
||||
gf_struct = self.gf_struct_solver
|
||||
elif space == 'sumk':
|
||||
gf_struct = self.gf_struct_sumk_dict
|
||||
else:
|
||||
raise Exception(
|
||||
"Argument space has to be either 'solver' or 'sumk'.")
|
||||
|
||||
names = gf_struct[ish].keys()
|
||||
blocks = []
|
||||
for n in names:
|
||||
G = gf_function(indices=self.gf_struct_solver[ish][n],**kwargs)
|
||||
G = gf_function(indices=gf_struct[ish][n], **kwargs)
|
||||
blocks.append(G)
|
||||
G = BlockGf(name_list = names, block_list = blocks)
|
||||
G = block_function(name_list=names, block_list=blocks)
|
||||
return G
|
||||
|
||||
def check_gf(self, G, ish=None, space='solver'):
|
||||
""" check whether the Green's function G has the right structure
|
||||
|
||||
def convert_gf(self,G,G_struct,ish=0,show_warnings=True,**kwargs):
|
||||
This throws an error if the structure of G is not the same
|
||||
as ``gf_struct_solver`` (for ``space=solver``) or
|
||||
``gf_struct_sumk`` (for ``space=sumk``)..
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : BlockGf or list of BlockGf
|
||||
Green's function to check
|
||||
if it is a list, there should be as many entries as there
|
||||
are shells, and the check is performed for all shells (unless
|
||||
ish is given).
|
||||
ish : int
|
||||
shell index
|
||||
default: 0 if G is just one Green's function is given,
|
||||
check all if list of Green's functions is given
|
||||
space : 'solver' or 'sumk'
|
||||
which space the structure should correspond to
|
||||
"""
|
||||
|
||||
return self._check_gf_or_matrix(G, ish, space)
|
||||
|
||||
def check_matrix(self, G, ish=None, space='solver'):
|
||||
""" check whether the matrix G has the right structure
|
||||
|
||||
This throws an error if the structure of G is not the same
|
||||
as ``gf_struct_solver`` (for ``space=solver``) or
|
||||
``gf_struct_sumk`` (for ``space=sumk``)..
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : dict of matrices or list of dict of matrices
|
||||
matrix to check
|
||||
if it is a list, there should be as many entries as there
|
||||
are shells, and the check is performed for all shells (unless
|
||||
ish is given).
|
||||
ish : int
|
||||
shell index
|
||||
default: 0 if G is just one matrix is given,
|
||||
check all if list of dicts is given
|
||||
space : 'solver' or 'sumk'
|
||||
which space the structure should correspond to
|
||||
"""
|
||||
|
||||
return self._check_gf_or_matrix(G, ish, space)
|
||||
|
||||
def _check_gf_or_matrix(self, G, ish=None, space='solver'):
|
||||
if space == 'solver':
|
||||
gf_struct = self.gf_struct_solver
|
||||
elif space == 'sumk':
|
||||
gf_struct = self.gf_struct_sumk_dict
|
||||
else:
|
||||
raise Exception(
|
||||
"Argument space has to be either 'solver' or 'sumk'.")
|
||||
|
||||
if isinstance(G, list):
|
||||
assert len(G) == len(gf_struct),\
|
||||
"list of G does not have the correct length"
|
||||
if ish is None:
|
||||
ishs = range(len(gf_struct))
|
||||
else:
|
||||
ishs = [ish]
|
||||
for ish in ishs:
|
||||
self.check_gf(G[ish], ish=ish, space=space)
|
||||
return
|
||||
|
||||
if ish is None:
|
||||
ish = 0
|
||||
|
||||
if isinstance(G, BlockGf):
|
||||
for block in gf_struct[ish]:
|
||||
assert block in G.indices,\
|
||||
"block " + block + " not in G (shell {})".format(ish)
|
||||
for block, gf in G:
|
||||
assert block in gf_struct[ish],\
|
||||
"block " + block + " not in struct (shell {})".format(ish)
|
||||
assert list(gf.indices) == 2 * [map(str, gf_struct[ish][block])],\
|
||||
"block " + block + \
|
||||
" has wrong indices (shell {})".format(ish)
|
||||
else:
|
||||
for block in gf_struct[ish]:
|
||||
assert block in G,\
|
||||
"block " + block + " not in G (shell {})".format(ish)
|
||||
for block, gf in G.iteritems():
|
||||
assert block in gf_struct[ish],\
|
||||
"block " + block + " not in struct (shell {})".format(ish)
|
||||
assert range(len(gf)) == 2 * [map(str, gf_struct[ish][block])],\
|
||||
"block " + block + \
|
||||
" has wrong indices (shell {})".format(ish)
|
||||
|
||||
def convert_gf(self, G, G_struct=None, ish_from=0, ish_to=None, show_warnings=True,
|
||||
G_out=None, space_from='solver', space_to='solver', ish=None, **kwargs):
|
||||
""" Convert BlockGf from its structure to this structure.
|
||||
|
||||
.. warning::
|
||||
@ -295,49 +783,194 @@ class BlockStructure(object):
|
||||
----------
|
||||
G : BlockGf
|
||||
the Gf that should be converted
|
||||
G_struct : GfStructure
|
||||
the structure of that G
|
||||
ish : int
|
||||
shell index
|
||||
G_struct : BlockStructure or str
|
||||
the structure of that G or None (then, this structure
|
||||
is used)
|
||||
ish_from : int
|
||||
shell index of the input structure
|
||||
ish_to : int
|
||||
shell index of the output structure; if None (the default),
|
||||
it is the same as ish_from
|
||||
show_warnings : bool or float
|
||||
whether to show warnings when elements of the Green's
|
||||
function get thrown away
|
||||
if float, set the threshold for the magnitude of an element
|
||||
about to be thrown away to trigger a warning
|
||||
(default: 1.e-10)
|
||||
G_out : BlockGf
|
||||
the output Green's function (if not given, a new one is
|
||||
created)
|
||||
space_from : 'solver' or 'sumk'
|
||||
whether the Green's function ``G`` corresponds to the
|
||||
solver or sumk structure of ``G_struct``
|
||||
space_to : 'solver' or 'sumk'
|
||||
whether the output Green's function should be according to
|
||||
the solver of sumk structure of this structure
|
||||
**kwargs :
|
||||
options passed to the constructor for the new Gf
|
||||
"""
|
||||
|
||||
if ish is not None:
|
||||
warn(
|
||||
'The parameter ish in convert_gf is deprecated. Use ish_from and ish_to instead.')
|
||||
ish_from = ish
|
||||
ish_to = ish
|
||||
return self._convert_gf_or_matrix(G, G_struct, ish_from, ish_to,
|
||||
show_warnings, G_out, space_from, space_to, **kwargs)
|
||||
|
||||
def convert_matrix(self, G, G_struct=None, ish_from=0, ish_to=None, show_warnings=True,
|
||||
G_out=None, space_from='solver', space_to='solver'):
|
||||
""" Convert matrix from its structure to this structure.
|
||||
|
||||
.. warning::
|
||||
|
||||
Elements that are zero in the new structure due to
|
||||
the new block structure will be just ignored, thus
|
||||
approximated to zero.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : dict of numpy array
|
||||
the matrix that should be converted
|
||||
G_struct : BlockStructure or str
|
||||
the structure of that G or None (then, this structure
|
||||
is used)
|
||||
ish_from : int
|
||||
shell index of the input structure
|
||||
ish_to : int
|
||||
shell index of the output structure; if None (the default),
|
||||
it is the same as ish_from
|
||||
show_warnings : bool or float
|
||||
whether to show warnings when elements of the Green's
|
||||
function get thrown away
|
||||
if float, set the threshold for the magnitude of an element
|
||||
about to be thrown away to trigger a warning
|
||||
(default: 1.e-10)
|
||||
G_out : dict of numpy array
|
||||
the output numpy array (if not given, a new one is
|
||||
created)
|
||||
space_from : 'solver' or 'sumk'
|
||||
whether the matrix ``G`` corresponds to the
|
||||
solver or sumk structure of ``G_struct``
|
||||
space_to : 'solver' or 'sumk'
|
||||
whether the output matrix should be according to
|
||||
the solver of sumk structure of this structure
|
||||
**kwargs :
|
||||
options passed to the constructor for the new Gf
|
||||
"""
|
||||
|
||||
return self._convert_gf_or_matrix(G, G_struct, ish_from, ish_to,
|
||||
show_warnings, G_out, space_from, space_to)
|
||||
|
||||
def _convert_gf_or_matrix(self, G, G_struct=None, ish_from=0, ish_to=None, show_warnings=True,
|
||||
G_out=None, space_from='solver', space_to='solver', **kwargs):
|
||||
if ish_to is None:
|
||||
ish_to = ish_from
|
||||
|
||||
warning_threshold = 1.e-10
|
||||
if isinstance(show_warnings, float):
|
||||
warning_threshold = show_warnings
|
||||
show_warnings = True
|
||||
|
||||
G_new = self.create_gf(ish=ish,**kwargs)
|
||||
for block in G_struct.gf_struct_solver[ish].keys():
|
||||
for i1 in G_struct.gf_struct_solver[ish][block]:
|
||||
for i2 in G_struct.gf_struct_solver[ish][block]:
|
||||
i1_sumk = G_struct.solver_to_sumk[ish][(block,i1)]
|
||||
i2_sumk = G_struct.solver_to_sumk[ish][(block,i2)]
|
||||
i1_sol = self.sumk_to_solver[ish][i1_sumk]
|
||||
i2_sol = self.sumk_to_solver[ish][i2_sumk]
|
||||
if i1_sol[0] is None or i2_sol[0] is None:
|
||||
if show_warnings:
|
||||
if mpi.is_master_node():
|
||||
warn(('Element {},{} of block {} of G is not present '+
|
||||
'in the new structure').format(i1,i2,block))
|
||||
continue
|
||||
if i1_sol[0]!=i2_sol[0]:
|
||||
if show_warnings and np.max(np.abs(G[block][i1,i2].data)) > warning_threshold:
|
||||
if mpi.is_master_node():
|
||||
warn(('Element {},{} of block {} of G is approximated '+
|
||||
'to zero to match the new structure. Max abs value: {}').format(
|
||||
i1,i2,block,np.max(np.abs(G[block][i1,i2].data))))
|
||||
continue
|
||||
G_new[i1_sol[0]][i1_sol[1],i2_sol[1]] = \
|
||||
G[block][i1,i2]
|
||||
return G_new
|
||||
if G_struct is None:
|
||||
G_struct = self
|
||||
|
||||
if space_from == 'solver':
|
||||
gf_struct_from = G_struct.gf_struct_solver[ish_from]
|
||||
eff_trans_from = G_struct.effective_transformation_solver[ish_from]
|
||||
block_mapping_from = G_struct.sumk_to_solver_block[ish_from]
|
||||
elif space_from == 'sumk':
|
||||
gf_struct_from = G_struct.gf_struct_sumk_dict[ish_from]
|
||||
eff_trans_from = {block: np.eye(len(indices))
|
||||
for block, indices in G_struct.gf_struct_sumk[ish_from]}
|
||||
block_mapping_from = {b: [b] for b in gf_struct_from}
|
||||
else:
|
||||
raise Exception(
|
||||
"Argument space_from has to be either 'solver' or 'sumk'.")
|
||||
|
||||
if space_to == 'solver':
|
||||
gf_struct_to = self.gf_struct_solver[ish_to]
|
||||
eff_trans_to = self.effective_transformation_solver[ish_to]
|
||||
block_mapping_to = self.solver_to_sumk_block[ish_to]
|
||||
elif space_to == 'sumk':
|
||||
gf_struct_to = self.gf_struct_sumk_dict[ish_to]
|
||||
eff_trans_to = {block: np.eye(len(indices))
|
||||
for block, indices in self.gf_struct_sumk_list[ish_to]}
|
||||
block_mapping_to = {b: b for b in gf_struct_to}
|
||||
else:
|
||||
raise Exception(
|
||||
"Argument space_to has to be either 'solver' or 'sumk'.")
|
||||
|
||||
if isinstance(G, BlockGf):
|
||||
# create a Green's function to hold the result
|
||||
if G_out is None:
|
||||
if not 'mesh' in kwargs and not 'beta' in kwargs:
|
||||
kwargs['mesh'] = G.mesh
|
||||
G_out = self.create_gf(ish=ish_to, space=space_to, **kwargs)
|
||||
else:
|
||||
self.check_gf(G_out, ish=ish_to, space=space_to)
|
||||
elif isinstance(G, dict):
|
||||
if G_out is None:
|
||||
G_out = self.create_matrix(ish=ish_to, space=space_to)
|
||||
else:
|
||||
self.check_matrix(G_out, ish=ish_to, space=space_to)
|
||||
else:
|
||||
raise Exception('G is neither BlockGf nor dict.')
|
||||
|
||||
for block_to in gf_struct_to.keys():
|
||||
if isinstance(G, BlockGf):
|
||||
G_out[block_to].zero()
|
||||
else:
|
||||
G_out[block_to][:] = 0.0
|
||||
block_intermediate = block_mapping_to[block_to]
|
||||
block_from = block_mapping_from[block_intermediate]
|
||||
T_to = eff_trans_to[block_to]
|
||||
g_help = G_out[block_to].copy()
|
||||
for block in block_from:
|
||||
T_from = eff_trans_from[block]
|
||||
if isinstance(G, BlockGf):
|
||||
g_help.from_L_G_R(np.dot(T_to, np.conjugate(np.transpose(T_from))),
|
||||
G[block],
|
||||
np.dot(T_from, np.conjugate(np.transpose(T_to))))
|
||||
G_out[block_to] << G_out[block_to] + g_help
|
||||
else:
|
||||
g_help = np.dot(np.dot(T_to, np.conjugate(np.transpose(T_from))),
|
||||
np.dot(G[block],
|
||||
np.dot(T_from, np.conjugate(np.transpose(T_to)))))
|
||||
G_out[block_to] += g_help
|
||||
|
||||
if show_warnings:
|
||||
# we back-transform it
|
||||
G_back = G_struct._convert_gf_or_matrix(G_out, self, ish_from=ish_to,
|
||||
ish_to=ish_from,
|
||||
show_warnings=False, # else we get an endless loop
|
||||
space_from=space_to, space_to=space_from, **kwargs)
|
||||
for name, gf in (G_back if isinstance(G, BlockGf) else G_back.iteritems()):
|
||||
if isinstance(G, BlockGf):
|
||||
maxdiff = np.max(np.abs(G_back[name].data - G[name].data),
|
||||
axis=0)
|
||||
else:
|
||||
maxdiff = G_back[name] - G[name]
|
||||
|
||||
if space_to == 'solver' and self == G_struct: # do comparison in solver (ignore diff. in ignored orbitals)
|
||||
tmp = self.create_matrix(space='sumk')
|
||||
tmp[name] = maxdiff
|
||||
maxdiff = G_struct._convert_gf_or_matrix(tmp, self, ish_from=ish_from,
|
||||
ish_to=ish_to,
|
||||
show_warnings=False,
|
||||
space_from=space_from, space_to=space_to, **kwargs)
|
||||
|
||||
for block in maxdiff:
|
||||
maxdiff_b = maxdiff[block]
|
||||
if np.any(maxdiff_b > warning_threshold):
|
||||
warn('Block {} maximum difference:\n'.format(name) + str(maxdiff))
|
||||
|
||||
|
||||
elif np.any(maxdiff > warning_threshold):
|
||||
warn('Block {} maximum difference:\n'.format(name)
|
||||
+ str(maxdiff))
|
||||
|
||||
return G_out
|
||||
|
||||
def approximate_as_diagonal(self):
|
||||
""" Create a structure for a GF with zero off-diagonal elements.
|
||||
@ -393,7 +1026,7 @@ class BlockStructure(object):
|
||||
|
||||
for prop in [ "gf_struct_sumk", "gf_struct_solver",
|
||||
"solver_to_sumk", "sumk_to_solver", "solver_to_sumk_block",
|
||||
"deg_shells"]:
|
||||
"deg_shells","transformation", "corr_to_inequiv"]:
|
||||
if not compare(getattr(self,prop),getattr(other,prop)):
|
||||
return False
|
||||
return True
|
||||
@ -406,8 +1039,14 @@ class BlockStructure(object):
|
||||
|
||||
ret = {}
|
||||
for element in [ "gf_struct_sumk", "gf_struct_solver",
|
||||
"solver_to_sumk_block","deg_shells"]:
|
||||
"solver_to_sumk_block","deg_shells",
|
||||
"transformation", "corr_to_inequiv"]:
|
||||
ret[element] = getattr(self,element)
|
||||
if ret[element] is None:
|
||||
ret[element] = 'None'
|
||||
|
||||
if ret["transformation"] is None:
|
||||
ret["transformation"] = "None"
|
||||
|
||||
def construct_mapping(mapping):
|
||||
d = []
|
||||
@ -434,13 +1073,18 @@ class BlockStructure(object):
|
||||
d[ish][literal_eval(k)] = literal_eval(v)
|
||||
return d
|
||||
|
||||
for elem in D:
|
||||
if D[elem]=="None":
|
||||
D[elem] = None
|
||||
|
||||
D['solver_to_sumk']=reconstruct_mapping(D['solver_to_sumk'])
|
||||
D['sumk_to_solver']=reconstruct_mapping(D['sumk_to_solver'])
|
||||
return cls(**D)
|
||||
|
||||
def __str__(self):
|
||||
s=''
|
||||
s+= "gf_struct_sumk "+str( self.gf_struct_sumk)+'\n'
|
||||
s+= "corr_to_inequiv "+str(self.corr_to_inequiv)+'\n'
|
||||
s+= "gf_struct_sumk "+str(self.gf_struct_sumk)+'\n'
|
||||
s+= "gf_struct_solver "+str(self.gf_struct_solver)+'\n'
|
||||
s+= "solver_to_sumk_block "+str(self.solver_to_sumk_block)+'\n'
|
||||
for el in ['solver_to_sumk','sumk_to_solver']:
|
||||
@ -465,6 +1109,8 @@ class BlockStructure(object):
|
||||
else:
|
||||
for key in self.deg_shells[ish][l]:
|
||||
s+=' '+key+'\n'
|
||||
s += "transformation\n"
|
||||
s += str(self.transformation)
|
||||
return s
|
||||
|
||||
from pytriqs.archive.hdf_archive_schemes import register_class
|
||||
|
@ -3,6 +3,7 @@
|
||||
#
|
||||
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
#
|
||||
# Copyright (C) 2018 by G. J. Kraberger
|
||||
# Copyright (C) 2011 by M. Aichhorn, L. Pourovskii, V. Vildosola
|
||||
#
|
||||
# TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
@ -94,6 +95,8 @@ class SumkDFT(object):
|
||||
self.misc_data = misc_data
|
||||
self.h_field = h_field
|
||||
|
||||
self.block_structure = BlockStructure()
|
||||
|
||||
# Read input from HDF:
|
||||
things_to_read = ['energy_unit', 'n_k', 'k_dep_projection', 'SP', 'SO', 'charge_below', 'density_required',
|
||||
'symm_op', 'n_shells', 'shells', 'n_corr_shells', 'corr_shells', 'use_rotations', 'rot_mat',
|
||||
@ -119,8 +122,6 @@ class SumkDFT(object):
|
||||
self.spin_names_to_ind[iso][
|
||||
self.spin_block_names[iso][isp]] = isp * self.SP
|
||||
|
||||
self.block_structure = BlockStructure()
|
||||
|
||||
# GF structure used for the local things in the k sums
|
||||
# Most general form allowing for all hybridisation, i.e. largest
|
||||
# blocks possible
|
||||
@ -183,7 +184,7 @@ class SumkDFT(object):
|
||||
# initialise variables on all nodes to ensure mpi broadcast works at
|
||||
# the end
|
||||
for it in things_to_read:
|
||||
setattr(self, it, 0)
|
||||
setattr(self, it, None)
|
||||
subgroup_present = 0
|
||||
|
||||
if mpi.is_master_node():
|
||||
@ -571,85 +572,127 @@ class SumkDFT(object):
|
||||
|
||||
return G_latt
|
||||
|
||||
def set_Sigma(self, Sigma_imp):
|
||||
self.put_Sigma(Sigma_imp)
|
||||
def set_Sigma(self, Sigma_imp, transform_to_sumk_blocks=True):
|
||||
self.put_Sigma(Sigma_imp, transform_to_sumk_blocks)
|
||||
|
||||
def put_Sigma(self, Sigma_imp):
|
||||
def put_Sigma(self, Sigma_imp, transform_to_sumk_blocks=True):
|
||||
r"""
|
||||
Inserts the impurity self-energies into the sumk_dft class.
|
||||
Insert the impurity self-energies into the sumk_dft class.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
Sigma_imp : list of BlockGf (Green's function) objects
|
||||
List containing impurity self-energy for all inequivalent correlated shells.
|
||||
Self-energies for equivalent shells are then automatically set by this function.
|
||||
The self-energies can be of the real or imaginary-frequency type.
|
||||
List containing impurity self-energy for all (inequivalent) correlated shells.
|
||||
Self-energies for equivalent shells are then automatically set by this function.
|
||||
The self-energies can be of the real or imaginary-frequency type.
|
||||
transform_to_sumk_blocks : bool, optional
|
||||
If True (default), the input Sigma_imp will be transformed to the block structure ``gf_struct_sumk``,
|
||||
else it has to be given in ``gf_struct_sumk``.
|
||||
"""
|
||||
|
||||
assert isinstance(
|
||||
Sigma_imp, list), "put_Sigma: Sigma_imp has to be a list of Sigmas for the correlated shells, even if it is of length 1!"
|
||||
assert len(
|
||||
Sigma_imp) == self.n_inequiv_shells, "put_Sigma: give exactly one Sigma for each inequivalent corr. shell!"
|
||||
if transform_to_sumk_blocks:
|
||||
Sigma_imp = self.transform_to_sumk_blocks(Sigma_imp)
|
||||
|
||||
# init self.Sigma_imp_(i)w:
|
||||
if all( (isinstance(gf, Gf) and isinstance (gf.mesh, MeshImFreq)) for bname, gf in Sigma_imp[0]):
|
||||
assert isinstance(Sigma_imp, list),\
|
||||
"put_Sigma: Sigma_imp has to be a list of Sigmas for the correlated shells, even if it is of length 1!"
|
||||
assert len(Sigma_imp) == self.n_corr_shells,\
|
||||
"put_Sigma: give exactly one Sigma for each corr. shell!"
|
||||
|
||||
if all((isinstance(gf, Gf) and isinstance(gf.mesh, MeshImFreq)) for bname, gf in Sigma_imp[0]):
|
||||
# Imaginary frequency Sigma:
|
||||
self.Sigma_imp_iw = [BlockGf(name_block_generator=[(block, GfImFreq(indices=inner, mesh=Sigma_imp[0].mesh))
|
||||
for block, inner in self.gf_struct_sumk[icrsh]], make_copies=False)
|
||||
self.Sigma_imp_iw = [self.block_structure.create_gf(ish=icrsh, mesh=Sigma_imp[icrsh].mesh, space='sumk')
|
||||
for icrsh in range(self.n_corr_shells)]
|
||||
SK_Sigma_imp = self.Sigma_imp_iw
|
||||
elif all( isinstance(gf, Gf) and isinstance (gf.mesh, MeshReFreq) for bname, gf in Sigma_imp[0]):
|
||||
elif all(isinstance(gf, Gf) and isinstance(gf.mesh, MeshReFreq) for bname, gf in Sigma_imp[0]):
|
||||
# Real frequency Sigma:
|
||||
self.Sigma_imp_w = [BlockGf(name_block_generator=[(block, GfReFreq(indices=inner, mesh=Sigma_imp[0].mesh))
|
||||
for block, inner in self.gf_struct_sumk[icrsh]], make_copies=False)
|
||||
self.Sigma_imp_w = [self.block_structure.create_gf(ish=icrsh, mesh=Sigma_imp[icrsh].mesh, gf_function=GfReFreq, space='sumk')
|
||||
for icrsh in range(self.n_corr_shells)]
|
||||
SK_Sigma_imp = self.Sigma_imp_w
|
||||
else:
|
||||
raise ValueError, "put_Sigma: This type of Sigma is not handled."
|
||||
raise ValueError, "put_Sigma: This type of Sigma is not handled, give either BlockGf of GfReFreq or GfImFreq."
|
||||
|
||||
# rotation from local to global coordinate system:
|
||||
for icrsh in range(self.n_corr_shells):
|
||||
for bname, gf in SK_Sigma_imp[icrsh]:
|
||||
if self.use_rotations:
|
||||
gf << self.rotloc(icrsh,
|
||||
Sigma_imp[icrsh][bname],
|
||||
direction='toGlobal')
|
||||
else:
|
||||
gf << Sigma_imp[icrsh][bname]
|
||||
|
||||
def transform_to_sumk_blocks(self, Sigma_imp, Sigma_out=None):
|
||||
r""" transform Sigma from solver to sumk space
|
||||
|
||||
Parameters
|
||||
----------
|
||||
Sigma_imp : list of BlockGf (Green's function) objects
|
||||
List containing impurity self-energy for all inequivalent correlated shells.
|
||||
The self-energies can be of the real or imaginary-frequency type.
|
||||
Sigma_out : list of BlockGf
|
||||
list of one BlockGf per correlated shell with the block structure
|
||||
according to ``gf_struct_sumk``; if None, it will be created
|
||||
"""
|
||||
|
||||
assert isinstance(Sigma_imp, list),\
|
||||
"transform_to_sumk_blocks: Sigma_imp has to be a list of Sigmas for the inequivalent correlated shells, even if it is of length 1!"
|
||||
assert len(Sigma_imp) == self.n_inequiv_shells,\
|
||||
"transform_to_sumk_blocks: give exactly one Sigma for each inequivalent corr. shell!"
|
||||
|
||||
if Sigma_out is None:
|
||||
Sigma_out = [self.block_structure.create_gf(ish=icrsh, mesh=Sigma_imp[self.corr_to_inequiv[icrsh]].mesh, space='sumk')
|
||||
for icrsh in range(self.n_corr_shells)]
|
||||
else:
|
||||
for icrsh in range(self.n_corr_shells):
|
||||
self.block_structure.check_gf(Sigma_out,
|
||||
ish=icrsh,
|
||||
space='sumk')
|
||||
|
||||
# transform the CTQMC blocks to the full matrix:
|
||||
for icrsh in range(self.n_corr_shells):
|
||||
# ish is the index of the inequivalent shell corresponding to icrsh
|
||||
ish = self.corr_to_inequiv[icrsh]
|
||||
for block, inner in self.gf_struct_solver[ish].iteritems():
|
||||
for ind1 in inner:
|
||||
for ind2 in inner:
|
||||
block_sumk, ind1_sumk = self.solver_to_sumk[
|
||||
ish][(block, ind1)]
|
||||
block_sumk, ind2_sumk = self.solver_to_sumk[
|
||||
ish][(block, ind2)]
|
||||
SK_Sigma_imp[icrsh][block_sumk][
|
||||
ind1_sumk, ind2_sumk] << Sigma_imp[ish][block][ind1, ind2]
|
||||
self.block_structure.convert_gf(
|
||||
G=Sigma_imp[ish],
|
||||
G_struct=None,
|
||||
space_from='solver',
|
||||
space_to='sumk',
|
||||
ish_from=ish,
|
||||
ish_to=icrsh,
|
||||
G_out=Sigma_out[icrsh])
|
||||
return Sigma_out
|
||||
|
||||
# rotation from local to global coordinate system:
|
||||
if self.use_rotations:
|
||||
for icrsh in range(self.n_corr_shells):
|
||||
for bname, gf in SK_Sigma_imp[icrsh]:
|
||||
gf << self.rotloc(icrsh, gf, direction='toGlobal')
|
||||
|
||||
def extract_G_loc(self, mu=None, iw_or_w='iw', with_Sigma=True, with_dc=True, broadening=None):
|
||||
def extract_G_loc(self, mu=None, iw_or_w='iw', with_Sigma=True, with_dc=True, broadening=None,
|
||||
transform_to_solver_blocks=True, show_warnings=True):
|
||||
r"""
|
||||
Extracts the local downfolded Green function by the Brillouin-zone integration of the lattice Green's function.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mu : real, optional
|
||||
Input chemical potential. If not provided the value of self.chemical_potential is used as mu.
|
||||
Input chemical potential. If not provided the value of self.chemical_potential is used as mu.
|
||||
with_Sigma : boolean, optional
|
||||
If True then the local GF is calculated with the self-energy self.Sigma_imp.
|
||||
If True then the local GF is calculated with the self-energy self.Sigma_imp.
|
||||
with_dc : boolean, optional
|
||||
If True then the double-counting correction is subtracted from the self-energy in calculating the GF.
|
||||
If True then the double-counting correction is subtracted from the self-energy in calculating the GF.
|
||||
broadening : float, optional
|
||||
Imaginary shift for the axis along which the real-axis GF is calculated.
|
||||
If not provided, broadening will be set to double of the distance between mesh points in 'mesh'.
|
||||
Only relevant for real-frequency GF.
|
||||
Imaginary shift for the axis along which the real-axis GF is calculated.
|
||||
If not provided, broadening will be set to double of the distance between mesh points in 'mesh'.
|
||||
Only relevant for real-frequency GF.
|
||||
transform_to_solver_blocks : bool, optional
|
||||
If True (default), the returned G_loc will be transformed to the block structure ``gf_struct_solver``,
|
||||
else it will be in ``gf_struct_sumk``.
|
||||
show_warnings : bool, optional
|
||||
Displays warning messages during transformation
|
||||
(Only effective if transform_to_solver_blocks = True
|
||||
|
||||
Returns
|
||||
-------
|
||||
G_loc_inequiv : list of BlockGf (Green's function) objects
|
||||
List of the local Green's functions for all inequivalent correlated shells,
|
||||
rotated into the corresponding local frames.
|
||||
|
||||
G_loc : list of BlockGf (Green's function) objects
|
||||
List of the local Green's functions for all (inequivalent) correlated shells,
|
||||
rotated into the corresponding local frames.
|
||||
If ``transform_to_solver_blocks`` is True, it will be one per correlated shell, else one per
|
||||
inequivalent correlated shell.
|
||||
"""
|
||||
|
||||
if mu is None:
|
||||
@ -708,20 +751,53 @@ class SumkDFT(object):
|
||||
G_loc[icrsh][bname] << self.rotloc(
|
||||
icrsh, gf, direction='toLocal')
|
||||
|
||||
if transform_to_solver_blocks:
|
||||
return self.transform_to_solver_blocks(G_loc, show_warnings=show_warnings)
|
||||
|
||||
return G_loc
|
||||
|
||||
def transform_to_solver_blocks(self, G_loc, G_out=None, show_warnings = True):
|
||||
""" transform G_loc from sumk to solver space
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G_loc : list of BlockGf
|
||||
a list of one BlockGf per correlated shell with a structure
|
||||
according to ``gf_struct_sumk``, e.g. as returned by
|
||||
:py:meth:`.extract_G_loc` with ``transform_to_solver_blocks=False``.
|
||||
G_out : list of BlockGf
|
||||
a list of one BlockGf per *inequivalent* correlated shell
|
||||
with a structure according to ``gf_struct_solver``.
|
||||
The output Green's function (if not given, a new one is
|
||||
created)
|
||||
|
||||
Returns
|
||||
-------
|
||||
G_out
|
||||
"""
|
||||
|
||||
assert isinstance(G_loc, list), "G_loc must be a list (with elements for each correlated shell)"
|
||||
|
||||
if G_out is None:
|
||||
G_out = [self.block_structure.create_gf(ish=ish, mesh=G_loc[self.inequiv_to_corr[ish]].mesh)
|
||||
for ish in range(self.n_inequiv_shells)]
|
||||
else:
|
||||
for ish in range(self.n_inequiv_shells):
|
||||
self.block_structure.check_gf(G_out, ish=ish)
|
||||
|
||||
# transform to CTQMC blocks:
|
||||
for ish in range(self.n_inequiv_shells):
|
||||
for block, inner in self.gf_struct_solver[ish].iteritems():
|
||||
for ind1 in inner:
|
||||
for ind2 in inner:
|
||||
block_sumk, ind1_sumk = self.solver_to_sumk[
|
||||
ish][(block, ind1)]
|
||||
block_sumk, ind2_sumk = self.solver_to_sumk[
|
||||
ish][(block, ind2)]
|
||||
G_loc_inequiv[ish][block][ind1, ind2] << G_loc[
|
||||
self.inequiv_to_corr[ish]][block_sumk][ind1_sumk, ind2_sumk]
|
||||
self.block_structure.convert_gf(
|
||||
G=G_loc[self.inequiv_to_corr[ish]],
|
||||
G_struct=None,
|
||||
ish_from=self.inequiv_to_corr[ish],
|
||||
ish_to=ish,
|
||||
space_from='sumk',
|
||||
G_out=G_out[ish],
|
||||
show_warnings = show_warnings)
|
||||
|
||||
# return only the inequivalent shells:
|
||||
return G_loc_inequiv
|
||||
return G_out
|
||||
|
||||
def analyse_block_structure(self, threshold=0.00001, include_shells=None, dm=None, hloc=None):
|
||||
r"""
|
||||
@ -864,7 +940,7 @@ class SumkDFT(object):
|
||||
the output G(tau) or A(w)
|
||||
"""
|
||||
# make a GfImTime from the supplied GfImFreq
|
||||
if all(isinstance(g_sh._first(), GfImFreq) for g_sh in G):
|
||||
if all(isinstance(g_sh.mesh, MeshImFreq) for g_sh in G):
|
||||
gf = [BlockGf(name_block_generator = [(name, GfImTime(beta=block.mesh.beta,
|
||||
indices=block.indices,n_points=len(block.mesh)+1)) for name, block in g_sh],
|
||||
make_copies=False) for g_sh in G]
|
||||
@ -872,15 +948,15 @@ class SumkDFT(object):
|
||||
for name, g in gf[ish]:
|
||||
g.set_from_inverse_fourier(G[ish][name])
|
||||
# keep a GfImTime from the supplied GfImTime
|
||||
elif all(isinstance(g_sh._first(), GfImTime) for g_sh in G):
|
||||
elif all(isinstance(g_sh.mesh, MeshImTime) for g_sh in G):
|
||||
gf = G
|
||||
# make a spectral function from the supplied GfReFreq
|
||||
elif all(isinstance(g_sh._first(), GfReFreq) for g_sh in G):
|
||||
elif all(isinstance(g_sh.mesh, MeshReFreq) for g_sh in G):
|
||||
gf = [g_sh.copy() for g_sh in G]
|
||||
for ish in range(len(gf)):
|
||||
for name, g in gf[ish]:
|
||||
g << 1.0j*(g-g.conjugate().transpose())/2.0/numpy.pi
|
||||
elif all(isinstance(g_sh._first(), GfReTime) for g_sh in G):
|
||||
elif all(isinstance(g_sh.mesh, MeshReTime) for g_sh in G):
|
||||
def get_delta_from_mesh(mesh):
|
||||
w0 = None
|
||||
for w in mesh:
|
||||
@ -936,6 +1012,8 @@ class SumkDFT(object):
|
||||
the Green's function transformed into the new block structure
|
||||
"""
|
||||
|
||||
assert isinstance(G, list), "G must be a list (with elements for each correlated shell)"
|
||||
|
||||
gf = self._get_hermitian_quantity_from_gf(G)
|
||||
|
||||
# initialize the variables
|
||||
@ -1004,13 +1082,13 @@ class SumkDFT(object):
|
||||
full_structure = BlockStructure.full_structure(
|
||||
[{sp:range(self.corr_shells[self.inequiv_to_corr[ish]]['dim'])
|
||||
for sp in self.spin_block_names[self.corr_shells[self.inequiv_to_corr[ish]]['SO']]}
|
||||
for ish in range(self.n_inequiv_shells)],None)
|
||||
for ish in range(self.n_inequiv_shells)],self.corr_to_inequiv)
|
||||
G_transformed = [
|
||||
self.block_structure.convert_gf(G[ish],
|
||||
full_structure, ish, mesh=G[ish].mesh.copy(), show_warnings=threshold,
|
||||
gf_function=type(G[ish]._first()))
|
||||
gf_function=type(G[ish]._first()), space_from='sumk', space_to='solver')
|
||||
for ish in range(self.n_inequiv_shells)]
|
||||
|
||||
#print 'c'
|
||||
if analyse_deg_shells:
|
||||
self.analyse_deg_shells(G_transformed, threshold, include_shells)
|
||||
return G_transformed
|
||||
@ -1252,6 +1330,82 @@ class SumkDFT(object):
|
||||
# a block was found, break out of the loop
|
||||
break
|
||||
|
||||
def calculate_diagonalization_matrix(self, prop_to_be_diagonal='eal', calc_in_solver_blocks=False, write_to_blockstructure = True, ish=0):
|
||||
"""
|
||||
Calculates the diagonalisation matrix, and (optionally) stores it in the BlockStructure.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
prop_to_be_diagonal : string, optional
|
||||
Defines the property to be diagonalized.
|
||||
|
||||
- 'eal' : local hamiltonian (i.e. crystal field)
|
||||
- 'dm' : local density matrix
|
||||
|
||||
calc_in_solver_blocks : bool, optional
|
||||
Whether the property shall be diagonalized in the
|
||||
full sumk structure, or just in the solver structure.
|
||||
|
||||
write_to_blockstructure : bool, optional
|
||||
Whether the diagonalization matrix shall be written to
|
||||
the BlockStructure directly.
|
||||
ish : int, optional
|
||||
Number of the correlated shell to be diagonalized.
|
||||
|
||||
Returns
|
||||
-------
|
||||
trafo : dict
|
||||
The transformation matrix for each spin-block in the correlated shell
|
||||
|
||||
"""
|
||||
trafo = {}
|
||||
|
||||
|
||||
if prop_to_be_diagonal == 'eal':
|
||||
prop = self.eff_atomic_levels()[ish]
|
||||
elif prop_to_be_diagonal == 'dm':
|
||||
prop = self.density_matrix(method='using_point_integration')[ish]
|
||||
else:
|
||||
mpi.report(
|
||||
"calculate_diagonalization_matrix: not a valid quantitiy to be diagonal. Choices are 'eal' or 'dm'.")
|
||||
return 0
|
||||
|
||||
if calc_in_solver_blocks:
|
||||
trafo_tmp = self.block_structure.transformation
|
||||
self.block_structure.transformation = None
|
||||
|
||||
prop_solver = self.block_structure.convert_matrix(prop, space_from='sumk', space_to='solver')
|
||||
t= {}
|
||||
for name in prop_solver:
|
||||
t[name] = numpy.linalg.eigh(prop_solver[name])[1].conjugate().transpose()
|
||||
trafo = self.block_structure.convert_matrix(t, space_from='solver', space_to='sumk')
|
||||
#self.T = numpy.dot(self.T.transpose().conjugate(),
|
||||
# self.w).conjugate().transpose()
|
||||
self.block_structure.transformation = trafo_tmp
|
||||
else:
|
||||
for name in prop:
|
||||
t = numpy.linalg.eigh(prop[name])[1].conjugate().transpose()
|
||||
trafo[name] = t
|
||||
# calculate new Transformation matrix
|
||||
#self.T = numpy.dot(self.T.transpose().conjugate(),
|
||||
# self.w).conjugate().transpose()
|
||||
|
||||
# measure for the 'unity' of the transformation:
|
||||
#wsqr = sum(abs(self.w.diagonal())**2) / self.w.diagonal().size
|
||||
#return wsqr
|
||||
|
||||
if write_to_blockstructure:
|
||||
if self.block_structure.transformation == None:
|
||||
self.block_structure.transformation = [{} for icrsh in range(self.n_corr_shells)]
|
||||
for icrsh in range(self. n_corr_shells):
|
||||
for sp in self.spin_block_names[self.corr_shells[icrsh]['SO']]:
|
||||
self.block_structure.transformation[icrsh][sp] = numpy.eye(self.corr_shells[icrsh]['dim'], dtype=numpy.complex_)
|
||||
|
||||
|
||||
self.block_structure.transformation[ish] = trafo
|
||||
|
||||
return trafo
|
||||
|
||||
|
||||
def density_matrix(self, method='using_gf', beta=40.0):
|
||||
"""Calculate density matrices in one of two ways.
|
||||
@ -1457,9 +1611,10 @@ class SumkDFT(object):
|
||||
self.dc_imp = dc_imp
|
||||
self.dc_energ = dc_energ
|
||||
|
||||
def calc_dc(self, dens_mat, orb=0, U_interact=None, J_hund=None, use_dc_formula=0, use_dc_value=None):
|
||||
def calc_dc(self, dens_mat, orb=0, U_interact=None, J_hund=None,
|
||||
use_dc_formula=0, use_dc_value=None, transform=True):
|
||||
r"""
|
||||
Calculates and sets the double counting corrections.
|
||||
Calculate and set the double counting corrections.
|
||||
|
||||
If 'use_dc_value' is provided the double-counting term is uniformly initialized
|
||||
with this constant and 'U_interact' and 'J_hund' are ignored.
|
||||
@ -1482,19 +1637,21 @@ class SumkDFT(object):
|
||||
Parameters
|
||||
----------
|
||||
dens_mat : gf_struct_solver like
|
||||
Density matrix for the specified correlated shell.
|
||||
Density matrix for the specified correlated shell.
|
||||
orb : int, optional
|
||||
Index of an inequivalent shell.
|
||||
Index of an inequivalent shell.
|
||||
U_interact : float, optional
|
||||
Value of interaction parameter `U`.
|
||||
Value of interaction parameter `U`.
|
||||
J_hund : float, optional
|
||||
Value of interaction parameter `J`.
|
||||
Value of interaction parameter `J`.
|
||||
use_dc_formula : int, optional
|
||||
Type of double-counting correction (see description).
|
||||
Type of double-counting correction (see description).
|
||||
use_dc_value : float, optional
|
||||
Value of the double-counting correction. If specified
|
||||
`U_interact`, `J_hund` and `use_dc_formula` are ignored.
|
||||
|
||||
Value of the double-counting correction. If specified
|
||||
`U_interact`, `J_hund` and `use_dc_formula` are ignored.
|
||||
transform : bool
|
||||
whether or not to use the transformation in block_structure
|
||||
to transform the dc
|
||||
"""
|
||||
|
||||
for icrsh in range(self.n_corr_shells):
|
||||
@ -1575,6 +1732,11 @@ class SumkDFT(object):
|
||||
mpi.report(
|
||||
"DC for shell %(icrsh)i = %(use_dc_value)f" % locals())
|
||||
mpi.report("DC energy = %s" % self.dc_energ[icrsh])
|
||||
if transform:
|
||||
for sp in spn:
|
||||
T = self.block_structure.effective_transformation_sumk[icrsh][sp]
|
||||
self.dc_imp[icrsh][sp] = numpy.dot(T.conjugate().transpose(),
|
||||
numpy.dot(self.dc_imp[icrsh][sp], T))
|
||||
|
||||
def add_dc(self, iw_or_w="iw"):
|
||||
r"""
|
||||
@ -1606,7 +1768,7 @@ class SumkDFT(object):
|
||||
|
||||
return sigma_minus_dc
|
||||
|
||||
def symm_deg_gf(self, gf_to_symm, orb):
|
||||
def symm_deg_gf(self, gf_to_symm, ish=0):
|
||||
r"""
|
||||
Averages a GF over degenerate shells.
|
||||
|
||||
@ -1618,8 +1780,8 @@ class SumkDFT(object):
|
||||
----------
|
||||
gf_to_symm : gf_struct_solver like
|
||||
Input and output GF (i.e., it gets overwritten)
|
||||
orb : int
|
||||
Index of an inequivalent shell.
|
||||
ish : int
|
||||
Index of an inequivalent shell. (default value 0)
|
||||
|
||||
"""
|
||||
|
||||
@ -1627,7 +1789,7 @@ class SumkDFT(object):
|
||||
# an h5 file, self.deg_shells might be None
|
||||
if self.deg_shells is None: return
|
||||
|
||||
for degsh in self.deg_shells[orb]:
|
||||
for degsh in self.deg_shells[ish]:
|
||||
# ss will hold the averaged orbitals in the basis where the
|
||||
# blocks are all equal
|
||||
# i.e. maybe_conjugate(v^dagger gf v)
|
||||
@ -1722,8 +1884,10 @@ class SumkDFT(object):
|
||||
# collect data from mpi:
|
||||
dens = mpi.all_reduce(mpi.world, dens, lambda x, y: x + y)
|
||||
mpi.barrier()
|
||||
|
||||
return dens
|
||||
import numpy as np
|
||||
if np.abs(np.imag(dens)) > 1e-20:
|
||||
mpi.report("Warning: Imaginary part in density will be ignored ({})".format(str(np.abs(np.imag(dens)))))
|
||||
return np.real(dens)
|
||||
|
||||
def set_mu(self, mu):
|
||||
r"""
|
||||
@ -2052,3 +2216,31 @@ class SumkDFT(object):
|
||||
def __set_deg_shells(self,value):
|
||||
self.block_structure.deg_shells = value
|
||||
deg_shells = property(__get_deg_shells,__set_deg_shells)
|
||||
|
||||
@property
|
||||
def gf_struct_solver_list(self):
|
||||
return self.block_structure.gf_struct_solver_list
|
||||
|
||||
@property
|
||||
def gf_struct_sumk_list(self):
|
||||
return self.block_structure.gf_struct_sumk_list
|
||||
|
||||
@property
|
||||
def gf_struct_solver_dict(self):
|
||||
return self.block_structure.gf_struct_solver_dict
|
||||
|
||||
@property
|
||||
def gf_struct_sumk_dict(self):
|
||||
return self.block_structure.gf_struct_sumk_dict
|
||||
|
||||
def __get_corr_to_inequiv(self):
|
||||
return self.block_structure.corr_to_inequiv
|
||||
def __set_corr_to_inequiv(self, value):
|
||||
self.block_structure.corr_to_inequiv = value
|
||||
corr_to_inequiv = property(__get_corr_to_inequiv, __set_corr_to_inequiv)
|
||||
|
||||
def __get_inequiv_to_corr(self):
|
||||
return self.block_structure.inequiv_to_corr
|
||||
def __set_inequiv_to_corr(self, value):
|
||||
self.block_structure.inequiv_to_corr = value
|
||||
inequiv_to_corr = property(__get_inequiv_to_corr, __set_inequiv_to_corr)
|
||||
|
@ -48,7 +48,7 @@ class TransBasis:
|
||||
self.T = copy.deepcopy(self.SK.T[0])
|
||||
self.w = numpy.identity(SK.corr_shells[0]['dim'])
|
||||
|
||||
def calculate_diagonalisation_matrix(self, prop_to_be_diagonal='eal'):
|
||||
def calculate_diagonalisation_matrix(self, prop_to_be_diagonal='eal', calc_in_solver_blocks = False):
|
||||
"""
|
||||
Calculates the diagonalisation matrix w, and stores it as member of the class.
|
||||
|
||||
@ -60,6 +60,10 @@ class TransBasis:
|
||||
- 'eal' : local hamiltonian (i.e. crystal field)
|
||||
- 'dm' : local density matrix
|
||||
|
||||
calc_in_solver_blocks : bool, optional
|
||||
Whether the property shall be diagonalized in the
|
||||
full sumk structure, or just in the solver structure.
|
||||
|
||||
Returns
|
||||
-------
|
||||
wsqr : double
|
||||
@ -76,16 +80,29 @@ class TransBasis:
|
||||
"trans_basis: not a valid quantitiy to be diagonal. Choices are 'eal' or 'dm'.")
|
||||
return 0
|
||||
|
||||
if self.SK.SO == 0:
|
||||
self.eig, self.w = numpy.linalg.eigh(prop['up'])
|
||||
# calculate new Transformation matrix
|
||||
if calc_in_solver_blocks:
|
||||
trafo = self.SK.block_structure.transformation
|
||||
self.SK.block_structure.transformation = None
|
||||
|
||||
prop_solver = self.SK.block_structure.convert_matrix(prop, space_from='sumk', space_to='solver')
|
||||
v= {}
|
||||
for name in prop_solver:
|
||||
v[name] = numpy.linalg.eigh(prop_solver[name])[1]
|
||||
self.w = self.SK.block_structure.convert_matrix(v, space_from='solver', space_to='sumk')['ud' if self.SK.SO else 'up']
|
||||
self.T = numpy.dot(self.T.transpose().conjugate(),
|
||||
self.w).conjugate().transpose()
|
||||
self.SK.block_structure.transformation = trafo
|
||||
else:
|
||||
self.eig, self.w = numpy.linalg.eigh(prop['ud'])
|
||||
# calculate new Transformation matrix
|
||||
self.T = numpy.dot(self.T.transpose().conjugate(),
|
||||
self.w).conjugate().transpose()
|
||||
if self.SK.SO == 0:
|
||||
self.eig, self.w = numpy.linalg.eigh(prop['up'])
|
||||
# calculate new Transformation matrix
|
||||
self.T = numpy.dot(self.T.transpose().conjugate(),
|
||||
self.w).conjugate().transpose()
|
||||
else:
|
||||
self.eig, self.w = numpy.linalg.eigh(prop['ud'])
|
||||
# calculate new Transformation matrix
|
||||
self.T = numpy.dot(self.T.transpose().conjugate(),
|
||||
self.w).conjugate().transpose()
|
||||
|
||||
# measure for the 'unity' of the transformation:
|
||||
wsqr = sum(abs(self.w.diagonal())**2) / self.w.diagonal().size
|
||||
|
@ -26,7 +26,6 @@ G = SK.extract_G_loc()
|
||||
|
||||
# the original block structure
|
||||
block_structure1 = SK.block_structure.copy()
|
||||
|
||||
G_new = SK.analyse_block_structure_from_gf(G)
|
||||
|
||||
# the new block structure
|
||||
@ -163,9 +162,9 @@ for conjugate in conjugate_values:
|
||||
G_new = SK.analyse_block_structure_from_gf(G, 1.e-7)
|
||||
|
||||
# transform G_noisy etc. to the new block structure
|
||||
G_noisy = SK.block_structure.convert_gf(G_noisy, block_structure1, beta = G_noisy.mesh.beta)
|
||||
G_pre_transform = SK.block_structure.convert_gf(G_pre_transform, block_structure1, beta = G_noisy.mesh.beta)
|
||||
G_noisy_pre_transform = SK.block_structure.convert_gf(G_noisy_pre_transform, block_structure1, beta = G_noisy.mesh.beta)
|
||||
G_noisy = SK.block_structure.convert_gf(G_noisy, block_structure1, beta = G_noisy.mesh.beta, space_from='sumk')
|
||||
G_pre_transform = SK.block_structure.convert_gf(G_pre_transform, block_structure1, beta = G_noisy.mesh.beta, space_from='sumk')
|
||||
G_noisy_pre_transform = SK.block_structure.convert_gf(G_noisy_pre_transform, block_structure1, beta = G_noisy.mesh.beta, space_from='sumk')
|
||||
|
||||
assert len(SK.deg_shells[0]) == 2, "wrong number of equivalent groups found"
|
||||
assert sorted([len(d) for d in SK.deg_shells[0]]) == [2,3], "wrong number of members in the equivalent groups found"
|
||||
|
Binary file not shown.
Binary file not shown.
@ -2,67 +2,219 @@ from triqs_dft_tools.sumk_dft import *
|
||||
from pytriqs.utility.h5diff import h5diff
|
||||
from pytriqs.gf import *
|
||||
from pytriqs.utility.comparison_tests import assert_block_gfs_are_close
|
||||
from scipy.linalg import expm
|
||||
from triqs_dft_tools.block_structure import BlockStructure
|
||||
import numpy as np
|
||||
from pytriqs.utility.h5diff import compare, failures
|
||||
|
||||
SK = SumkDFT('blockstructure.in.h5',use_dft_blocks=True)
|
||||
|
||||
def cmp(a, b, precision=1.e-15):
|
||||
compare('', a, b, 0, precision)
|
||||
if failures:
|
||||
raise AssertionError('\n'.join(failures))
|
||||
|
||||
SK = SumkDFT('blockstructure.in.h5', use_dft_blocks=True)
|
||||
|
||||
original_bs = SK.block_structure
|
||||
cmp(original_bs.effective_transformation_sumk,
|
||||
[{'down': np.array([[1., 0., 0.],
|
||||
[0., 1., 0.],
|
||||
[0., 0., 1.]]),
|
||||
'up': np.array([[1., 0., 0.],
|
||||
[0., 1., 0.],
|
||||
[0., 0., 1.]])}])
|
||||
cmp(original_bs.effective_transformation_solver,
|
||||
[{'up_0': np.array([[1., 0., 0.],
|
||||
[0., 1., 0.]]),
|
||||
'up_1': np.array([[0., 0., 1.]]),
|
||||
'down_1': np.array([[0., 0., 1.]]),
|
||||
'down_0': np.array([[1., 0., 0.],
|
||||
[0., 1., 0.]])}])
|
||||
|
||||
created_matrix = original_bs.create_matrix()
|
||||
cmp(created_matrix,
|
||||
{'up_0': np.array([[0. + 0.j, 0. + 0.j],
|
||||
[0. + 0.j, 0. + 0.j]]),
|
||||
'up_1': np.array([[0. + 0.j]]),
|
||||
'down_1': np.array([[0. + 0.j]]),
|
||||
'down_0': np.array([[0. + 0.j, 0. + 0.j],
|
||||
[0. + 0.j, 0. + 0.j]])})
|
||||
|
||||
|
||||
# check pick_gf_struct_solver
|
||||
pick1 = original_bs.copy()
|
||||
pick1.pick_gf_struct_solver([{'up_0': [1], 'up_1': [0], 'down_1': [0]}])
|
||||
|
||||
cmp(pick1.effective_transformation_sumk,
|
||||
[{'down': np.array([[0., 0., 0.],
|
||||
[0., 0., 0.],
|
||||
[0., 0., 1.]]),
|
||||
'up': np.array([[0., 0., 0.],
|
||||
[0., 1., 0.],
|
||||
[0., 0., 1.]])}])
|
||||
cmp(pick1.effective_transformation_solver,
|
||||
[{'up_0': np.array([[0., 1., 0.]]),
|
||||
'up_1': np.array([[0., 0., 1.]]),
|
||||
'down_1': np.array([[0., 0., 1.]])}])
|
||||
|
||||
# check loading a block_structure from file
|
||||
SK.block_structure = SK.load(['block_structure'],'mod')[0]
|
||||
SK.block_structure = SK.load(['block_structure'], 'mod')[0]
|
||||
assert SK.block_structure == pick1, 'loading SK block structure from file failed'
|
||||
|
||||
# check SumkDFT backward compatibility
|
||||
sk_pick1 = BlockStructure(gf_struct_sumk = SK.gf_struct_sumk,
|
||||
gf_struct_solver = SK.gf_struct_solver,
|
||||
solver_to_sumk = SK.solver_to_sumk,
|
||||
sumk_to_solver = SK.sumk_to_solver,
|
||||
solver_to_sumk_block = SK.solver_to_sumk_block,
|
||||
deg_shells = SK.deg_shells)
|
||||
sk_pick1 = BlockStructure(gf_struct_sumk=SK.gf_struct_sumk,
|
||||
gf_struct_solver=SK.gf_struct_solver,
|
||||
solver_to_sumk=SK.solver_to_sumk,
|
||||
sumk_to_solver=SK.sumk_to_solver,
|
||||
solver_to_sumk_block=SK.solver_to_sumk_block,
|
||||
deg_shells=SK.deg_shells,
|
||||
corr_to_inequiv=SK.corr_to_inequiv)
|
||||
assert sk_pick1 == pick1, 'constructing block structure from SumkDFT properties failed'
|
||||
|
||||
cmp(pick1.effective_transformation_sumk,
|
||||
[{'down': np.array([[0., 0., 0.],
|
||||
[0., 0., 0.],
|
||||
[0., 0., 1.]]),
|
||||
'up': np.array([[0., 0., 0.],
|
||||
[0., 1., 0.],
|
||||
[0., 0., 1.]])}])
|
||||
cmp(pick1.effective_transformation_solver,
|
||||
[{'up_0': np.array([[0., 1., 0.]]),
|
||||
'up_1': np.array([[0., 0., 1.]]),
|
||||
'down_1': np.array([[0., 0., 1.]])}])
|
||||
|
||||
# check pick_gf_struct_sumk
|
||||
pick2 = original_bs.copy()
|
||||
pick2.pick_gf_struct_sumk([{'up': [1, 2], 'down': [0,1]}])
|
||||
pick2.pick_gf_struct_sumk([{'up': [1, 2], 'down': [0, 1]}])
|
||||
|
||||
cmp(pick2.effective_transformation_sumk,
|
||||
[{'down': np.array([[1., 0., 0.],
|
||||
[0., 1., 0.],
|
||||
[0., 0., 0.]]),
|
||||
'up': np.array([[0., 0., 0.],
|
||||
[0., 1., 0.],
|
||||
[0., 0., 1.]])}])
|
||||
cmp(pick2.effective_transformation_solver,
|
||||
[{'up_0': np.array([[0., 1., 0.]]),
|
||||
'up_1': np.array([[0., 0., 1.]]),
|
||||
'down_0': np.array([[1., 0., 0.],
|
||||
[0., 1., 0.]])}])
|
||||
|
||||
pick3 = pick2.copy()
|
||||
pick3.transformation = [np.reshape(range(9), (3, 3))]
|
||||
cmp(pick3.effective_transformation_sumk,
|
||||
[{'down': np.array([[0, 1, 2],
|
||||
[3, 4, 5],
|
||||
[0, 0, 0]]),
|
||||
'up': np.array([[0, 0, 0],
|
||||
[3, 4, 5],
|
||||
[6, 7, 8]])}])
|
||||
cmp(pick3.effective_transformation_solver,
|
||||
[{'up_0': np.array([[3, 4, 5]]),
|
||||
'up_1': np.array([[6, 7, 8]]),
|
||||
'down_0': np.array([[0, 1, 2],
|
||||
[3, 4, 5]])}])
|
||||
|
||||
pick4 = original_bs.copy()
|
||||
pick4.transformation = [np.array([[0, 1, 0], [1, 0, 0], [0, 0, 1]])]
|
||||
pick4.pick_gf_struct_sumk([{'up': [1, 2], 'down': [0, 1]}])
|
||||
cmp(pick2.gf_struct_sumk, pick4.gf_struct_sumk)
|
||||
cmp(pick2.gf_struct_solver, pick4.gf_struct_solver)
|
||||
assert pick4.sumk_to_solver == [{('up', 0): ('up_0', 0),
|
||||
('up', 1): (None, None),
|
||||
('up', 2): ('up_1', 0),
|
||||
('down', 2): (None, None),
|
||||
('down', 1): ('down_0', 1),
|
||||
('down', 0): ('down_0', 0)}]
|
||||
assert pick4.solver_to_sumk == [{('up_1', 0): ('up', 2),
|
||||
('up_0', 0): ('up', 0),
|
||||
('down_0', 0): ('down', 0),
|
||||
('down_0', 1): ('down', 1)}]
|
||||
|
||||
# check map_gf_struct_solver
|
||||
mapping = [{ ('down_0', 0):('down', 0),
|
||||
('down_0', 1):('down', 2),
|
||||
('down_1', 0):('down', 1),
|
||||
('up_0', 0) :('down_1', 0),
|
||||
('up_0', 1) :('up_0', 0) }]
|
||||
mapping = [{('down_0', 0): ('down', 0),
|
||||
('down_0', 1): ('down', 2),
|
||||
('down_1', 0): ('down', 1),
|
||||
('up_0', 0): ('down_1', 0),
|
||||
('up_0', 1): ('up_0', 0)}]
|
||||
map1 = original_bs.copy()
|
||||
map1.map_gf_struct_solver(mapping)
|
||||
|
||||
# check create_gf
|
||||
G1 = original_bs.create_gf(beta=40,n_points=3)
|
||||
i = 1
|
||||
for block,gf in G1:
|
||||
gf << SemiCircular(i)
|
||||
i+=1
|
||||
G1 = original_bs.create_gf(beta=40, n_points=3)
|
||||
widths = dict(up_0=1, up_1=2, down_0=4, down_1=3)
|
||||
for block, gf in G1:
|
||||
gf << SemiCircular(widths[block])
|
||||
original_bs.check_gf(G1)
|
||||
original_bs.check_gf([G1])
|
||||
|
||||
# check approximate_as_diagonal
|
||||
offd = original_bs.copy()
|
||||
offd.approximate_as_diagonal()
|
||||
|
||||
# check map_gf_struct_solver
|
||||
G2 = map1.convert_gf(G1,original_bs,beta=40,n_points=3,show_warnings=False)
|
||||
import warnings
|
||||
with warnings.catch_warnings(record=True) as w:
|
||||
G2 = map1.convert_gf(G1, original_bs, beta=40, n_points=3,
|
||||
show_warnings=True)
|
||||
assert len(w) == 1
|
||||
assert issubclass(w[-1].category, UserWarning)
|
||||
assert "Block up_1 maximum difference" in str(w[-1].message)
|
||||
|
||||
m2 = map1.convert_matrix(created_matrix, original_bs, show_warnings=True)
|
||||
cmp(m2,
|
||||
{'down': np.array([[0. + 0.j, 0. + 0.j, 0. + 0.j],
|
||||
[0. + 0.j, 0. + 0.j, 0. + 0.j],
|
||||
[0. + 0.j, 0. + 0.j, 0. + 0.j]]),
|
||||
'up_0': np.array([[0. + 0.j]]),
|
||||
'down_1': np.array([[0. + 0.j]])})
|
||||
|
||||
# check full_structure
|
||||
full = BlockStructure.full_structure([{'up_0': [0, 1], 'up_1': [0], 'down_1': [0], 'down_0': [0, 1]}],None)
|
||||
full = BlockStructure.full_structure(
|
||||
[{'up_0': [0, 1], 'up_1': [0], 'down_1': [0], 'down_0': [0, 1]}], None)
|
||||
|
||||
G_sumk = BlockGf(mesh=G1.mesh, gf_struct=original_bs.gf_struct_sumk[0])
|
||||
for i in range(3):
|
||||
G_sumk['up'][i, i] << SemiCircular(1 if i < 2 else 2)
|
||||
G_sumk['down'][i, i] << SemiCircular(4 if i < 2 else 3)
|
||||
G3 = original_bs.convert_gf(G_sumk,
|
||||
None,
|
||||
space_from='sumk',
|
||||
beta=40,
|
||||
n_points=3)
|
||||
assert_block_gfs_are_close(G1, G3)
|
||||
|
||||
# check convert_gf with transformation
|
||||
# np.random.seed(894892309)
|
||||
H = np.random.rand(3, 3) + 1.0j * np.random.rand(3, 3)
|
||||
H = H + H.conjugate().transpose()
|
||||
T = expm(1.0j * H)
|
||||
G_T = G_sumk.copy()
|
||||
for block, gf in G_T:
|
||||
gf.from_L_G_R(T.conjugate().transpose(), gf, T)
|
||||
transformed_bs = original_bs.copy()
|
||||
transformed_bs.transformation = [T]
|
||||
G_bT = transformed_bs.convert_gf(G_T, None, space_from='sumk',
|
||||
beta=40, n_points=3)
|
||||
assert_block_gfs_are_close(G1, G_bT)
|
||||
|
||||
assert original_bs.gf_struct_sumk_list ==\
|
||||
[[('up', [0, 1, 2]), ('down', [0, 1, 2])]]
|
||||
assert original_bs.gf_struct_solver_dict ==\
|
||||
[{'up_0': [0, 1], 'up_1': [0], 'down_1': [0], 'down_0': [0, 1]}]
|
||||
assert original_bs.gf_struct_sumk_dict ==\
|
||||
[{'down': [0, 1, 2], 'up': [0, 1, 2]}]
|
||||
assert original_bs.gf_struct_solver_list ==\
|
||||
[[('down_0', [0, 1]), ('down_1', [0]), ('up_0', [0, 1]), ('up_1', [0])]]
|
||||
|
||||
# check __eq__
|
||||
assert full==full, 'equality not correct (equal structures not equal)'
|
||||
assert pick1==pick1, 'equality not correct (equal structures not equal)'
|
||||
assert pick1!=pick2, 'equality not correct (different structures not different)'
|
||||
assert original_bs!=offd, 'equality not correct (different structures not different)'
|
||||
assert full == full, 'equality not correct (equal structures not equal)'
|
||||
assert pick1 == pick1, 'equality not correct (equal structures not equal)'
|
||||
assert pick1 != pick2, 'equality not correct (different structures not different)'
|
||||
assert original_bs != offd, 'equality not correct (different structures not different)'
|
||||
|
||||
if mpi.is_master_node():
|
||||
with HDFArchive('blockstructure.out.h5','w') as ar:
|
||||
with HDFArchive('blockstructure.out.h5', 'w') as ar:
|
||||
ar['original_bs'] = original_bs
|
||||
ar['pick1'] = pick1
|
||||
ar['pick2'] = pick2
|
||||
@ -75,10 +227,10 @@ if mpi.is_master_node():
|
||||
# cannot use h5diff because BlockStructure testing is not implemented
|
||||
# there (and seems difficult to implement because it would mix triqs
|
||||
# and dft_tools)
|
||||
with HDFArchive('blockstructure.out.h5','r') as ar,\
|
||||
HDFArchive('blockstructure.ref.h5','r') as ar2:
|
||||
for k in ar2:
|
||||
if isinstance(ar[k],BlockGf):
|
||||
assert_block_gfs_are_close(ar[k],ar2[k],1.e-6)
|
||||
else:
|
||||
assert ar[k]==ar2[k], '{} not equal'.format(k)
|
||||
with HDFArchive('blockstructure.out.h5', 'r') as ar,\
|
||||
HDFArchive('blockstructure.ref.h5', 'r') as ar2:
|
||||
for k in ar2:
|
||||
if isinstance(ar[k], BlockGf):
|
||||
assert_block_gfs_are_close(ar[k], ar2[k], 1.e-6)
|
||||
else:
|
||||
assert ar[k] == ar2[k], '{} not equal'.format(k)
|
||||
|
Binary file not shown.
Loading…
Reference in New Issue
Block a user