3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-22 04:13:47 +01:00

Add more integrators for the transport integral

It is now possible to use trapz, simps and quadl (with cubic
        spline) to perform the omega integration needed in the transport code.
This commit is contained in:
Manuel Zingl 2015-07-28 17:21:13 +02:00
parent 6ecbf6720d
commit b6e33ecc23

View File

@ -18,13 +18,15 @@
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
#
################################################################################
import sys
from types import *
import numpy
from pytriqs.gf.local import *
import pytriqs.utility.mpi as mpi
from symmetry import *
from sumk_dft import SumkDFT
from scipy.integrate import *
from scipy.interpolate import *
class SumkDFTTools(SumkDFT):
"""
@ -613,8 +615,8 @@ class SumkDFTTools(SumkDFT):
if (energy_window[0] >= energy_window[1] or energy_window[0] >= 0 or energy_window[1] <= 0):
assert 0, "transport_distribution: energy_window wrong!"
if (abs(self.fermi_dis(energy_window[0]*beta)*self.fermi_dis(-energy_window[0]*beta)) > 1e-5
or abs(self.fermi_dis(energy_window[1]*beta)*self.fermi_dis(-energy_window[1]*beta)) > 1e-5):
if (abs(self.fermi_dis(energy_window[0],beta)*self.fermi_dis(-energy_window[0],beta)) > 1e-5
or abs(self.fermi_dis(energy_window[1],beta)*self.fermi_dis(-energy_window[1],beta)) > 1e-5):
mpi.report("\n####################################################################")
mpi.report("transport_distribution: WARNING - energy window might be too narrow!")
mpi.report("####################################################################\n")
@ -719,7 +721,7 @@ class SumkDFTTools(SumkDFT):
/ self.cellvolume(self.lattice_type, self.lattice_constants, self.lattice_angles)[1] / self.n_symmetries)
def transport_coefficient(self, direction, iq, n, beta):
def transport_coefficient(self, direction, iq, n, beta, method=None):
r"""
Calculates the transport coefficient A_n in a given direction for a given :math:`\Omega`. The required members (Gamma_w, directions, Om_mesh) have to be obtained first
by calling the function :meth:`transport_distribution <pytriqs.applications.dft.sumk_dft_tools.SumkDFTTools.transport_distribution>`. For n>0 A is set to NaN if :math:`\Omega` is not 0.0.
@ -734,6 +736,9 @@ class SumkDFTTools(SumkDFT):
Number of the desired moment of the transport distribution.
beta : double
Inverse temperature :math:`\beta`.
method : string
Integration method: cubic spline and scipy.integrate.quad ('quad'), simpson rule ('simps'), trapezoidal rule ('trapz'), rectangular integration (otherwise)
Note that the sampling points of the the self-energy are used!
Returns
-------
@ -744,24 +749,39 @@ class SumkDFTTools(SumkDFT):
if not (mpi.is_master_node()): return
assert hasattr(self,'Gamma_w'), "transport_coefficient: Run transport_distribution first or load data from h5!"
if (self.Om_mesh[iq] == 0.0 or n == 0.0):
A = 0.0
omegaT = self.omega * beta
d_omega = self.omega[1] - self.omega[0]
# setup the integrand
if (self.Om_mesh[iq] == 0.0):
for iw in xrange(self.Gamma_w[direction].shape[1]):
A += self.Gamma_w[direction][iq, iw] * self.fermi_dis(omegaT[iw]) * self.fermi_dis(-omegaT[iw]) * numpy.float(omegaT[iw])**n * d_omega
A_int = self.Gamma_w[direction][iq] * (self.fermi_dis(self.omega,beta) * self.fermi_dis(-self.omega,beta)) * (self.omega*beta)**n
elif (n == 0.0):
A_int = self.Gamma_w[direction][iq] * (self.fermi_dis(self.omega,beta) - self.fermi_dis(self.omega+self.Om_mesh[iq],beta))/(self.Om_mesh[iq]*beta)
# w-integration
if method == 'quad':
# quad on interpolated w-points with cubic spline
A_int_interp = interp1d(self.omega,A_int,kind='cubic')
A = quad(A_int_interp, min(self.omega), max(self.omega), epsabs=1.0e-12,epsrel=1.0e-12,limit = 500)
A = A[0]
elif method == 'simps':
# simpson rule for w-grid
A = simps(A_int,self.omega)
elif method == 'trapz':
# trapezoidal rule for w-grid
A = numpy.trapz(A_int,self.omega)
else:
# rectangular integration for w-grid (orignal implementation)
d_w = self.omega[1] - self.omega[0]
for iw in xrange(self.Gamma_w[direction].shape[1]):
A += (self.Gamma_w[direction][iq, iw] * (self.fermi_dis(omegaT[iw]) - self.fermi_dis(omegaT[iw] + self.Om_mesh[iq] * beta))
/ (self.Om_mesh[iq] * beta) * d_omega)
A += A_int[iw]*d_w
A = A * numpy.pi * (2.0-self.SP)
else:
A = numpy.nan
A = A * numpy.pi * (2.0-self.SP)
return A
def conductivity_and_seebeck(self, beta):
def conductivity_and_seebeck(self, beta, method=None):
r"""
Calculates the Seebeck coefficient and the optical conductivity by calling
:meth:`transport_coefficient <pytriqs.applications.dft.sumk_dft_tools.SumkDFTTools.transport_coefficient>`.
@ -794,8 +814,8 @@ class SumkDFTTools(SumkDFT):
for direction in self.directions:
for iq in xrange(n_q):
A0[direction][iq] = self.transport_coefficient(direction, iq=iq, n=0, beta=beta)
A1[direction][iq] = self.transport_coefficient(direction, iq=iq, n=1, beta=beta)
A0[direction][iq] = self.transport_coefficient(direction, iq=iq, n=0, beta=beta, method=method)
A1[direction][iq] = self.transport_coefficient(direction, iq=iq, n=1, beta=beta, method=method)
print "A_0 in direction %s for Omega = %.2f %e a.u." % (direction, self.Om_mesh[iq], A0[direction][iq])
print "A_1 in direction %s for Omega = %.2f %e a.u." % (direction, self.Om_mesh[iq], A1[direction][iq])
if ~numpy.isnan(A1[direction][iq]):
@ -810,7 +830,7 @@ class SumkDFTTools(SumkDFT):
return self.optic_cond, self.seebeck
def fermi_dis(self, x):
def fermi_dis(self,w,beta):
r"""
Fermi distribution.
@ -819,11 +839,13 @@ class SumkDFTTools(SumkDFT):
Parameters
----------
x : double
Inverse temperature times frequency :math:`\beta\omega`.
w : double
frequency
beta : double
inverse temperature
Returns
-------
f : double
"""
return 1.0/(numpy.exp(x)+1)
return 1.0/(numpy.exp(w*beta)+1)