3
0
mirror of https://github.com/triqs/dft_tools synced 2024-11-06 22:23:52 +01:00

Tidying up

* Replace <<= with <<
* Reordering in put_Sigma
* Remove all instances of wien2triqs in doc
This commit is contained in:
Priyanka Seth 2014-10-28 16:19:28 +01:00
parent 56162a72bf
commit abd087e674
14 changed files with 250 additions and 239 deletions

View File

@ -55,7 +55,7 @@ if (previous_present):
mpi.report("Using stored data for initialisation")
if (mpi.is_master_node()):
ar = HDFArchive(HDFfilename,'a')
S.Sigma <<= ar['SigmaImFreq']
S.Sigma << ar['SigmaImFreq']
del ar
S.Sigma = mpi.bcast(S.Sigma)
SK.load()
@ -75,7 +75,7 @@ for Iteration_Number in range(1,Loops+1):
mpi.report("No adjustment of chemical potential\nTotal density = %.3f"%SK.total_density(mu=Chemical_potential))
# Density:
S.G <<= SK.extract_G_loc()[0]
S.G << SK.extract_G_loc()[0]
mpi.report("Total charge of Gloc : %.6f"%S.G.total_density())
dm = S.G.density()
@ -104,9 +104,9 @@ for Iteration_Number in range(1,Loops+1):
if (mpi.is_master_node()and (Mix<1.0)):
mpi.report("Mixing Sigma and G with factor %s"%Mix)
if ('SigmaImFreq' in ar):
S.Sigma <<= Mix * S.Sigma + (1.0-Mix) * ar['SigmaImFreq']
S.Sigma << Mix * S.Sigma + (1.0-Mix) * ar['SigmaImFreq']
if ('GF' in ar):
S.G <<= Mix * S.G + (1.0-Mix) * ar['GF']
S.G << Mix * S.G + (1.0-Mix) * ar['GF']
S.G = mpi.bcast(S.G)
S.Sigma = mpi.bcast(S.Sigma)

View File

@ -93,8 +93,8 @@ set up the loop over DMFT iterations and the self-consistency condition::
SK.put_Sigma(Sigma_imp = [ S.Sigma ]) # Put self energy to the SumK class
chemical_potential = SK.find_mu() # find the chemical potential for the given density
S.G <<= SK.extract_G_loc()[0] # extract the local Green function
S.G0 <<= inverse(S.Sigma + inverse(S.G)) # finally get G0, the input for the Solver
S.G << SK.extract_G_loc()[0] # extract the local Green function
S.G0 << inverse(S.Sigma + inverse(S.G)) # finally get G0, the input for the Solver
S.solve(U_interact,J_hund,use_spinflip=False,use_matrix=True, # now solve the impurity problem
l=2,T=None, dim_reps=None, irep=None, n_cycles =10000,

View File

@ -1,8 +1,8 @@
License
=======
Wien2TRIQS is published under the `GNU General Public License, version 3
<http://www.gnu.org/licenses/gpl.html>`_.
The dft_tools package is published under the
`GNU General Public License, version 3 <http://www.gnu.org/licenses/gpl.html>`_.
Authors & Quotation
=======================

View File

@ -76,7 +76,7 @@ of the last iteration::
if (previous_present):
if (mpi.is_master_node()):
ar = HDFArchive(lda_filename+'.h5','a')
S.Sigma <<= ar['SigmaImFreq']
S.Sigma << ar['SigmaImFreq']
del ar
S.Sigma = mpi.bcast(S.Sigma)
@ -90,16 +90,16 @@ previous section, with some additional refinement::
SK.put_Sigma(Sigma_imp = [ S.Sigma ]) # put Sigma into the SumK class:
chemical_potential = SK.find_mu( precision = prec_mu ) # find the chemical potential
S.G <<= SK.extract_G_loc()[0] # calculation of the local Green function
S.G << SK.extract_G_loc()[0] # calculation of the local Green function
mpi.report("Total charge of Gloc : %.6f"%S.G.total_density())
if ((iteration_number==1)and(previous_present==False)):
# Init the DC term and the real part of Sigma, if no previous run was found:
dm = S.G.density()
SK.set_dc( dm, U_interact = U, J_hund = J, orb = 0, use_dc_formula = dc_type)
S.Sigma <<= SK.dc_imp[0]['up'][0,0]
S.Sigma << SK.dc_imp[0]['up'][0,0]
S.G0 <<= inverse(S.Sigma + inverse(S.G))
S.G0 << inverse(S.Sigma + inverse(S.G))
# Solve the impurity problem:
S.solve(U_interact=U,J_hund=J,use_spinflip=use_spinflip,use_matrix=use_matrix,
@ -109,7 +109,7 @@ previous section, with some additional refinement::
# solution done, do the post-processing:
mpi.report("Total charge of impurity problem : %.6f"%S.G.total_density())
S.Sigma <<=(inverse(S.G0)-inverse(S.G))
S.Sigma <<(inverse(S.G0)-inverse(S.G))
# Solve the impurity problem:
S.solve(U_interact=U,J_hund=J,use_spinflip=use_spinflip,use_matrix=use_matrix,
l=l,T=SK.T[0], dim_reps=SK.dim_reps[0], irep=2, n_cycles=qmc_cycles,
@ -118,15 +118,15 @@ previous section, with some additional refinement::
# solution done, do the post-processing:
mpi.report("Total charge of impurity problem : %.6f"%S.G.total_density())
S.Sigma <<=(inverse(S.G0)-inverse(S.G))
S.Sigma <<(inverse(S.G0)-inverse(S.G))
# Now mix Sigma and G with factor Mix, if wanted:
if ((iteration_number>1) or (previous_present)):
if (mpi.is_master_node()):
ar = HDFArchive(lda_filename+'.h5','a')
mpi.report("Mixing Sigma and G with factor %s"%mix)
S.Sigma <<= mix * S.Sigma + (1.0-mix) * ar['Sigma']
S.G <<= mix * S.G + (1.0-mix) * ar['GF']
S.Sigma << mix * S.Sigma + (1.0-mix) * ar['Sigma']
S.G << mix * S.G + (1.0-mix) * ar['GF']
del ar
S.G = mpi.bcast(S.G)
S.Sigma = mpi.bcast(S.Sigma)

View File

@ -20,12 +20,12 @@ templates_path = ['@CMAKE_SOURCE_DIR@/doc/_templates']
html_theme = 'triqs'
html_theme_path = ['@TRIQS_THEMES_PATH@']
html_show_sphinx = False
html_context = {'header_title': 'Wien2TRIQS',
html_context = {'header_title': 'dft_tools',
'header_subtitle': 'Connecting <a class="triqs" style="font-size: 12px" href="http://ipht.cea.fr/triqs">TRIQS</a> to the Wien2k package',
'header_links': [['Install', 'install'],
['Documentation', 'documentation'],
['Issues', 'issues'],
['About Wien2TRIQS', 'about']]}
['About dft_tools', 'about']]}
html_static_path = ['@CMAKE_SOURCE_DIR@/doc/_static']
html_sidebars = {'index': ['sideb.html', 'searchbox.html']}

View File

@ -4,13 +4,13 @@
.. _wien2k:
Wien2TRIQS
dft_tools
========================================================
This application is aimed at DMFT calculations with
realistic band structure calculations.
A priori TRIQS can be connected to various realistic band structure codes.
In this release, we provide the Wien2TRIQS extension module which contains an
In this release, we provide the dft_tools extension module which contains an
interface to the `Wien2k package <http://www.wien2k.at>`_.

View File

@ -26,7 +26,7 @@ and store it in a format such that :program:`Wien2k` can read it. Therefore, aft
previous section, we symmetrise the self energy, and recalculate the impurity Green function::
SK.symm_deg_gf(S.Sigma,orb=0)
S.G <<= inverse(S.G0) - S.Sigma
S.G << inverse(S.G0) - S.Sigma
S.G.invert()
These steps are not necessary, but can help to reduce fluctuations in the total energy.

View File

@ -24,7 +24,7 @@ use_blocks = True # use bloc structure from LDA input
prec_mu = 0.0001
# Solver parameters
p = SolverCore.solve_parameters()
p = {}
p["max_time"] = -1
p["random_name"] = ""
p["random_seed"] = 123 * mpi.rank + 567
@ -58,16 +58,18 @@ spin_names = ["up","down"]
orb_names = ["%s"%i for i in range(num_orbitals)]
orb_hybridized = False
# Construct U matrix for density-density calculations
gf_struct = set_operator_structure(spin_names,orb_names,orb_hybridized)
# Construct U matrix for density-density calculations
Umat, Upmat = U_matrix_kanamori(n_orb=n_orb, U_int=U, J_hund=J)
# Construct Hamiltonian and solver
L = LocalProblem(spin_names, orb_names, orb_hybridized, h_loc_type="density", U=Umat, Uprime=Upmat, H_dump="H.txt")
S = Solver(beta=beta, gf_struct=L.gf_struct)
H = h_loc_density(spin_names, orb_names, orb_hybridized, U=Umat, Uprime=Upmat, H_dump="H.txt")
S = Solver(beta=beta, gf_struct=gf_struct)
if (previous_present):
if (mpi.is_master_node()):
ar = HDFArchive(lda_filename+'.h5','a')
S.Sigma_iw <<= ar['Sigma_iw']
S.Sigma_iw << ar['Sigma_iw']
del ar
S.Sigma_iw = mpi.bcast(S.Sigma_iw)
@ -76,33 +78,33 @@ for iteration_number in range(1,loops+1):
SK.symm_deg_gf(S.Sigma_iw,orb=0) # symmetrise Sigma
SK.put_Sigma(Sigma_imp = [ S.Sigma_iw ]) # put Sigma into the SumK class
chemical_potential = SK.find_mu( precision = prec_mu ) # find the chemical potential for the given density
S.G_iw <<= SK.extract_G_loc()[0] # extract the local Green function
S.G_iw << SK.extract_G_loc()[0] # extract the local Green function
mpi.report("Total charge of Gloc : %.6f"%S.G_iw.total_density())
if ((iteration_number==1)and(previous_present==False)):
# Init the DC term and the real part of Sigma, if no previous run was found:
dm = S.G_iw.density()
SK.set_dc(dm, U_interact = U, J_hund = J, orb = 0, use_dc_formula = dc_type)
S.Sigma_iw <<= SK.dc_imp[0]['up'][0,0]
S.Sigma_iw << SK.dc_imp[0]['up'][0,0]
# now calculate new G0_iw to input into the solver:
if (mpi.is_master_node()):
# We can do a mixing of Delta in order to stabilize the DMFT iterations:
S.G0_iw <<= S.Sigma_iw + inverse(S.G_iw)
S.G0_iw << S.Sigma_iw + inverse(S.G_iw)
ar = HDFArchive(lda_filename+'.h5','a')
if ((iteration_number>1) or (previous_present)):
mpi.report("Mixing input Delta with factor %s"%delta_mix)
Delta = (delta_mix * S.G0_iw.delta()) + (1.0-delta_mix) * ar['Delta_iw']
S.G0_iw <<= S.G0_iw + S.G0_iw.delta() - Delta
S.G0_iw << S.G0_iw + S.G0_iw.delta() - Delta
ar['Delta_iw'] = S.G0_iw.delta()
S.G0_iw <<= inverse(S.G0_iw)
S.G0_iw << inverse(S.G0_iw)
del ar
S.G0_iw = mpi.bcast(S.G0_iw)
# Solve the impurity problem:
S.solve(h_loc=L.h_loc, params=p)
S.solve(h_loc=h_loc, **p)
# solution done, do the post-processing:
mpi.report("Total charge of impurity problem : %.6f"%S.G_iw.total_density())
@ -112,8 +114,8 @@ for iteration_number in range(1,loops+1):
if (mpi.is_master_node()):
ar = HDFArchive(lda_filename+'.h5','a')
mpi.report("Mixing Sigma and G with factor %s"%sigma_mix)
S.Sigma_iw <<= sigma_mix * S.Sigma_iw + (1.0-sigma_mix) * ar['Sigma_iw']
S.G_iw <<= sigma_mix * S.G_iw + (1.0-sigma_mix) * ar['G_iw']
S.Sigma_iw << sigma_mix * S.Sigma_iw + (1.0-sigma_mix) * ar['Sigma_iw']
S.G_iw << sigma_mix * S.G_iw + (1.0-sigma_mix) * ar['G_iw']
del ar
S.G_iw = mpi.bcast(S.G_iw)
S.Sigma_iw = mpi.bcast(S.Sigma_iw)

Binary file not shown.

2
python/TODOFIX Normal file
View File

@ -0,0 +1,2 @@
* realfreq --> w?
* matsubara --> iw?

View File

@ -29,9 +29,8 @@ from pytriqs.archive import *
import pytriqs.utility.mpi as mpi
from math import cos,sin
# FIXME PS: These two aren't used it seems
from pytriqs.operators.operators2 import *
import string, pickle
# FIXME PS: This isn't used it seems
# from pytriqs.operators.operators2 import *
class SumkLDA:
"""This class provides a general SumK method for combining ab-initio code and pytriqs."""
@ -54,7 +53,7 @@ class SumkLDA:
self.symm_corr_data = symm_corr_data
self.block_names = [ ['up','down'], ['ud'] ]
self.n_spin_blocks_gf = [2,1]
self.Gupf = None
self.G_upfold = None
self.h_field = h_field
# read input from HDF:
@ -63,11 +62,11 @@ class SumkLDA:
'rot_mat_time_inv','n_reps','dim_reps','T','n_orbitals','proj_mat','bz_weights','hopping']
optional_things = ['gf_struct_solver','map_inv','map','chemical_potential','dc_imp','dc_energ','deg_shells']
self.retval = self.read_input_from_hdf(subgrp=self.lda_data,things_to_read=things_to_read,optional_things=optional_things)
self.read_value = self.read_input_from_hdf(subgrp=self.lda_data,things_to_read=things_to_read,optional_things=optional_things)
if (self.SO) and (abs(self.h_field)>0.000001):
self.h_field=0.0
mpi.report("For SO, the external magnetic field is not implemented, setting it to 0!!")
mpi.report("For SO, the external magnetic field is not implemented, setting it to 0!")
# determine the number of inequivalent correlated shells (self.n_inequiv_corr_shells)
@ -81,10 +80,11 @@ class SumkLDA:
self.names_to_ind[ibl][self.block_names[ibl][inm]] = inm * self.SP #(self.Nspinblocs-1)
# GF structure used for the local things in the k sums
# Most general form allowing for all hybridisation, i.e. largest blocks possible
self.gf_struct_corr = [ [ (al, range( self.corr_shells[i][3])) for al in self.block_names[self.corr_shells[i][4]] ]
for i in xrange(self.n_corr_shells) ]
if not (self.retval['gf_struct_solver']):
if not (self.read_value['gf_struct_solver']):
# No gf_struct was stored in HDF, so first set a standard one:
self.gf_struct_solver = [ dict([ (al, range(self.corr_shells[self.invshellmap[i]][3]) )
for al in self.block_names[self.corr_shells[self.invshellmap[i]][4]] ])
@ -97,14 +97,14 @@ class SumkLDA:
self.map[i][al] = [al for j in range( self.corr_shells[self.invshellmap[i]][3] ) ]
self.map_inv[i][al] = al
if not (self.retval['dc_imp']):
if not (self.read_value['dc_imp']):
# init the double counting:
self.__init_dc()
if not (self.retval['chemical_potential']):
if not (self.read_value['chemical_potential']):
self.chemical_potential = mu
if not (self.retval['deg_shells']):
if not (self.read_value['deg_shells']):
self.deg_shells = [ [] for i in range(self.n_inequiv_corr_shells)]
if self.symm_op:
@ -132,7 +132,7 @@ class SumkLDA:
Reads data from the HDF file
"""
retval = True
read_value = True
# init variables on all nodes:
for it in things_to_read: exec "self.%s = 0"%it
for it in optional_things: exec "self.%s = 0"%it
@ -146,20 +146,20 @@ class SumkLDA:
exec "self.%s = ar['%s']['%s']"%(it,subgrp,it)
else:
mpi.report("Loading %s failed!"%it)
retval = False
read_value = False
if ((retval) and (len(optional_things)>0)):
if ((read_value) and (len(optional_things)>0)):
# if necessary things worked, now read optional things:
retval = {}
read_value = {}
for it in optional_things:
if (it in ar[subgrp]):
exec "self.%s = ar['%s']['%s']"%(it,subgrp,it)
retval['%s'%it] = True
read_value['%s'%it] = True
else:
retval['%s'%it] = False
read_value['%s'%it] = False
else:
mpi.report("Loading failed: No %s subgroup in HDF5!"%subgrp)
retval = False
read_value = False
del ar
@ -168,9 +168,9 @@ class SumkLDA:
for it in optional_things: exec "self.%s = mpi.bcast(self.%s)"%(it,it)
retval = mpi.bcast(retval)
read_value = mpi.bcast(read_value)
return retval
return read_value
@ -191,8 +191,8 @@ class SumkLDA:
things_to_read=['chemical_potential','dc_imp','dc_energ']
retval = self.read_input_from_hdf(subgrp=self.lda_data,things_to_read=things_to_read)
return retval
read_value = self.read_input_from_hdf(subgrp=self.lda_data,things_to_read=things_to_read)
return read_value
def downfold(self,ik,icrsh,sig,gf_to_downfold,gf_inp):
@ -232,7 +232,7 @@ class SumkLDA:
if (direction=='toGlobal'):
if ((self.rot_mat_time_inv[icrsh]==1) and (self.SO)):
gf_rotated <<= gf_rotated.transpose()
gf_rotated << gf_rotated.transpose()
gf_rotated.from_L_G_R(self.rot_mat[icrsh].conjugate(),gf_rotated,self.rot_mat[icrsh].transpose())
else:
gf_rotated.from_L_G_R(self.rot_mat[icrsh],gf_rotated,self.rot_mat[icrsh].conjugate().transpose())
@ -240,7 +240,7 @@ class SumkLDA:
elif (direction=='toLocal'):
if ((self.rot_mat_time_inv[icrsh]==1)and(self.SO)):
gf_rotated <<= gf_rotated.transpose()
gf_rotated << gf_rotated.transpose()
gf_rotated.from_L_G_R(self.rot_mat[icrsh].transpose(),gf_rotated,self.rot_mat[icrsh].conjugate())
else:
gf_rotated.from_L_G_R(self.rot_mat[icrsh].conjugate().transpose(),gf_rotated,self.rot_mat[icrsh])
@ -262,8 +262,8 @@ class SumkLDA:
beta = self.Sigma_imp[0].mesh.beta #override beta if Sigma is present
#
# if (self.Gupf is None):
# # first setting up of Gupf
# if (self.G_upfold is None):
# # first setting up of G_upfold
# BS = [ range(self.n_orbitals[ik,ntoi[ib]]) for ib in bln ]
# gf_struct = [ (bln[ib], BS[ib]) for ib in range(self.n_spin_blocks_gf[self.SO]) ]
# a_list = [a for a,al in gf_struct]
@ -271,16 +271,16 @@ class SumkLDA:
# glist = lambda : [ GfImFreq(indices = al, mesh = self.Sigma_imp[0].mesh) for a,al in gf_struct]
# else:
# glist = lambda : [ GfImFreq(indices = al, beta = beta) for a,al in gf_struct]
# self.Gupf = BlockGf(name_list = a_list, block_list = glist(),make_copies=False)
# self.Gupf.zero()
# self.Gupf_id = self.Gupf.copy()
# self.Gupf_id <<= iOmega_n
# self.G_upfold = BlockGf(name_list = a_list, block_list = glist(),make_copies=False)
# self.G_upfold.zero()
# self.G_upfold_id = self.G_upfold.copy()
# self.G_upfold_id << iOmega_n
#
# GFsize = [ gf.N1 for sig,gf in self.Gupf]
# GFsize = [ gf.N1 for sig,gf in self.G_upfold]
# unchangedsize = all( [ self.n_orbitals[ik,ntoi[bln[ib]]]==GFsize[ib]
# for ib in range(self.n_spin_blocks_gf[self.SO]) ] )
#
# if ((not unchangedsize)or(self.Gupf.mesh.beta!=beta)):
# if ((not unchangedsize)or(self.G_upfold.mesh.beta!=beta)):
# BS = [ range(self.n_orbitals[ik,ntoi[ib]]) for ib in bln ]
# gf_struct = [ (bln[ib], BS[ib]) for ib in range(self.n_spin_blocks_gf[self.SO]) ]
# a_list = [a for a,al in gf_struct]
@ -288,25 +288,25 @@ class SumkLDA:
# glist = lambda : [ GfImFreq(indices = al, mesh = self.Sigma_imp[0].mesh) for a,al in gf_struct]
# else:
# glist = lambda : [ GfImFreq(indices = al, beta = beta) for a,al in gf_struct]
# self.Gupf = BlockGf(name_list = a_list, block_list = glist(),make_copies=False)
# self.Gupf.zero()
# self.Gupf_id = self.Gupf.copy()
# self.Gupf_id <<= iOmega_n
# self.G_upfold = BlockGf(name_list = a_list, block_list = glist(),make_copies=False)
# self.G_upfold.zero()
# self.G_upfold_id = self.G_upfold.copy()
# self.G_upfold_id << iOmega_n
#
###
# FIXME PS Remove commented out code above if this works
# Do we need to set up Gupf?
set_up_Gupf = False
if self.Gupf == None:
set_up_Gupf = True
# Do we need to set up G_upfold?
set_up_G_upfold = False
if self.G_upfold == None:
set_up_G_upfold = True
else:
GFsize = [ gf.N1 for sig,gf in self.Gupf]
GFsize = [ gf.N1 for sig,gf in self.G_upfold]
unchangedsize = all( [ self.n_orbitals[ik,ntoi[bln[ib]]]==GFsize[ib]
for ib in range(self.n_spin_blocks_gf[self.SO]) ] )
if ((not unchangedsize)or(self.Gupf.mesh.beta!=beta)): set_up_Gupf = True
if ((not unchangedsize)or(self.G_upfold.mesh.beta!=beta)): set_up_G_upfold = True
# Set up Gupf
if set_up_Gupf:
# Set up G_upfold
if set_up_G_upfold:
BS = [ range(self.n_orbitals[ik,ntoi[ib]]) for ib in bln ]
gf_struct = [ (bln[ib], BS[ib]) for ib in range(self.n_spin_blocks_gf[self.SO]) ]
a_list = [a for a,al in gf_struct]
@ -314,55 +314,31 @@ class SumkLDA:
glist = lambda : [ GfImFreq(indices = al, mesh = self.Sigma_imp[0].mesh) for a,al in gf_struct]
else:
glist = lambda : [ GfImFreq(indices = al, beta = beta) for a,al in gf_struct]
self.Gupf = BlockGf(name_list = a_list, block_list = glist(),make_copies=False)
self.Gupf.zero()
self.Gupf_id = self.Gupf.copy()
self.Gupf_id <<= iOmega_n
self.G_upfold = BlockGf(name_list = a_list, block_list = glist(),make_copies=False)
self.G_upfold.zero()
self.G_upfold_id = self.G_upfold.copy()
self.G_upfold_id << iOmega_n
###
idmat = [numpy.identity(self.n_orbitals[ik,ntoi[bl]],numpy.complex_) for bl in bln]
self.Gupf <<= self.Gupf_id
self.G_upfold << self.G_upfold_id
M = copy.deepcopy(idmat)
for ibl in range(self.n_spin_blocks_gf[self.SO]):
ind = ntoi[bln[ibl]]
n_orb = self.n_orbitals[ik,ind]
M[ibl] = self.hopping[ik,ind,0:n_orb,0:n_orb] - (idmat[ibl]*mu) - (idmat[ibl] * self.h_field * (1-2*ibl))
self.Gupf -= M
self.G_upfold -= M
if (with_Sigma):
for icrsh in xrange(self.n_corr_shells):
for sig,gf in self.Gupf: gf -= self.upfold(ik,icrsh,sig,stmp[icrsh][sig],gf)
for sig,gf in self.G_upfold: gf -= self.upfold(ik,icrsh,sig,stmp[icrsh][sig],gf)
self.Gupf.invert()
self.G_upfold.invert()
return self.Gupf
return self.G_upfold
def check_projectors(self):
dens_mat = [numpy.zeros([self.corr_shells[ish][3],self.corr_shells[ish][3]],numpy.complex_)
for ish in range(self.n_corr_shells)]
for ik in range(self.n_k):
for ish in range(self.n_corr_shells):
dim = self.corr_shells[ish][3]
n_orb = self.n_orbitals[ik,0]
dens_mat[ish][:,:] += numpy.dot(self.proj_mat[ik,0,ish,0:dim,0:n_orb],self.proj_mat[ik,0,ish,0:dim,0:n_orb].transpose().conjugate()) * self.bz_weights[ik]
if (self.symm_op!=0): dens_mat = self.Symm_corr.symmetrize(dens_mat)
# Rotate to local coordinate system:
if (self.use_rotations):
for icrsh in xrange(self.n_corr_shells):
if (self.rot_mat_time_inv[icrsh]==1): dens_mat[icrsh] = dens_mat[icrsh].conjugate()
dens_mat[icrsh] = numpy.dot( numpy.dot(self.rot_mat[icrsh].conjugate().transpose(),dens_mat[icrsh]) ,
self.rot_mat[icrsh] )
return dens_mat
def simple_point_dens_mat(self):
@ -391,7 +367,7 @@ class SumkLDA:
for ibl,bl in enumerate(bln):
ind = ntoi[bl]
for inu in range(self.n_orbitals[ik,ind]):
if ( (self.hopping[ik,ind,inu,inu]-self.h_field*(1-2*ibl)) < 0.0):
if ( (self.hopping[ik,ind,inu,inu]-self.h_field*(1-2*ibl)) < 0.0): # ONLY WORKS FOR DIAGONAL HOPPING MATRIX (TRUE IN WIEN2K)
MMat[ibl][inu,inu] = 1.0
else:
MMat[ibl][inu,inu] = 0.0
@ -427,7 +403,7 @@ class SumkLDA:
return dens_mat
# calculate upfolded gf, then density matrix -- no assumptions on structure (ie diagonal or not)
def density_gf(self,beta):
"""Calculates the density without setting up Gloc. It is useful for Hubbard I, and very fast."""
@ -440,9 +416,9 @@ class SumkLDA:
for ik in mpi.slice_array(ikarray):
Gupf = self.lattice_gf_matsubara(ik=ik, beta=beta, mu=self.chemical_potential)
Gupf *= self.bz_weights[ik]
dm = Gupf.density()
G_upfold = self.lattice_gf_matsubara(ik=ik, beta=beta, mu=self.chemical_potential)
G_upfold *= self.bz_weights[ik]
dm = G_upfold.density()
MMat = [dm[bl] for bl in self.block_names[self.SO]]
for icrsh in range(self.n_corr_shells):
@ -579,9 +555,9 @@ class SumkLDA:
ss.zero()
Ndeg = len(degsh)
for bl in degsh: ss += gf_to_symm[bl] / (1.0*Ndeg)
for bl in degsh: gf_to_symm[bl] <<= ss
for bl in degsh: gf_to_symm[bl] << ss
# for simply dft input, get crystal field splittings.
def eff_atomic_levels(self):
"""Calculates the effective atomic levels needed as input for the Hubbard I Solver."""
@ -618,7 +594,7 @@ class SumkLDA:
n_orb = self.n_orbitals[ik,isp]
MMat = numpy.identity(n_orb, numpy.complex_)
MMat = self.hopping[ik,isp,0:n_orb,0:n_orb] - (1-2*ibn) * self.h_field * MMat
self.Hsumk[icrsh][bn] += self.bz_weights[ik] * numpy.dot( numpy.dot(self.proj_mat[ik,isp,icrsh,0:dim,0:n_orb],MMat), #self.hopping[ik][isp]) ,
self.Hsumk[icrsh][bn] += self.bz_weights[ik] * numpy.dot( numpy.dot(self.proj_mat[ik,isp,icrsh,0:dim,0:n_orb],MMat),
self.proj_mat[ik,isp,icrsh,0:dim,0:n_orb].conjugate().transpose() )
# symmetrisation:
@ -703,19 +679,24 @@ class SumkLDA:
if (use_val is None):
if (use_dc_formula==0): # FLL
self.dc_energ[icrsh] = U_interact / 2.0 * Ncrtot * (Ncrtot-1.0)
for bl in a_list:
Uav = U_interact*(Ncrtot-0.5) - J_hund*(Ncr[bl] - 0.5)
self.dc_imp[icrsh][bl] *= Uav
self.dc_energ[icrsh] -= J_hund / 2.0 * (Ncr[bl]) * (Ncr[bl]-1.0)
mpi.report("DC for shell %(icrsh)i and block %(bl)s = %(Uav)f"%locals())
elif (use_dc_formula==1): # Held's formula, with U_interact the interorbital onsite interaction
self.dc_energ[icrsh] = (U_interact + (M-1)*(U_interact-2.0*J_hund) + (M-1)*(U_interact-3.0*J_hund))/(2*M-1) / 2.0 * Ncrtot * (Ncrtot-1.0)
for bl in a_list:
Uav =(U_interact + (M-1)*(U_interact-2.0*J_hund) + (M-1)*(U_interact-3.0*J_hund))/(2*M-1) * (Ncrtot-0.5)
self.dc_imp[icrsh][bl] *= Uav
mpi.report("DC for shell %(icrsh)i and block %(bl)s = %(Uav)f"%locals())
elif (use_dc_formula==2): # AMF
self.dc_energ[icrsh] = 0.5 * U_interact * Ncrtot * Ncrtot
for bl in a_list:
Uav = U_interact*(Ncrtot - Ncr[bl]/M) - J_hund * (Ncr[bl] - Ncr[bl]/M)
@ -740,57 +721,23 @@ class SumkLDA:
def find_dc(self,orb,guess,dens_mat,dens_req=None,precision=0.01):
"""Searches for DC in order to fulfill charge neutrality.
If dens_req is given, then DC is set such that the LOCAL charge of orbital
orb coincides with dens_req."""
mu = self.chemical_potential
def F(dc):
self.set_dc(dens_mat=dens_mat,U_interact=0,J_hund=0,orb=orb,use_val=dc)
if (dens_req is None):
return self.total_density(mu=mu)
else:
return self.extract_G_loc()[orb].total_density()
if (dens_req is None):
Dens_rel = self.density_required - self.charge_below
else:
Dens_rel = dens_req
dcnew = dichotomy.dichotomy(function = F,
x_init = guess, y_value = Dens_rel,
precision_on_y = precision, delta_x=0.5,
max_loops = 100, x_name="Double-Counting", y_name= "Total Density",
verbosity = 3)[0]
return dcnew
def put_Sigma(self, Sigma_imp):
"""Puts the impurity self energies for inequivalent atoms into the class, respects the multiplicity of the atoms."""
assert isinstance(Sigma_imp,list), "Sigma_imp has to be a list of Sigmas for the correlated shells, even if it is of length 1!"
assert len(Sigma_imp)==self.n_inequiv_corr_shells, "give exactly one Sigma for each inequivalent corr. shell!"
# init self.Sigma_imp:
if Sigma_imp[0].note == 'ReFreq':
# Real frequency Sigma:
self.Sigma_imp = [ BlockGf( name_block_generator = [ (a,GfReFreq(indices = al, mesh = Sigma_imp[0].mesh)) for a,al in self.gf_struct_corr[i] ],
make_copies = False) for i in xrange(self.n_corr_shells) ]
for i in xrange(self.n_corr_shells): self.Sigma_imp[i].note='ReFreq'
else:
if all(type(g) == GfImFreq for name,g in Sigma_imp[0]):
# Imaginary frequency Sigma:
self.Sigma_imp = [ BlockGf( name_block_generator = [ (a,GfImFreq(indices = al, mesh = Sigma_imp[0].mesh)) for a,al in self.gf_struct_corr[i] ],
make_copies = False) for i in xrange(self.n_corr_shells) ]
elif all(type(g) == GfReFreq for name,g in Sigma_imp[0]):
# Real frequency Sigma:
self.Sigma_imp = [ BlockGf( name_block_generator = [ (a,GfReFreq(indices = al, mesh = Sigma_imp[0].mesh)) for a,al in self.gf_struct_corr[i] ],
make_copies = False) for i in xrange(self.n_corr_shells) ]
else:
raise ValueError, "This type of Sigma is not handled."
# transform the CTQMC blocks to the full matrix:
for icrsh in xrange(self.n_corr_shells):
@ -816,12 +763,12 @@ class SumkLDA:
ind2 = orblist[j]
ind1_imp = map_ind[bl][ind1]
ind2_imp = map_ind[bl][ind2]
self.Sigma_imp[icrsh][self.map_inv[s][bl]][ind1_imp,ind2_imp] <<= Sigma_imp[s][bl][ind1,ind2]
self.Sigma_imp[icrsh][self.map_inv[s][bl]][ind1_imp,ind2_imp] << Sigma_imp[s][bl][ind1,ind2]
# rotation from local to global coordinate system:
if (self.use_rotations):
for icrsh in xrange(self.n_corr_shells):
for sig,gf in self.Sigma_imp[icrsh]: self.Sigma_imp[icrsh][sig] <<= self.rotloc(icrsh,gf,direction='toGlobal')
for sig,gf in self.Sigma_imp[icrsh]: self.Sigma_imp[icrsh][sig] << self.rotloc(icrsh,gf,direction='toGlobal')
@ -832,10 +779,11 @@ class SumkLDA:
sres = [s.copy() for s in self.Sigma_imp]
for icrsh in xrange(self.n_corr_shells):
for bl,gf in sres[icrsh]:
# Transform dc_imp to global coordinate system
dccont = numpy.dot(self.rot_mat[icrsh],numpy.dot(self.dc_imp[icrsh][bl],self.rot_mat[icrsh].conjugate().transpose()))
sres[icrsh][bl] -= dccont
return sres
return sres # list of self energies corrected by DC
@ -846,34 +794,6 @@ class SumkLDA:
def sorts_of_atoms(self,lst):
"""
This routine should determine the number of sorts in the double list lst
"""
sortlst = [ lst[i][1] for i in xrange(len(lst)) ]
sortlst.sort()
sorts = 1
for i in xrange(len(sortlst)-1):
if sortlst[i+1]>sortlst[i]: sorts += 1
return sorts
def number_of_atoms(self,lst):
"""
This routine should determine the number of atoms in the double list lst
"""
atomlst = [ lst[i][0] for i in xrange(len(lst)) ]
atomlst.sort()
atoms = 1
for i in xrange(len(atomlst)-1):
if atomlst[i+1]>atomlst[i]: atoms += 1
return atoms
def inequiv_shells(self,lst):
"""
The number of inequivalent shells is calculated from lst, and a mapping is given as
@ -948,7 +868,7 @@ class SumkLDA:
return self.chemical_potential
#FIXME NOT USED!
def find_mu_nonint(self, dens_req, orb = None, beta = 40, precision = 0.01):
def F(mu):
@ -998,12 +918,12 @@ class SumkLDA:
for icrsh in xrange(self.n_corr_shells):
tmp = Gloc[icrsh].copy() # init temporary storage
for sig,gf in tmp: tmp[sig] <<= self.downfold(ik,icrsh,sig,S[sig],gf)
for sig,gf in tmp: tmp[sig] << self.downfold(ik,icrsh,sig,S[sig],gf)
Gloc[icrsh] += tmp
#collect data from mpi:
for icrsh in xrange(self.n_corr_shells):
Gloc[icrsh] <<= mpi.all_reduce(mpi.world,Gloc[icrsh],lambda x,y : x+y)
Gloc[icrsh] << mpi.all_reduce(mpi.world,Gloc[icrsh],lambda x,y : x+y)
mpi.barrier()
@ -1014,7 +934,7 @@ class SumkLDA:
# Gloc is rotated to the local coordinate system:
if (self.use_rotations):
for icrsh in xrange(self.n_corr_shells):
for sig,gf in Gloc[icrsh]: Gloc[icrsh][sig] <<= self.rotloc(icrsh,gf,direction='toLocal')
for sig,gf in Gloc[icrsh]: Gloc[icrsh][sig] << self.rotloc(icrsh,gf,direction='toLocal')
# transform to CTQMC blocks:
Glocret = [ BlockGf( name_block_generator = [ (a,GfImFreq(indices = al, mesh = Gloc[0].mesh)) for a,al in self.gf_struct_solver[i].iteritems() ],
@ -1041,7 +961,7 @@ class SumkLDA:
ind2 = orblist[j]
ind1_imp = map_ind[bl][ind1]
ind2_imp = map_ind[bl][ind2]
Glocret[ish][bl][ind1,ind2] <<= Gloc[self.invshellmap[ish]][self.map_inv[ish][bl]][ind1_imp,ind2_imp]
Glocret[ish][bl][ind1,ind2] << Gloc[self.invshellmap[ish]][self.map_inv[ish][bl]][ind1_imp,ind2_imp]
# return only the inequivalent shells:
@ -1146,3 +1066,90 @@ class SumkLDA:
return deltaN, dens
################
# FIXME LEAVE UNDOCUMENTED
################
def find_dc(self,orb,guess,dens_mat,dens_req=None,precision=0.01):
"""Searches for DC in order to fulfill charge neutrality.
If dens_req is given, then DC is set such that the LOCAL charge of orbital
orb coincides with dens_req."""
mu = self.chemical_potential
def F(dc):
self.set_dc(dens_mat=dens_mat,U_interact=0,J_hund=0,orb=orb,use_val=dc)
if (dens_req is None):
return self.total_density(mu=mu)
else:
return self.extract_G_loc()[orb].total_density()
if (dens_req is None):
Dens_rel = self.density_required - self.charge_below
else:
Dens_rel = dens_req
dcnew = dichotomy.dichotomy(function = F,
x_init = guess, y_value = Dens_rel,
precision_on_y = precision, delta_x=0.5,
max_loops = 100, x_name="Double-Counting", y_name= "Total Density",
verbosity = 3)[0]
return dcnew
# FIXME Check that dens matrix from projectors (DM=PPdagger) is correct (ie matches DFT)
def check_projectors(self):
dens_mat = [numpy.zeros([self.corr_shells[ish][3],self.corr_shells[ish][3]],numpy.complex_)
for ish in range(self.n_corr_shells)]
for ik in range(self.n_k):
for ish in range(self.n_corr_shells):
dim = self.corr_shells[ish][3]
n_orb = self.n_orbitals[ik,0]
dens_mat[ish][:,:] += numpy.dot(self.proj_mat[ik,0,ish,0:dim,0:n_orb],self.proj_mat[ik,0,ish,0:dim,0:n_orb].transpose().conjugate()) * self.bz_weights[ik]
if (self.symm_op!=0): dens_mat = self.Symm_corr.symmetrize(dens_mat)
# Rotate to local coordinate system:
if (self.use_rotations):
for icrsh in xrange(self.n_corr_shells):
if (self.rot_mat_time_inv[icrsh]==1): dens_mat[icrsh] = dens_mat[icrsh].conjugate()
dens_mat[icrsh] = numpy.dot( numpy.dot(self.rot_mat[icrsh].conjugate().transpose(),dens_mat[icrsh]) ,
self.rot_mat[icrsh] )
return dens_mat
# FIXME DETERMINE EQUIVALENCY OF SHELLS
def sorts_of_atoms(self,lst):
"""
This routine should determine the number of sorts in the double list lst
"""
sortlst = [ lst[i][1] for i in xrange(len(lst)) ]
sortlst.sort()
sorts = 1
for i in xrange(len(sortlst)-1):
if sortlst[i+1]>sortlst[i]: sorts += 1
return sorts
def number_of_atoms(self,lst):
"""
This routine should determine the number of atoms in the double list lst
"""
atomlst = [ lst[i][0] for i in xrange(len(lst)) ]
atomlst.sort()
atoms = 1
for i in xrange(len(atomlst)-1):
if atomlst[i+1]>atomlst[i]: atoms += 1
return atoms

View File

@ -47,7 +47,7 @@ class SumkLDATools(SumkLDA):
def __init__(self, hdf_file, mu = 0.0, h_field = 0.0, use_lda_blocks = False, lda_data = 'SumK_LDA', symm_corr_data = 'SymmCorr',
par_proj_data = 'SumK_LDA_ParProj', symm_par_data = 'SymmPar', bands_data = 'SumK_LDA_Bands'):
self.Gupf_refreq = None
self.G_upfold_refreq = None
SumkLDA.__init__(self,hdf_file=hdf_file,mu=mu,h_field=h_field,use_lda_blocks=use_lda_blocks,lda_data=lda_data,
symm_corr_data=symm_corr_data,par_proj_data=par_proj_data,symm_par_data=symm_par_data,
bands_data=bands_data)
@ -77,14 +77,14 @@ class SumkLDATools(SumkLDA):
gf_rotated = gf_to_rotate.copy()
if (direction=='toGlobal'):
if ((self.rot_mat_all_time_inv[ish]==1) and (self.SO)):
gf_rotated <<= gf_rotated.transpose()
gf_rotated << gf_rotated.transpose()
gf_rotated.from_L_G_R(self.rot_mat_all[ish].conjugate(),gf_rotated,self.rot_mat_all[ish].transpose())
else:
gf_rotated.from_L_G_R(self.rot_mat_all[ish],gf_rotated,self.rot_mat_all[ish].conjugate().transpose())
elif (direction=='toLocal'):
if ((self.rot_mat_all_time_inv[ish]==1)and(self.SO)):
gf_rotated <<= gf_rotated.transpose()
gf_rotated << gf_rotated.transpose()
gf_rotated.from_L_G_R(self.rot_mat_all[ish].transpose(),gf_rotated,self.rot_mat_all[ish].conjugate())
else:
gf_rotated.from_L_G_R(self.rot_mat_all[ish].conjugate().transpose(),gf_rotated,self.rot_mat_all[ish])
@ -102,13 +102,13 @@ class SumkLDATools(SumkLDA):
if (not hasattr(self,"Sigma_imp")): with_Sigma=False
if (with_Sigma):
assert self.Sigma_imp[0].note == 'ReFreq', "Real frequency Sigma needed for lattice_gf_realfreq!"
assert all(type(g) == GfReFreq for name,g in self.Sigma_imp[0]), "Real frequency Sigma needed for lattice_gf_realfreq!"
stmp = self.add_dc()
else:
assert (not (mesh is None)),"Without Sigma, give the mesh=(om_min,om_max,n_points) for lattice_gf_realfreq!"
if (self.Gupf_refreq is None):
# first setting up of Gupf_refreq
if (self.G_upfold_refreq is None):
# first setting up of G_upfold_refreq
BS = [ range(self.n_orbitals[ik,ntoi[ib]]) for ib in bln ]
gf_struct = [ (bln[ib], BS[ib]) for ib in range(self.n_spin_blocks_gf[self.SO]) ]
a_list = [a for a,al in gf_struct]
@ -116,10 +116,10 @@ class SumkLDATools(SumkLDA):
glist = lambda : [ GfReFreq(indices = al, mesh =self.Sigma_imp[0].mesh) for a,al in gf_struct]
else:
glist = lambda : [ GfReFreq(indices = al, window=(mesh[0],mesh[1]),n_points=mesh[2]) for a,al in gf_struct]
self.Gupf_refreq = BlockGf(name_list = a_list, block_list = glist(),make_copies=False)
self.Gupf_refreq.zero()
self.G_upfold_refreq = BlockGf(name_list = a_list, block_list = glist(),make_copies=False)
self.G_upfold_refreq.zero()
GFsize = [ gf.N1 for sig,gf in self.Gupf_refreq]
GFsize = [ gf.N1 for sig,gf in self.G_upfold_refreq]
unchangedsize = all( [ self.n_orbitals[ik,ntoi[bln[ib]]]==GFsize[ib]
for ib in range(self.n_spin_blocks_gf[self.SO]) ] )
@ -131,28 +131,28 @@ class SumkLDATools(SumkLDA):
glist = lambda : [ GfReFreq(indices = al, mesh =self.Sigma_imp[0].mesh) for a,al in gf_struct]
else:
glist = lambda : [ GfReFreq(indices = al, window=(mesh[0],mesh[1]),n_points=mesh[2]) for a,al in gf_struct]
self.Gupf_refreq = BlockGf(name_list = a_list, block_list = glist(),make_copies=False)
self.Gupf_refreq.zero()
self.G_upfold_refreq = BlockGf(name_list = a_list, block_list = glist(),make_copies=False)
self.G_upfold_refreq.zero()
idmat = [numpy.identity(self.n_orbitals[ik,ntoi[bl]],numpy.complex_) for bl in bln]
self.Gupf_refreq <<= Omega + 1j*broadening
self.G_upfold_refreq << Omega + 1j*broadening
M = copy.deepcopy(idmat)
for ibl in range(self.n_spin_blocks_gf[self.SO]):
ind = ntoi[bln[ibl]]
n_orb = self.n_orbitals[ik,ind]
M[ibl] = self.hopping[ik,ind,0:n_orb,0:n_orb] - (idmat[ibl]*mu) - (idmat[ibl] * self.h_field * (1-2*ibl))
self.Gupf_refreq -= M
self.G_upfold_refreq -= M
if (with_Sigma):
tmp = self.Gupf_refreq.copy() # init temporary storage
tmp = self.G_upfold_refreq.copy() # init temporary storage
for icrsh in xrange(self.n_corr_shells):
for sig,gf in tmp: tmp[sig] <<= self.upfold(ik,icrsh,sig,stmp[icrsh][sig],gf)
self.Gupf_refreq -= tmp # adding to the upfolded GF
for sig,gf in tmp: tmp[sig] << self.upfold(ik,icrsh,sig,stmp[icrsh][sig],gf)
self.G_upfold_refreq -= tmp # adding to the upfolded GF
self.Gupf_refreq.invert()
self.G_upfold_refreq.invert()
return self.Gupf_refreq
return self.G_upfold_refreq
@ -186,18 +186,18 @@ class SumkLDATools(SumkLDA):
for ik in xrange(self.n_k):
Gupf=self.lattice_gf_realfreq(ik=ik,mu=self.chemical_potential,broadening=broadening,mesh=(om_min,om_max,n_om),with_Sigma=False)
Gupf *= self.bz_weights[ik]
G_upfold=self.lattice_gf_realfreq(ik=ik,mu=self.chemical_potential,broadening=broadening,mesh=(om_min,om_max,n_om),with_Sigma=False)
G_upfold *= self.bz_weights[ik]
# non-projected DOS
for iom in range(n_om):
for sig,gf in Gupf:
for sig,gf in G_upfold:
asd = gf.data[iom,:,:].imag.trace()/(-3.1415926535)
DOS[sig][iom] += asd
for icrsh in xrange(self.n_corr_shells):
tmp = Gloc[icrsh].copy()
for sig,gf in tmp: tmp[sig] <<= self.downfold(ik,icrsh,sig,Gupf[sig],gf) # downfolding G
for sig,gf in tmp: tmp[sig] << self.downfold(ik,icrsh,sig,G_upfold[sig],gf) # downfolding G
Gloc[icrsh] += tmp
@ -206,7 +206,7 @@ class SumkLDATools(SumkLDA):
if (self.use_rotations):
for icrsh in xrange(self.n_corr_shells):
for sig,gf in Gloc[icrsh]: Gloc[icrsh][sig] <<= self.rotloc(icrsh,gf,direction='toLocal')
for sig,gf in Gloc[icrsh]: Gloc[icrsh][sig] << self.rotloc(icrsh,gf,direction='toLocal')
# Gloc can now also be used to look at orbitally resolved quantities
for ish in range(self.n_inequiv_corr_shells):
@ -243,8 +243,8 @@ class SumkLDATools(SumkLDA):
"""
thingstoread = ['dens_mat_below','n_parproj','proj_mat_pc','rot_mat_all','rot_mat_all_time_inv']
retval = self.read_input_from_hdf(subgrp=self.par_proj_data,things_to_read = thingstoread)
return retval
read_value = self.read_input_from_hdf(subgrp=self.par_proj_data,things_to_read = thingstoread)
return read_value
@ -254,9 +254,9 @@ class SumkLDATools(SumkLDA):
assert hasattr(self,"Sigma_imp"), "Set Sigma First!!"
#thingstoread = ['Dens_Mat_below','N_parproj','Proj_Mat_pc','rotmat_all']
#retval = self.read_input_from_HDF(SubGrp=self.par_proj_data, thingstoread=thingstoread)
retval = self.read_par_proj_input_from_hdf()
if not retval: return retval
#read_value = self.read_input_from_HDF(SubGrp=self.par_proj_data, thingstoread=thingstoread)
read_value = self.read_par_proj_input_from_hdf()
if not read_value: return read_value
if self.symm_op: self.Symm_par = Symmetry(self.hdf_file,subgroup=self.symm_par_data)
mu = self.chemical_potential
@ -296,14 +296,14 @@ class SumkLDATools(SumkLDA):
for ish in xrange(self.n_shells):
tmp = Gproj[ish].copy()
for ir in xrange(self.n_parproj[ish]):
for sig,gf in tmp: tmp[sig] <<= self.downfold_pc(ik,ir,ish,sig,S[sig],gf)
for sig,gf in tmp: tmp[sig] << self.downfold_pc(ik,ir,ish,sig,S[sig],gf)
Gproj[ish] += tmp
# collect data from mpi:
for sig in DOS:
DOS[sig] = mpi.all_reduce(mpi.world,DOS[sig],lambda x,y : x+y)
for ish in xrange(self.n_shells):
Gproj[ish] <<= mpi.all_reduce(mpi.world,Gproj[ish],lambda x,y : x+y)
Gproj[ish] << mpi.all_reduce(mpi.world,Gproj[ish],lambda x,y : x+y)
mpi.barrier()
if (self.symm_op!=0): Gproj = self.Symm_par.symmetrize(Gproj)
@ -311,7 +311,7 @@ class SumkLDATools(SumkLDA):
# rotation to local coord. system:
if (self.use_rotations):
for ish in xrange(self.n_shells):
for sig,gf in Gproj[ish]: Gproj[ish][sig] <<= self.rotloc_all(ish,gf,direction='toLocal')
for sig,gf in Gproj[ish]: Gproj[ish][sig] << self.rotloc_all(ish,gf,direction='toLocal')
for ish in range(self.n_shells):
for sig,gf in Gproj[ish]:
@ -348,8 +348,8 @@ class SumkLDATools(SumkLDA):
assert hasattr(self,"Sigma_imp"), "Set Sigma First!!"
thingstoread = ['n_k','n_orbitals','proj_mat','hopping','n_parproj','proj_mat_pc']
retval = self.read_input_from_hdf(subgrp=self.bands_data,things_to_read=thingstoread)
if not retval: return retval
read_value = self.read_input_from_hdf(subgrp=self.bands_data,things_to_read=thingstoread)
if not read_value: return read_value
if fermi_surface: ishell=None
@ -430,13 +430,13 @@ class SumkLDATools(SumkLDA):
Gproj.zero()
tmp = Gproj.copy()
for ir in xrange(self.n_parproj[ishell]):
for sig,gf in tmp: tmp[sig] <<= self.downfold_pc(ik,ir,ishell,sig,S[sig],gf)
for sig,gf in tmp: tmp[sig] << self.downfold_pc(ik,ir,ishell,sig,S[sig],gf)
Gproj += tmp
# TO BE FIXED:
# rotate to local frame
#if (self.use_rotations):
# for sig,gf in Gproj: Gproj[sig] <<= self.rotloc(0,gf,direction='toLocal')
# for sig,gf in Gproj: Gproj[sig] << self.rotloc(0,gf,direction='toLocal')
for iom in range(n_om):
if (M[iom]>om_minplot) and (M[iom]<om_maxplot):
@ -601,9 +601,9 @@ class SumkLDATools(SumkLDA):
#thingstoread = ['Dens_Mat_below','N_parproj','Proj_Mat_pc','rotmat_all']
#retval = self.read_input_from_HDF(SubGrp=self.par_proj_data,thingstoread=thingstoread)
retval = self.read_par_proj_input_from_hdf()
if not retval: return retval
#read_value = self.read_input_from_HDF(SubGrp=self.par_proj_data,thingstoread=thingstoread)
read_value = self.read_par_proj_input_from_hdf()
if not read_value: return read_value
if self.symm_op: self.Symm_par = Symmetry(self.hdf_file,subgroup=self.symm_par_data)
# Density matrix in the window
@ -636,13 +636,13 @@ class SumkLDATools(SumkLDA):
for ish in xrange(self.n_shells):
tmp = Gproj[ish].copy()
for ir in xrange(self.n_parproj[ish]):
for sig,gf in tmp: tmp[sig] <<= self.downfold_pc(ik,ir,ish,sig,S[sig],gf)
for sig,gf in tmp: tmp[sig] << self.downfold_pc(ik,ir,ish,sig,S[sig],gf)
Gproj[ish] += tmp
#print "K-Sum done on node",mpi.rank," at ",datetime.now()
#collect data from mpi:
for ish in xrange(self.n_shells):
Gproj[ish] <<= mpi.all_reduce(mpi.world,Gproj[ish],lambda x,y : x+y)
Gproj[ish] << mpi.all_reduce(mpi.world,Gproj[ish],lambda x,y : x+y)
mpi.barrier()
#print "Data collected on node",mpi.rank," at ",datetime.now()
@ -655,7 +655,7 @@ class SumkLDATools(SumkLDA):
# Rotation to local:
if (self.use_rotations):
for sig,gf in Gproj[ish]: Gproj[ish][sig] <<= self.rotloc_all(ish,gf,direction='toLocal')
for sig,gf in Gproj[ish]: Gproj[ish][sig] << self.rotloc_all(ish,gf,direction='toLocal')
isp = 0
for sig,gf in Gproj[ish]: #dmg.append(Gproj[ish].density()[sig])

View File

@ -108,7 +108,7 @@ class Symmetry:
if (isinstance(obj[0],BlockGf)):
tmp = obj[iorb].copy()
if (self.time_inv[in_s]): tmp <<= tmp.transpose()
if (self.time_inv[in_s]): tmp << tmp.transpose()
for sig,gf in tmp: tmp[sig].from_L_G_R(self.mat[in_s][iorb],tmp[sig],self.mat[in_s][iorb].conjugate().transpose())
tmp *= 1.0/self.n_s
symm_obj[jorb] += tmp
@ -142,7 +142,7 @@ class Symmetry:
# for iorb in range(self.n_orbits):
# if (isinstance(symm_obj[0],BlockGf)):
# tmp = symm_obj[iorb].copy()
# tmp <<= tmp.transpose()
# tmp << tmp.transpose()
# for sig,gf in tmp: tmp[sig].from_L_G_R(self.mat_tinv[iorb],tmp[sig],self.mat_tinv[iorb].transpose().conjugate())
# symm_obj[iorb] += tmp
# symm_obj[iorb] /= 2.0

View File

@ -83,7 +83,7 @@ class TransBasis:
for j in range(len(orblist)):
ind1 = orblist[i]
ind2 = orblist[j]
gfrotated[self.SK.map_inv[s][bl]][ind1,ind2] <<= gf_to_rot[bl][ind1,ind2]
gfrotated[self.SK.map_inv[s][bl]][ind1,ind2] << gf_to_rot[bl][ind1,ind2]
# Rotate using the matrix w
for sig,bn in gfrotated:
@ -96,7 +96,7 @@ class TransBasis:
for j in range(len(orblist)):
ind1 = orblist[i]
ind2 = orblist[j]
gfreturn[bl][ind1,ind2] <<= gfrotated[self.SK.map_inv[0][bl]][ind1,ind2]
gfreturn[bl][ind1,ind2] << gfrotated[self.SK.map_inv[0][bl]][ind1,ind2]
return gfreturn