mirror of
https://github.com/triqs/dft_tools
synced 2025-01-02 17:45:47 +01:00
fix: np.int / np.float / np. complex are depracted (np v1.20) / removed (np v1.24)
This commit is contained in:
parent
9d1f822730
commit
a9e99f2308
@ -25,19 +25,19 @@ calculation. The default name of this group is `dft_input`. Its contents are
|
||||
================= ====================================================================== =====================================================================================
|
||||
Name Type Meaning
|
||||
================= ====================================================================== =====================================================================================
|
||||
energy_unit numpy.float Unit of energy used for the calculation.
|
||||
n_k numpy.int Number of k-points used for the BZ integration.
|
||||
k_dep_projection numpy.int 1 if the dimension of the projection operators depend on the k-point,
|
||||
energy_unit float Unit of energy used for the calculation.
|
||||
n_k int Number of k-points used for the BZ integration.
|
||||
k_dep_projection int 1 if the dimension of the projection operators depend on the k-point,
|
||||
0 otherwise.
|
||||
SP numpy.int 1 for spin-polarised Hamiltonian, 0 for paramagnetic Hamiltonian.
|
||||
SO numpy.int 1 if spin-orbit interaction is included, 0 otherwise.
|
||||
charge_below numpy.float Number of electrons in the crystal below the correlated orbitals.
|
||||
SP int 1 for spin-polarised Hamiltonian, 0 for paramagnetic Hamiltonian.
|
||||
SO int 1 if spin-orbit interaction is included, 0 otherwise.
|
||||
charge_below float Number of electrons in the crystal below the correlated orbitals.
|
||||
Note that this is for compatibility with dmftproj, otherwise set to 0
|
||||
density_required numpy.float Required total electron density. Needed to determine the chemical potential.
|
||||
density_required float Required total electron density. Needed to determine the chemical potential.
|
||||
The density in the projection window is then `density_required`-`charge_below`.
|
||||
symm_op numpy.int 1 if symmetry operations are used for the BZ sums,
|
||||
symm_op int 1 if symmetry operations are used for the BZ sums,
|
||||
0 if all k-points are directly included in the input.
|
||||
n_shells numpy.int Number of atomic shells for which post-processing is possible.
|
||||
n_shells int Number of atomic shells for which post-processing is possible.
|
||||
Note: this is `not` the number of correlated orbitals!
|
||||
If there are two equivalent atoms in the unit cell, `n_shells` is 2.
|
||||
shells list of dict {string:int}, dim n_shells x 4 Atomic shell information.
|
||||
@ -46,17 +46,17 @@ shells list of dict {string:int}, dim n_shells x 4
|
||||
'l' is the angular quantum number, 'dim' is the dimension of the atomic shell.
|
||||
e.g. for two equivalent atoms in the unit cell, `atom` runs from 0 to 1,
|
||||
but `sort` can take only one value 0.
|
||||
n_corr_shells numpy.int Number of correlated atomic shells.
|
||||
n_corr_shells int Number of correlated atomic shells.
|
||||
If there are two correlated equivalent atoms in the unit cell, `n_corr_shells` is 2.
|
||||
n_inequiv_shells numpy.int Number of inequivalent atomic shells. Needs to be smaller than `n_corr_shells`.
|
||||
n_inequiv_shells int Number of inequivalent atomic shells. Needs to be smaller than `n_corr_shells`.
|
||||
The up / downfolding routines mediate between all correlated shells and the
|
||||
actual inequivalent shells, by using the self-energy etc. for all equal shells
|
||||
belonging to the same class of inequivalent shells. The mapping is performed with
|
||||
information stored in `corr_to_inequiv` and `inequiv_to_corr`.
|
||||
corr_to_inequiv list of numpy.int, dim `n_corr_shells` mapping from correlated shells to inequivalent correlated shells.
|
||||
corr_to_inequiv list of int, dim `n_corr_shells` mapping from correlated shells to inequivalent correlated shells.
|
||||
A list of length `n_corr_shells` containing integers, where same numbers mark
|
||||
equivalent sites.
|
||||
inequiv_to_corr list of numpy.int, dim `n_inequiv_shells` A list of length `n_inequiv_shells` containing list indices as integers pointing
|
||||
inequiv_to_corr list of int, dim `n_inequiv_shells` A list of length `n_inequiv_shells` containing list indices as integers pointing
|
||||
to the corresponding sites in `corr_to_inequiv`.
|
||||
corr_shells list of dict {string:int}, dim n_corr_shells x 6 Correlated orbital information.
|
||||
For each correlated shell, have a dict with keys
|
||||
@ -64,15 +64,15 @@ corr_shells list of dict {string:int}, dim n_corr_shells x 6
|
||||
'atom' is the atom index, 'sort' defines the equivalency of the atoms,
|
||||
'l' is the angular quantum number, 'dim' is the dimension of the atomic shell.
|
||||
'SO' is one if spin-orbit is included, 0 otherwise, 'irep' is a dummy integer 0.
|
||||
use_rotations numpy.int 1 if local and global coordinate systems are used, 0 otherwise.
|
||||
use_rotations int 1 if local and global coordinate systems are used, 0 otherwise.
|
||||
rot_mat list of numpy.array.complex, Rotation matrices for correlated shells, if `use_rotations`.
|
||||
dim n_corr_shells x [corr_shells['dim'],corr_shells['dim']] These rotations are automatically applied for up / downfolding.
|
||||
Set to the unity matrix if no rotations are used.
|
||||
rot_mat_time_inv list of numpy.int, dim n_corr_shells If `SP` is 1, 1 if the coordinate transformation contains inversion, 0 otherwise.
|
||||
rot_mat_time_inv list of int, dim n_corr_shells If `SP` is 1, 1 if the coordinate transformation contains inversion, 0 otherwise.
|
||||
If `use_rotations` or `SP` is 0, give a list of zeros.
|
||||
n_reps numpy.int Number of irreducible representations of the correlated shell.
|
||||
n_reps int Number of irreducible representations of the correlated shell.
|
||||
e.g. 2 if eg/t2g splitting is used.
|
||||
dim_reps list of numpy.int, dim n_reps Dimension of the representations.
|
||||
dim_reps list of int, dim n_reps Dimension of the representations.
|
||||
e.g. [2,3] for eg/t2g subsets.
|
||||
T list of numpy.array.complex, Transformation matrix from the spherical harmonics to impurity problem basis
|
||||
dim n_inequiv_corr_shell x normally the real cubic harmonics).
|
||||
|
@ -666,7 +666,7 @@ class BlockStructure(object):
|
||||
|
||||
return self._create_gf_or_matrix(ish, gf_function, BlockGf, space, **kwargs)
|
||||
|
||||
def create_matrix(self, ish=0, space='solver', dtype=np.complex_):
|
||||
def create_matrix(self, ish=0, space='solver', dtype=complex):
|
||||
""" Create a zero matrix having the correct structure.
|
||||
|
||||
For ``space='solver'``, the structure is according to
|
||||
|
@ -183,7 +183,7 @@ class ElkConverter(ConverterTools,Elk_tools,read_Elk):
|
||||
n_orbitals=n_orbitals[:,:1]
|
||||
#Resize proj_mat, mat, T
|
||||
#make temporary projector array
|
||||
proj_mat_tmp = numpy.zeros([n_k, 1, n_corr_shells, max([crsh['dim'] for crsh in corr_shells]), numpy.max(n_orbitals)], numpy.complex_)
|
||||
proj_mat_tmp = numpy.zeros([n_k, 1, n_corr_shells, max([crsh['dim'] for crsh in corr_shells]), numpy.max(n_orbitals)], complex)
|
||||
for ish in range(n_corr_shells):
|
||||
#update proj_mat
|
||||
for ik in range(n_k):
|
||||
@ -206,7 +206,7 @@ class ElkConverter(ConverterTools,Elk_tools,read_Elk):
|
||||
#size of each quadrant in the lm symmetry array.
|
||||
size=int(0.5*corr_shells[ish]['dim'])
|
||||
#temporary spin block array for SU(2) spin operations on mat
|
||||
spinmat = numpy.zeros([size,2,size,2],numpy.complex_)
|
||||
spinmat = numpy.zeros([size,2,size,2],complex)
|
||||
for isym in range(n_symm):
|
||||
#expand size of array
|
||||
mat[isym][ish]=numpy.lib.pad(mat[isym][ish],((0,size),(0,size)),'constant',constant_values=(0.0))
|
||||
@ -233,7 +233,7 @@ class ElkConverter(ConverterTools,Elk_tools,read_Elk):
|
||||
Rearranges the energy eigenvalue arrays into TRIQS format
|
||||
"""
|
||||
|
||||
hopping = numpy.zeros([n_k, n_spin_blocs, numpy.max(n_orbitals), numpy.max(n_orbitals)], numpy.complex_)
|
||||
hopping = numpy.zeros([n_k, n_spin_blocs, numpy.max(n_orbitals), numpy.max(n_orbitals)], complex)
|
||||
#loop over spin
|
||||
for isp in range(n_spin_blocs):
|
||||
#loop over k-points
|
||||
@ -295,7 +295,7 @@ class ElkConverter(ConverterTools,Elk_tools,read_Elk):
|
||||
mpi.report("Reading %s and EFERMI.OUT" % self.eval_file)
|
||||
[en,occ,nstsv]=read_Elk.read_eig(self)
|
||||
#read projectors calculated in the Elk calculation
|
||||
proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max([crsh['dim'] for crsh in corr_shells]), nstsv], numpy.complex_)
|
||||
proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max([crsh['dim'] for crsh in corr_shells]), nstsv], complex)
|
||||
mpi.report("Reading projector(s)")
|
||||
for ish in range(n_corr_shells):
|
||||
[n_orbitals,band_window,rep,proj_mat]=read_Elk.read_projector(self,corr_shells,n_spin_blocs,ish,proj_mat,ind,T,basis,filext)
|
||||
@ -349,7 +349,7 @@ class ElkConverter(ConverterTools,Elk_tools,read_Elk):
|
||||
#require a symmetry matrix to rotate from jatom to iatom. Below finds the non inversion
|
||||
#symmetric matrices which were used in calculating the projectors
|
||||
use_rotations = 1
|
||||
rot_mat = [numpy.identity(corr_shells[icrsh]['dim'], numpy.complex_) for icrsh in range(n_corr_shells)]
|
||||
rot_mat = [numpy.identity(corr_shells[icrsh]['dim'], complex) for icrsh in range(n_corr_shells)]
|
||||
for icrsh in range(n_corr_shells):
|
||||
#incrsh = corr_to_inequiv[icrsh]
|
||||
#iatom = corr_shells[incrsh]['atom']
|
||||
@ -407,7 +407,7 @@ class ElkConverter(ConverterTools,Elk_tools,read_Elk):
|
||||
symm_subgrp=self.symmcorr_subgrp
|
||||
#Elk does not use time inversion symmetry
|
||||
time_inv = [0 for j in range(n_symm)]
|
||||
mat_tinv = [numpy.identity(orbits[orb]['dim'], numpy.complex_)
|
||||
mat_tinv = [numpy.identity(orbits[orb]['dim'], complex)
|
||||
for orb in range(n_orbits)]
|
||||
#Save all the symmetry data
|
||||
if not (symm_subgrp in ar):
|
||||
@ -465,7 +465,7 @@ class ElkConverter(ConverterTools,Elk_tools,read_Elk):
|
||||
en=numpy.loadtxt('BAND.OUT')
|
||||
nstsv=int(len(en[:,1])/n_k)
|
||||
#convert the en array into a workable format
|
||||
entmp = numpy.zeros([n_k,nstsv], numpy.complex_)
|
||||
entmp = numpy.zeros([n_k,nstsv], complex)
|
||||
enj=0
|
||||
for ist in range(nstsv):
|
||||
for ik in range(n_k):
|
||||
@ -473,7 +473,7 @@ class ElkConverter(ConverterTools,Elk_tools,read_Elk):
|
||||
enj+=1
|
||||
del en
|
||||
#read projectors
|
||||
proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max([crsh['dim'] for crsh in corr_shells]), nstsv], numpy.complex_)
|
||||
proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max([crsh['dim'] for crsh in corr_shells]), nstsv], complex)
|
||||
mpi.report("Reading projector(s)")
|
||||
for ish in range(n_corr_shells):
|
||||
[n_orbitals,band_window,rep,proj_mat]=read_Elk.read_projector(self,corr_shells,n_spin_blocs,ish,proj_mat,ind,T,basis,filext)
|
||||
@ -546,7 +546,7 @@ class ElkConverter(ConverterTools,Elk_tools,read_Elk):
|
||||
[bz_weights,vkl]=read_Elk.read_kpoints(self,filext=filext)
|
||||
|
||||
#read projectors
|
||||
proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max([crsh['dim'] for crsh in corr_shells]), nstsv], numpy.complex_)
|
||||
proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max([crsh['dim'] for crsh in corr_shells]), nstsv], complex)
|
||||
mpi.report("Reading projector(s)")
|
||||
for ish in range(n_corr_shells):
|
||||
[n_orbitals,band_window,rep,proj_mat]=read_Elk.read_projector(self,corr_shells,n_spin_blocs,ish,proj_mat,ind,T,basis,filext)
|
||||
@ -615,7 +615,7 @@ class ElkConverter(ConverterTools,Elk_tools,read_Elk):
|
||||
[bc,maxlm] = read_Elk.read_bc(self)
|
||||
#set up SO bc array
|
||||
if (self.SO):
|
||||
tmp = numpy.zeros([2*maxlm,1,self.n_atoms,self.nstsv,self.n_k], numpy.float_)
|
||||
tmp = numpy.zeros([2*maxlm,1,self.n_atoms,self.nstsv,self.n_k], float)
|
||||
#put both spinors into the lm array indices.
|
||||
tmp[0:maxlm,0,:,:,:]=bc[0:maxlm,0,:,:,:]
|
||||
tmp[maxlm:2*maxlm,0,:,:,:]=bc[0:maxlm,1,:,:,:]
|
||||
@ -626,7 +626,7 @@ class ElkConverter(ConverterTools,Elk_tools,read_Elk):
|
||||
|
||||
#reduce bc matrix to band states stored in hdf file
|
||||
n_spin_blocs=self.SP+1-self.SO
|
||||
tmp = numpy.zeros([maxlm,n_spin_blocs,self.n_atoms,numpy.max(self.n_orbitals),self.n_k], numpy.float_)
|
||||
tmp = numpy.zeros([maxlm,n_spin_blocs,self.n_atoms,numpy.max(self.n_orbitals),self.n_k], float)
|
||||
for ik in range(self.n_k):
|
||||
for isp in range(n_spin_blocs):
|
||||
nst=self.n_orbitals[ik,isp]
|
||||
|
@ -42,7 +42,7 @@ class ElkConverterTools:
|
||||
routine.
|
||||
"""
|
||||
eps=1E-8
|
||||
v=numpy.zeros([3], numpy.float_)
|
||||
v=numpy.zeros([3], float)
|
||||
# find the determinant
|
||||
det=numpy.linalg.det(rot)
|
||||
if (abs(det-1.0)<eps):
|
||||
@ -100,7 +100,7 @@ class ElkConverterTools:
|
||||
"""
|
||||
Calculate the rotation SU(2) matrix - see Elk's axangsu2 routine.
|
||||
"""
|
||||
su2=numpy.zeros([2,2], numpy.complex_)
|
||||
su2=numpy.zeros([2,2], complex)
|
||||
t1=numpy.sqrt(numpy.dot(v,v))
|
||||
if(t1<1E-8):
|
||||
raise "sym_converter : zero length axis vector!"
|
||||
@ -143,12 +143,12 @@ class ElkConverterTools:
|
||||
perm=[]
|
||||
iea=[]
|
||||
for isym in range(nsym):
|
||||
iea.append(numpy.zeros([natmtot,ns], numpy.int_))
|
||||
iea.append(numpy.zeros([natmtot,ns], int))
|
||||
#loop over species
|
||||
for js in range(ns):
|
||||
#loop over species atoms
|
||||
v=numpy.zeros([3,na[js]], numpy.float_)
|
||||
v2=numpy.zeros(3, numpy.float_)
|
||||
v=numpy.zeros([3,na[js]], float)
|
||||
v2=numpy.zeros(3, float)
|
||||
for ia in range(na[js]):
|
||||
v[:,ia]=self.v3frac(atpos[js][ia][0:3],epslat)
|
||||
for ia in range(na[js]):
|
||||
@ -180,14 +180,14 @@ class ElkConverterTools:
|
||||
#need SciPy routines to get Euler angles - need version 1.4+
|
||||
#from scipy.spatial.transform import Rotation as R
|
||||
symmat=[]
|
||||
rot=numpy.identity(3, numpy.float_)
|
||||
angi=numpy.zeros(3, numpy.float_)
|
||||
rot=numpy.identity(3, float)
|
||||
angi=numpy.zeros(3, float)
|
||||
#loop over symmetries
|
||||
for isym in range(nsym):
|
||||
symmat.append([])
|
||||
for ish in range(n_shells):
|
||||
l=shells[ish]['l']
|
||||
symmat[isym].append(numpy.zeros([2*l+1, 2*l+1], numpy.complex_))
|
||||
symmat[isym].append(numpy.zeros([2*l+1, 2*l+1], complex))
|
||||
#get determinant
|
||||
det=numpy.linalg.det(symlat[isym])
|
||||
p=1
|
||||
@ -217,7 +217,7 @@ class ElkConverterTools:
|
||||
"""
|
||||
eps=1E-8
|
||||
pi=numpy.pi
|
||||
ang=numpy.zeros(3, numpy.float_)
|
||||
ang=numpy.zeros(3, float)
|
||||
#get the Euler angles
|
||||
if((abs(rot[2,0])>eps) or (abs(rot[2,1])>eps)):
|
||||
ang[0]=numpy.arctan2(rot[2,1],rot[2,0])
|
||||
@ -243,7 +243,7 @@ class ElkConverterTools:
|
||||
calculates the rotation matrix in complex spherical harmonics for l.
|
||||
THIS HAS ONLY BEEN TESTED FOR l=2.
|
||||
"""
|
||||
d=numpy.identity(2*l+1, numpy.complex_)
|
||||
d=numpy.identity(2*l+1, complex)
|
||||
# generate the rotation matrix about the y-axis
|
||||
dy=self.ylmroty(angi[1],l)
|
||||
# apply inversion to odd l values if required
|
||||
@ -268,7 +268,7 @@ class ElkConverterTools:
|
||||
#import the factorial function - needed for later versions of scipy (needs testing)
|
||||
from scipy import special as spec
|
||||
#calculates the rotation matrix in complex spherical harmonics for l
|
||||
dy=numpy.identity(2*l+1, numpy.float_)
|
||||
dy=numpy.identity(2*l+1, float)
|
||||
#sine and cosine of beta
|
||||
cb=numpy.cos(beta/2.0)
|
||||
sb=numpy.sin(beta/2.0)
|
||||
|
@ -159,13 +159,13 @@ class readElkfiles:
|
||||
n_shells=0
|
||||
n_inequiv_shells=0
|
||||
#local arrays
|
||||
neqatom=[]#numpy.zeros([n_shells], numpy.int)
|
||||
neqatom=[]#numpy.zeros([n_shells], int)
|
||||
proj=[]
|
||||
shells=[]#numpy.zeros([n_shells], numpy.int)
|
||||
corr_shells=[]#numpy.zeros([n_shells], numpy.int)
|
||||
shells=[]#numpy.zeros([n_shells], int)
|
||||
corr_shells=[]#numpy.zeros([n_shells], int)
|
||||
prjtype=[]
|
||||
wan=[]
|
||||
proj_info=[]#numpy.zeros([n_shells], numpy.int)
|
||||
proj_info=[]#numpy.zeros([n_shells], int)
|
||||
T=[]
|
||||
basis=[]
|
||||
inequiv_to_corr=[]
|
||||
@ -196,7 +196,7 @@ class readElkfiles:
|
||||
corr_shells.append(shells[n_shells].copy())
|
||||
n_orb=2*shells[n_shells]['l']+1
|
||||
#lm submatrix indices
|
||||
idxlm.append(numpy.zeros(2*lmax+1, dtype=numpy.int_))
|
||||
idxlm.append(numpy.zeros(2*lmax+1, dtype=int))
|
||||
nrep=proj[ip]['dim']
|
||||
for i in range(nrep):
|
||||
idxlm[n_shells][i]=next(R)-1
|
||||
@ -205,7 +205,7 @@ class readElkfiles:
|
||||
basis.append(int(next(R)))
|
||||
#determine whether which basis the projectors where generated in
|
||||
#spherical harmonics
|
||||
T.append(numpy.zeros([n_orb, n_orb], dtype=numpy.complex_))
|
||||
T.append(numpy.zeros([n_orb, n_orb], dtype=complex))
|
||||
#Elk generated unitary basis
|
||||
if (basis[n_shells]==2):
|
||||
#reads the transformation matrix
|
||||
@ -354,7 +354,7 @@ class readElkfiles:
|
||||
dim_rep=gen['dim_rep']
|
||||
lat=[]
|
||||
n_k=gen['n_k']
|
||||
n_orbitals = numpy.zeros([n_k, n_spin_blocks], numpy.int)
|
||||
n_orbitals = numpy.zeros([n_k, n_spin_blocks], int)
|
||||
band_window = [None for isp in range(n_spin_blocks)]
|
||||
for isp in range(n_spin_blocks):
|
||||
band_window[isp] = numpy.zeros([n_k, 2], dtype=int)
|
||||
@ -375,7 +375,7 @@ class readElkfiles:
|
||||
band_window[isp][ik, 0] = proj_dim['ist_min']
|
||||
band_window[isp][ik, 1] = proj_dim['ist_max']
|
||||
#define temporary matrix for reading in the projectors
|
||||
mat = numpy.zeros([dim, n_orbitals[ik,isp]], numpy.complex_)
|
||||
mat = numpy.zeros([dim, n_orbitals[ik,isp]], complex)
|
||||
# Real part
|
||||
for j in range(dim):
|
||||
for i in range(n_orbitals[ik,isp]):
|
||||
@ -453,9 +453,9 @@ class readElkfiles:
|
||||
kp=[]
|
||||
#reads in the k index, lattice vectors, weights and nmat for each kpt
|
||||
#array for bz weights
|
||||
bz_weights = numpy.ones([n_k], numpy.float_) / float(n_k)
|
||||
bz_weights = numpy.ones([n_k], float) / float(n_k)
|
||||
#array for lattice vectors
|
||||
vkl = numpy.ones([n_k,3], numpy.float_)
|
||||
vkl = numpy.ones([n_k,3], float)
|
||||
for ik in range(n_k):
|
||||
#k-grid info
|
||||
k_entries = ['ik', 'vklx','vkly','vklz', 'bz_weights', 'nmat']
|
||||
@ -487,9 +487,9 @@ class readElkfiles:
|
||||
nsym = 48
|
||||
#set up symmetry matrices
|
||||
for isym in range(nsym):
|
||||
symmat.append(numpy.zeros([3, 3], numpy.float_))
|
||||
spinmat.append(numpy.zeros([3, 3], numpy.float_))
|
||||
tr.append(numpy.zeros([3], numpy.float_))
|
||||
symmat.append(numpy.zeros([3, 3], float))
|
||||
spinmat.append(numpy.zeros([3, 3], float))
|
||||
tr.append(numpy.zeros([3], float))
|
||||
#read the number of crystal symmetries
|
||||
x = next(R)
|
||||
nsym = int(atof(x[0]))
|
||||
@ -534,10 +534,10 @@ class readElkfiles:
|
||||
dft_file='LATTICE.OUT'
|
||||
R = self.read_elk_file2( dft_file, self.fortran_to_replace)
|
||||
try:
|
||||
amat = numpy.zeros([3, 3], numpy.float_)
|
||||
amatinv = numpy.zeros([3, 3], numpy.float_)
|
||||
bmat = numpy.zeros([3, 3], numpy.float_)
|
||||
bmatinv = numpy.zeros([3, 3], numpy.float_)
|
||||
amat = numpy.zeros([3, 3], float)
|
||||
amatinv = numpy.zeros([3, 3], float)
|
||||
bmat = numpy.zeros([3, 3], float)
|
||||
bmatinv = numpy.zeros([3, 3], float)
|
||||
#real space lattice matrices
|
||||
#cycling through information which is not needed
|
||||
for i in range(4):
|
||||
@ -612,7 +612,7 @@ class readElkfiles:
|
||||
#loop over atomss pre species
|
||||
atpos.append([])
|
||||
for ia in range(na[js]):
|
||||
atpos[js].append(numpy.zeros(6, numpy.float_))
|
||||
atpos[js].append(numpy.zeros(6, float))
|
||||
x = next(R)
|
||||
for j in range(6):
|
||||
atpos[js][ia][j]=atof(x[j])
|
||||
@ -657,7 +657,7 @@ class readElkfiles:
|
||||
|
||||
dim=gen['maxlm']
|
||||
lmax=numpy.sqrt(dim)-1
|
||||
bc = numpy.zeros([dim,nspinor,self.n_atoms,self.nstsv,self.n_k], numpy.float_)
|
||||
bc = numpy.zeros([dim,nspinor,self.n_atoms,self.nstsv,self.n_k], float)
|
||||
|
||||
for ik in range(0,self.n_k):
|
||||
for iatom in range(0,self.n_atoms):
|
||||
|
@ -134,7 +134,7 @@ class HkConverter(ConverterTools):
|
||||
|
||||
use_rotations = 0
|
||||
rot_mat = [numpy.identity(
|
||||
corr_shells[icrsh]['dim'], numpy.complex_) for icrsh in range(n_corr_shells)]
|
||||
corr_shells[icrsh]['dim'], complex) for icrsh in range(n_corr_shells)]
|
||||
rot_mat_time_inv = [0 for i in range(n_corr_shells)]
|
||||
|
||||
# Representative representations are read from file
|
||||
@ -152,7 +152,7 @@ class HkConverter(ConverterTools):
|
||||
# Wien2k)
|
||||
ll = 2 * corr_shells[inequiv_to_corr[ish]]['l'] + 1
|
||||
lmax = ll * (corr_shells[inequiv_to_corr[ish]]['SO'] + 1)
|
||||
T.append(numpy.zeros([lmax, lmax], numpy.complex_))
|
||||
T.append(numpy.zeros([lmax, lmax], complex))
|
||||
|
||||
T[ish] = numpy.array([[0.0, 0.0, 1.0, 0.0, 0.0],
|
||||
[1.0 / sqrt(2.0), 0.0, 0.0,
|
||||
@ -170,11 +170,11 @@ class HkConverter(ConverterTools):
|
||||
# define the number of n_orbitals for all k points: it is the
|
||||
# number of total bands and independent of k!
|
||||
n_orbitals = numpy.ones(
|
||||
[n_k, n_spin_blocs], numpy.int) * sum([sh['dim'] for sh in shells])
|
||||
[n_k, n_spin_blocs], int) * sum([sh['dim'] for sh in shells])
|
||||
|
||||
# Initialise the projectors:
|
||||
proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max(
|
||||
[crsh['dim'] for crsh in corr_shells]), numpy.max(n_orbitals)], numpy.complex_)
|
||||
[crsh['dim'] for crsh in corr_shells]), numpy.max(n_orbitals)], complex)
|
||||
|
||||
# Read the projectors from the file:
|
||||
for ik in range(n_k):
|
||||
@ -196,9 +196,9 @@ class HkConverter(ConverterTools):
|
||||
|
||||
# now define the arrays for weights and hopping ...
|
||||
# w(k_index), default normalisation
|
||||
bz_weights = numpy.ones([n_k], numpy.float_) / float(n_k)
|
||||
bz_weights = numpy.ones([n_k], float) / float(n_k)
|
||||
hopping = numpy.zeros([n_k, n_spin_blocs, numpy.max(
|
||||
n_orbitals), numpy.max(n_orbitals)], numpy.complex_)
|
||||
n_orbitals), numpy.max(n_orbitals)], complex)
|
||||
|
||||
if (weights_in_file):
|
||||
# weights in the file
|
||||
|
@ -152,10 +152,10 @@ class ElectronicStructure:
|
||||
# Spin factor
|
||||
sp_fac = 2.0 if ns == 1 and not self.nc_flag else 1.0
|
||||
|
||||
den_mat = np.zeros((ns, nproj, nproj), dtype=np.float64)
|
||||
overlap = np.zeros((ns, nproj, nproj), dtype=np.float64)
|
||||
# ov_min = np.ones((ns, nproj, nproj), dtype=np.float64) * 100.0
|
||||
# ov_max = np.zeros((ns, nproj, nproj), dtype=np.float64)
|
||||
den_mat = np.zeros((ns, nproj, nproj), dtype=float)
|
||||
overlap = np.zeros((ns, nproj, nproj), dtype=float)
|
||||
# ov_min = np.ones((ns, nproj, nproj), dtype=float) * 100.0
|
||||
# ov_max = np.zeros((ns, nproj, nproj), dtype=float)
|
||||
for ispin in range(ns):
|
||||
for ik in range(nk):
|
||||
kweight = self.kmesh['kweights'][ik]
|
||||
|
@ -268,7 +268,7 @@ class ConfigParameters:
|
||||
err_mess = "Complex matrix must contain 2*M values:\n%s"%(par_str)
|
||||
assert 2 * (nm // 2) == nm, err_mess
|
||||
|
||||
tmp = np.array(rows, dtype=np.complex128)
|
||||
tmp = np.array(rows, dtype=complex)
|
||||
mat = tmp[:, 0::2] + 1.0j * tmp[:, 1::2]
|
||||
|
||||
return mat
|
||||
|
@ -68,7 +68,7 @@ class ProjectorGroup:
|
||||
# Determine the minimum and maximum band numbers
|
||||
if 'bands' in gr_pars:
|
||||
nk, nband, ns_band = eigvals.shape
|
||||
ib_win = np.zeros((nk, ns_band, 2), dtype=np.int32)
|
||||
ib_win = np.zeros((nk, ns_band, 2), dtype=int)
|
||||
ib_win[:,:,0] = gr_pars['bands'][0]-1
|
||||
ib_win[:,:,1] = gr_pars['bands'][1]-1
|
||||
ib_min = gr_pars['bands'][0] - 1
|
||||
@ -152,7 +152,7 @@ class ProjectorGroup:
|
||||
block_maps, ndim = self.get_block_matrix_map()
|
||||
|
||||
_, ns, nk, _, _ = self.shells[0].proj_win.shape
|
||||
p_mat = np.zeros((ndim, self.nb_max), dtype=np.complex128)
|
||||
p_mat = np.zeros((ndim, self.nb_max), dtype=complex)
|
||||
# Note that 'ns' and 'nk' are the same for all shells
|
||||
for isp in range(ns):
|
||||
for ik in range(nk):
|
||||
@ -201,7 +201,7 @@ class ProjectorGroup:
|
||||
|
||||
_, ns, nk, _, _ = self.shells[0].proj_win.shape
|
||||
|
||||
self.hk = np.zeros((ns,nk,ndim,ndim), dtype=np.complex128)
|
||||
self.hk = np.zeros((ns,nk,ndim,ndim), dtype=complex)
|
||||
# Note that 'ns' and 'nk' are the same for all shells
|
||||
for isp in range(ns):
|
||||
for ik in range(nk):
|
||||
@ -209,7 +209,7 @@ class ProjectorGroup:
|
||||
bmax = self.ib_win[ik, isp, 1]+1
|
||||
|
||||
nb = bmax - bmin
|
||||
p_mat = np.zeros((ndim, nb), dtype=np.complex128)
|
||||
p_mat = np.zeros((ndim, nb), dtype=complex)
|
||||
#print(bmin,bmax,nb)
|
||||
# Combine all projectors of the group to one block projector
|
||||
for bl_map in block_maps:
|
||||
@ -251,8 +251,8 @@ class ProjectorGroup:
|
||||
|
||||
block_maps, ndim = self.get_block_matrix_map()
|
||||
_, ns, nk, _, _ = self.shells[0].proj_win.shape
|
||||
p_mat = np.zeros((ndim, self.nb_max), dtype=np.complex128)
|
||||
p_full = np.zeros((1,ns,nk,self.nb_max, self.nb_max), dtype=np.complex128)
|
||||
p_mat = np.zeros((ndim, self.nb_max), dtype=complex)
|
||||
p_full = np.zeros((1,ns,nk,self.nb_max, self.nb_max), dtype=complex)
|
||||
|
||||
# Note that 'ns' and 'nk' are the same for all shells
|
||||
|
||||
@ -452,7 +452,7 @@ class ProjectorGroup:
|
||||
raise Exception("Energy window does not overlap with the band structure")
|
||||
|
||||
nk, nband, ns_band = eigvals.shape
|
||||
ib_win = np.zeros((nk, ns_band, 2), dtype=np.int32)
|
||||
ib_win = np.zeros((nk, ns_band, 2), dtype=int)
|
||||
|
||||
ib_min = 10000000
|
||||
ib_max = 0
|
||||
|
@ -155,7 +155,7 @@ class ProjectorShell:
|
||||
assert nr%ns_dim == 0, "Number of rows in TRANSFILE is not compatible with the spin dimension"
|
||||
ndim = nr // ns_dim
|
||||
|
||||
self.tmatrices = np.zeros((nion, nr, nm * ns_dim), dtype=np.complex128)
|
||||
self.tmatrices = np.zeros((nion, nr, nm * ns_dim), dtype=complex)
|
||||
|
||||
if is_complex:
|
||||
raw_matrices = raw_matrices[:, ::2] + raw_matrices[:, 1::2] * 1j
|
||||
@ -187,7 +187,7 @@ class ProjectorShell:
|
||||
|
||||
ndim = nrow
|
||||
|
||||
self.tmatrices = np.zeros((nion, nrow, nm), dtype=np.complex128)
|
||||
self.tmatrices = np.zeros((nion, nrow, nm), dtype=complex)
|
||||
for io in range(nion):
|
||||
self.tmatrices[io, :, :] = raw_matrix
|
||||
|
||||
@ -200,9 +200,9 @@ class ProjectorShell:
|
||||
ndim = nm * ns_dim
|
||||
|
||||
# We still need the matrices for the output
|
||||
self.tmatrices = np.zeros((nion, ndim, ndim), dtype=np.complex128)
|
||||
self.tmatrices = np.zeros((nion, ndim, ndim), dtype=complex)
|
||||
for io in range(nion):
|
||||
self.tmatrices[io, :, :] = np.identity(ndim, dtype=np.complex128)
|
||||
self.tmatrices[io, :, :] = np.identity(ndim, dtype=complex)
|
||||
|
||||
return ndim
|
||||
|
||||
@ -230,11 +230,11 @@ class ProjectorShell:
|
||||
# TODO: implement a non-collinear case
|
||||
# for a non-collinear case 'ndim' is 'ns * nm'
|
||||
ndim = self.tmatrices.shape[1]
|
||||
self.proj_arr = np.zeros((nion, ns, nk, ndim, nb), dtype=np.complex128)
|
||||
self.proj_arr = np.zeros((nion, ns, nk, ndim, nb), dtype=complex)
|
||||
for ik in range(nk):
|
||||
kp = kmesh['kpoints'][ik]
|
||||
for io, ion in enumerate(self.ion_list):
|
||||
proj_k = np.zeros((ns, nlm, nb), dtype=np.complex128)
|
||||
proj_k = np.zeros((ns, nlm, nb), dtype=complex)
|
||||
qcoord = structure['qcoords'][ion]
|
||||
# kphase = np.exp(-2.0j * np.pi * np.dot(kp, qcoord))
|
||||
# kphase = 1.0
|
||||
@ -249,7 +249,7 @@ class ProjectorShell:
|
||||
|
||||
else:
|
||||
# No transformation: just copy the projectors as they are
|
||||
self.proj_arr = np.zeros((nion, ns, nk, nlm, nb), dtype=np.complex128)
|
||||
self.proj_arr = np.zeros((nion, ns, nk, nlm, nb), dtype=complex)
|
||||
for io, ion in enumerate(self.ion_list):
|
||||
qcoord = structure['qcoords'][ion]
|
||||
for m in range(nlm):
|
||||
@ -282,7 +282,7 @@ class ProjectorShell:
|
||||
# Set the dimensions of the array
|
||||
nion, ns, nk, nlm, nbtot = self.proj_arr.shape
|
||||
# !!! Note that the order of the two last indices is different !!!
|
||||
self.proj_win = np.zeros((nion, ns, nk, nlm, nb_max), dtype=np.complex128)
|
||||
self.proj_win = np.zeros((nion, ns, nk, nlm, nb_max), dtype=complex)
|
||||
|
||||
# Select projectors for a given energy window
|
||||
ns_band = self.ib_win.shape[1]
|
||||
@ -310,14 +310,14 @@ class ProjectorShell:
|
||||
assert spin_diag, "spin_diag = False is not implemented"
|
||||
|
||||
if site_diag:
|
||||
occ_mats = np.zeros((ns, nion, nlm, nlm), dtype=np.float64)
|
||||
overlaps = np.zeros((ns, nion, nlm, nlm), dtype=np.float64)
|
||||
occ_mats = np.zeros((ns, nion, nlm, nlm), dtype=float)
|
||||
overlaps = np.zeros((ns, nion, nlm, nlm), dtype=float)
|
||||
else:
|
||||
ndim = nion * nlm
|
||||
occ_mats = np.zeros((ns, 1, ndim, ndim), dtype=np.float64)
|
||||
overlaps = np.zeros((ns, 1, ndim, ndim), dtype=np.float64)
|
||||
occ_mats = np.zeros((ns, 1, ndim, ndim), dtype=float)
|
||||
overlaps = np.zeros((ns, 1, ndim, ndim), dtype=float)
|
||||
|
||||
# self.proj_win = np.zeros((nion, ns, nk, nlm, nb_max), dtype=np.complex128)
|
||||
# self.proj_win = np.zeros((nion, ns, nk, nlm, nb_max), dtype=complex)
|
||||
kweights = el_struct.kmesh['kweights']
|
||||
occnums = el_struct.ferw
|
||||
ib1 = self.ib_min
|
||||
@ -332,7 +332,7 @@ class ProjectorShell:
|
||||
overlaps[isp, io, :, :] += np.dot(proj_k,
|
||||
proj_k.conj().T).real * weight
|
||||
else:
|
||||
proj_k = np.zeros((ndim, nbtot), dtype=np.complex128)
|
||||
proj_k = np.zeros((ndim, nbtot), dtype=complex)
|
||||
for isp in range(ns):
|
||||
for ik, weight, occ in zip(it.count(), kweights, occnums[isp, :, :]):
|
||||
for io in range(nion):
|
||||
@ -363,9 +363,9 @@ class ProjectorShell:
|
||||
assert site_diag, "site_diag = False is not implemented"
|
||||
assert spin_diag, "spin_diag = False is not implemented"
|
||||
|
||||
loc_ham = np.zeros((ns, nion, nlm, nlm), dtype=np.complex128)
|
||||
loc_ham = np.zeros((ns, nion, nlm, nlm), dtype=complex)
|
||||
|
||||
# self.proj_win = np.zeros((nion, ns, nk, nlm, nb_max), dtype=np.complex128)
|
||||
# self.proj_win = np.zeros((nion, ns, nk, nlm, nb_max), dtype=complex)
|
||||
kweights = el_struct.kmesh['kweights']
|
||||
occnums = el_struct.ferw
|
||||
ib1 = self.ib_min
|
||||
@ -403,7 +403,7 @@ class ProjectorShell:
|
||||
|
||||
ne = len(emesh)
|
||||
dos = np.zeros((ne, ns, nion, nlm))
|
||||
w_k = np.zeros((nk, nb_max, ns, nion, nlm), dtype=np.complex128)
|
||||
w_k = np.zeros((nk, nb_max, ns, nion, nlm), dtype=complex)
|
||||
for isp in range(ns):
|
||||
for ik in range(nk):
|
||||
is_b = min(isp, ns_band)
|
||||
|
@ -251,7 +251,7 @@ class Plocar:
|
||||
except:
|
||||
print("!!! WARNING !!!: Error reading E-Fermi from LOCPROJ, trying DOSCAR")
|
||||
|
||||
plo = np.zeros((nproj, self.nspin, nk, self.nband), dtype=np.complex128)
|
||||
plo = np.zeros((nproj, self.nspin, nk, self.nband), dtype=complex)
|
||||
proj_params = [{} for i in range(nproj)]
|
||||
|
||||
iproj_site = 0
|
||||
@ -685,7 +685,7 @@ def read_symmcar(vasp_dir, symm_filename='SYMMCAR'):
|
||||
print(" {0:>26} {1:d}".format("L_max:", lmax))
|
||||
|
||||
rot_mats = np.zeros((nrot, lmax+1, mmax, mmax))
|
||||
rot_map = np.zeros((nrot, ntrans, nion), dtype=np.int32)
|
||||
rot_map = np.zeros((nrot, ntrans, nion), dtype=int)
|
||||
|
||||
for irot in range(nrot):
|
||||
# Empty line
|
||||
|
@ -259,7 +259,7 @@ class VaspConverter(ConverterTools):
|
||||
|
||||
# NB!: these rotation matrices are specific to Wien2K! Set to identity in VASP
|
||||
use_rotations = 1
|
||||
rot_mat = [numpy.identity(corr_shells[icrsh]['dim'],numpy.complex_) for icrsh in range(n_corr_shells)]
|
||||
rot_mat = [numpy.identity(corr_shells[icrsh]['dim'],complex) for icrsh in range(n_corr_shells)]
|
||||
rot_mat_time_inv = [0 for i in range(n_corr_shells)]
|
||||
|
||||
# TODO: implement transformation matrices
|
||||
@ -276,16 +276,16 @@ class VaspConverter(ConverterTools):
|
||||
ll = 2 * corr_shells[inequiv_to_corr[ish]]['l']+1
|
||||
lmax = ll * (corr_shells[inequiv_to_corr[ish]]['SO'] + 1)
|
||||
# TODO: at the moment put T-matrices to identities
|
||||
T.append(numpy.identity(lmax, numpy.complex_))
|
||||
T.append(numpy.identity(lmax, complex))
|
||||
|
||||
# if nc_flag:
|
||||
## TODO: implement the noncollinear part
|
||||
# raise NotImplementedError("Noncollinear calculations are not implemented")
|
||||
# else:
|
||||
hopping = numpy.zeros([n_k, n_spin_blocs, nb_max, nb_max], numpy.complex_)
|
||||
f_weights = numpy.zeros([n_k, n_spin_blocs, nb_max], numpy.float_)
|
||||
hopping = numpy.zeros([n_k, n_spin_blocs, nb_max, nb_max], complex)
|
||||
f_weights = numpy.zeros([n_k, n_spin_blocs, nb_max], float)
|
||||
band_window = [numpy.zeros((n_k, 2), dtype=int) for isp in range(n_spin_blocs)]
|
||||
n_orbitals = numpy.zeros([n_k, n_spin_blocs], numpy.int)
|
||||
n_orbitals = numpy.zeros([n_k, n_spin_blocs], int)
|
||||
|
||||
|
||||
for isp in range(n_spin_blocs):
|
||||
@ -299,7 +299,7 @@ class VaspConverter(ConverterTools):
|
||||
f_weights[ik, isp, ib] = next(rf)
|
||||
|
||||
if self.proj_or_hk == 'hk':
|
||||
hopping = numpy.zeros([n_k, n_spin_blocs, n_orbs, n_orbs], numpy.complex_)
|
||||
hopping = numpy.zeros([n_k, n_spin_blocs, n_orbs, n_orbs], complex)
|
||||
# skip header lines
|
||||
hk_file = self.basename + '.hk%i'%(ig + 1)
|
||||
f_hk = open(hk_file, 'rt')
|
||||
@ -324,7 +324,7 @@ class VaspConverter(ConverterTools):
|
||||
# Projectors
|
||||
# print n_orbitals
|
||||
# print [crsh['dim'] for crsh in corr_shells]
|
||||
proj_mat_csc = numpy.zeros([n_k, n_spin_blocs, sum([sh['dim'] for sh in shells]), numpy.max(n_orbitals)], numpy.complex_)
|
||||
proj_mat_csc = numpy.zeros([n_k, n_spin_blocs, sum([sh['dim'] for sh in shells]), numpy.max(n_orbitals)], complex)
|
||||
|
||||
# TODO: implement reading from more than one projector group
|
||||
# In 'dmftproj' each ion represents a separate correlated shell.
|
||||
@ -351,7 +351,7 @@ class VaspConverter(ConverterTools):
|
||||
proj_mat_csc[ik, isp, ilm, ib] = complex(pr, pi)
|
||||
|
||||
# now save only projectors with flag 'corr' to proj_mat
|
||||
proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max([crsh['dim'] for crsh in corr_shells]), numpy.max(n_orbitals)], numpy.complex_)
|
||||
proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max([crsh['dim'] for crsh in corr_shells]), numpy.max(n_orbitals)], complex)
|
||||
if self.proj_or_hk == 'proj':
|
||||
for ish, sh in enumerate(p_shells):
|
||||
if sh['corr']:
|
||||
|
@ -155,7 +155,7 @@ class Wien2kConverter(ConverterTools):
|
||||
|
||||
use_rotations = 1
|
||||
rot_mat = [numpy.identity(
|
||||
corr_shells[icrsh]['dim'], numpy.complex_) for icrsh in range(n_corr_shells)]
|
||||
corr_shells[icrsh]['dim'], complex) for icrsh in range(n_corr_shells)]
|
||||
|
||||
# read the matrices
|
||||
rot_mat_time_inv = [0 for i in range(n_corr_shells)]
|
||||
@ -186,7 +186,7 @@ class Wien2kConverter(ConverterTools):
|
||||
# is of dimension 2l+1 without SO, and 2*(2l+1) with SO!
|
||||
ll = 2 * corr_shells[inequiv_to_corr[ish]]['l'] + 1
|
||||
lmax = ll * (corr_shells[inequiv_to_corr[ish]]['SO'] + 1)
|
||||
T.append(numpy.zeros([lmax, lmax], numpy.complex_))
|
||||
T.append(numpy.zeros([lmax, lmax], complex))
|
||||
|
||||
# now read it from file:
|
||||
for i in range(lmax):
|
||||
@ -200,14 +200,14 @@ class Wien2kConverter(ConverterTools):
|
||||
n_spin_blocs = SP + 1 - SO
|
||||
|
||||
# read the list of n_orbitals for all k points
|
||||
n_orbitals = numpy.zeros([n_k, n_spin_blocs], numpy.int)
|
||||
n_orbitals = numpy.zeros([n_k, n_spin_blocs], int)
|
||||
for isp in range(n_spin_blocs):
|
||||
for ik in range(n_k):
|
||||
n_orbitals[ik, isp] = int(next(R))
|
||||
|
||||
# Initialise the projectors:
|
||||
proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max(
|
||||
[crsh['dim'] for crsh in corr_shells]), numpy.max(n_orbitals)], numpy.complex_)
|
||||
[crsh['dim'] for crsh in corr_shells]), numpy.max(n_orbitals)], complex)
|
||||
|
||||
# Read the projectors from the file:
|
||||
for ik in range(n_k):
|
||||
@ -227,9 +227,9 @@ class Wien2kConverter(ConverterTools):
|
||||
|
||||
# now define the arrays for weights and hopping ...
|
||||
# w(k_index), default normalisation
|
||||
bz_weights = numpy.ones([n_k], numpy.float_) / float(n_k)
|
||||
bz_weights = numpy.ones([n_k], float) / float(n_k)
|
||||
hopping = numpy.zeros([n_k, n_spin_blocs, numpy.max(
|
||||
n_orbitals), numpy.max(n_orbitals)], numpy.complex_)
|
||||
n_orbitals), numpy.max(n_orbitals)], complex)
|
||||
|
||||
# weights in the file
|
||||
for ik in range(n_k):
|
||||
@ -304,7 +304,7 @@ class Wien2kConverter(ConverterTools):
|
||||
|
||||
mpi.report("Reading input from %s..." % self.parproj_file)
|
||||
|
||||
dens_mat_below = [[numpy.zeros([self.shells[ish]['dim'], self.shells[ish]['dim']], numpy.complex_) for ish in range(self.n_shells)]
|
||||
dens_mat_below = [[numpy.zeros([self.shells[ish]['dim'], self.shells[ish]['dim']], complex) for ish in range(self.n_shells)]
|
||||
for isp in range(self.n_spin_blocs)]
|
||||
|
||||
R = ConverterTools.read_fortran_file(
|
||||
@ -315,10 +315,10 @@ class Wien2kConverter(ConverterTools):
|
||||
|
||||
# Initialise P, here a double list of matrices:
|
||||
proj_mat_all = numpy.zeros([self.n_k, self.n_spin_blocs, self.n_shells, max(
|
||||
n_parproj), max([sh['dim'] for sh in self.shells]), numpy.max(self.n_orbitals)], numpy.complex_)
|
||||
n_parproj), max([sh['dim'] for sh in self.shells]), numpy.max(self.n_orbitals)], complex)
|
||||
|
||||
rot_mat_all = [numpy.identity(
|
||||
self.shells[ish]['dim'], numpy.complex_) for ish in range(self.n_shells)]
|
||||
self.shells[ish]['dim'], complex) for ish in range(self.n_shells)]
|
||||
rot_mat_all_time_inv = [0 for i in range(self.n_shells)]
|
||||
|
||||
for ish in range(self.n_shells):
|
||||
@ -409,14 +409,14 @@ class Wien2kConverter(ConverterTools):
|
||||
n_k = int(next(R))
|
||||
|
||||
# read the list of n_orbitals for all k points
|
||||
n_orbitals = numpy.zeros([n_k, self.n_spin_blocs], numpy.int)
|
||||
n_orbitals = numpy.zeros([n_k, self.n_spin_blocs], int)
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for ik in range(n_k):
|
||||
n_orbitals[ik, isp] = int(next(R))
|
||||
|
||||
# Initialise the projectors:
|
||||
proj_mat = numpy.zeros([n_k, self.n_spin_blocs, self.n_corr_shells, max(
|
||||
[crsh['dim'] for crsh in self.corr_shells]), numpy.max(n_orbitals)], numpy.complex_)
|
||||
[crsh['dim'] for crsh in self.corr_shells]), numpy.max(n_orbitals)], complex)
|
||||
|
||||
# Read the projectors from the file:
|
||||
for ik in range(n_k):
|
||||
@ -435,7 +435,7 @@ class Wien2kConverter(ConverterTools):
|
||||
proj_mat[ik, isp, icrsh, i, j] += 1j * next(R)
|
||||
|
||||
hopping = numpy.zeros([n_k, self.n_spin_blocs, numpy.max(
|
||||
n_orbitals), numpy.max(n_orbitals)], numpy.complex_)
|
||||
n_orbitals), numpy.max(n_orbitals)], complex)
|
||||
|
||||
# Grab the H
|
||||
# we use now the convention of a DIAGONAL Hamiltonian!!!!
|
||||
@ -451,7 +451,7 @@ class Wien2kConverter(ConverterTools):
|
||||
|
||||
# Initialise P, here a double list of matrices:
|
||||
proj_mat_all = numpy.zeros([n_k, self.n_spin_blocs, self.n_shells, max(n_parproj), max(
|
||||
[sh['dim'] for sh in self.shells]), numpy.max(n_orbitals)], numpy.complex_)
|
||||
[sh['dim'] for sh in self.shells]), numpy.max(n_orbitals)], complex)
|
||||
|
||||
for ish in range(self.n_shells):
|
||||
for ik in range(n_k):
|
||||
@ -754,7 +754,7 @@ class Wien2kConverter(ConverterTools):
|
||||
for i_symm in range(n_symm):
|
||||
|
||||
mat.append([numpy.zeros([orbits[orb]['dim'], orbits[orb][
|
||||
'dim']], numpy.complex_) for orb in range(n_orbits)])
|
||||
'dim']], complex) for orb in range(n_orbits)])
|
||||
for orb in range(n_orbits):
|
||||
for i in range(orbits[orb]['dim']):
|
||||
for j in range(orbits[orb]['dim']):
|
||||
@ -765,7 +765,7 @@ class Wien2kConverter(ConverterTools):
|
||||
mat[i_symm][orb][i, j] += 1j * \
|
||||
next(R) # imaginary part
|
||||
|
||||
mat_tinv = [numpy.identity(orbits[orb]['dim'], numpy.complex_)
|
||||
mat_tinv = [numpy.identity(orbits[orb]['dim'], complex)
|
||||
for orb in range(n_orbits)]
|
||||
|
||||
if ((SO == 0) and (SP == 0)):
|
||||
|
@ -581,7 +581,7 @@ class SumkDFT(object):
|
||||
G_latt << Omega + 1j * broadening
|
||||
|
||||
idmat = [numpy.identity(
|
||||
self.n_orbitals[ik, ntoi[sp]], numpy.complex_) for sp in spn]
|
||||
self.n_orbitals[ik, ntoi[sp]], complex) for sp in spn]
|
||||
M = copy.deepcopy(idmat)
|
||||
|
||||
for ibl in range(self.n_spin_blocks[self.SO]):
|
||||
@ -1297,10 +1297,10 @@ class SumkDFT(object):
|
||||
if res.fun > threshold: continue
|
||||
|
||||
# reinterpret the solution as a complex number
|
||||
y = res.x.view(numpy.complex_)
|
||||
y = res.x.view(complex)
|
||||
|
||||
# reconstruct the T matrix
|
||||
T = numpy.zeros(N.shape[:-1], dtype=numpy.complex_)
|
||||
T = numpy.zeros(N.shape[:-1], dtype=complex)
|
||||
for i in range(len(y)):
|
||||
T += N[:, :, i] * y[i]
|
||||
|
||||
@ -1470,7 +1470,7 @@ class SumkDFT(object):
|
||||
for icrsh in range(self.n_corr_shells):
|
||||
for sp in self.spin_block_names[self.corr_shells[icrsh]['SO']]:
|
||||
dens_mat[icrsh][sp] = numpy.zeros(
|
||||
[self.corr_shells[icrsh]['dim'], self.corr_shells[icrsh]['dim']], numpy.complex_)
|
||||
[self.corr_shells[icrsh]['dim'], self.corr_shells[icrsh]['dim']], complex)
|
||||
|
||||
ikarray = numpy.array(list(range(self.n_k)))
|
||||
for ik in mpi.slice_array(ikarray):
|
||||
@ -1488,7 +1488,7 @@ class SumkDFT(object):
|
||||
ntoi = self.spin_names_to_ind[self.SO]
|
||||
spn = self.spin_block_names[self.SO]
|
||||
dims = {sp:self.n_orbitals[ik, ntoi[sp]] for sp in spn}
|
||||
MMat = [numpy.zeros([dims[sp], dims[sp]], numpy.complex_) for sp in spn]
|
||||
MMat = [numpy.zeros([dims[sp], dims[sp]], complex) for sp in spn]
|
||||
|
||||
for isp, sp in enumerate(spn):
|
||||
ind = ntoi[sp]
|
||||
@ -1569,7 +1569,7 @@ class SumkDFT(object):
|
||||
for ish in range(self.n_inequiv_shells):
|
||||
for sp in self.spin_block_names[self.corr_shells[self.inequiv_to_corr[ish]]['SO']]:
|
||||
eff_atlevels[ish][sp] = numpy.identity(
|
||||
self.corr_shells[self.inequiv_to_corr[ish]]['dim'], numpy.complex_)
|
||||
self.corr_shells[self.inequiv_to_corr[ish]]['dim'], complex)
|
||||
eff_atlevels[ish][sp] *= -self.chemical_potential
|
||||
eff_atlevels[ish][
|
||||
sp] -= self.dc_imp[self.inequiv_to_corr[ish]][sp]
|
||||
@ -1583,13 +1583,13 @@ class SumkDFT(object):
|
||||
dim = self.corr_shells[icrsh]['dim']
|
||||
for sp in self.spin_block_names[self.corr_shells[icrsh]['SO']]:
|
||||
self.Hsumk[icrsh][sp] = numpy.zeros(
|
||||
[dim, dim], numpy.complex_)
|
||||
[dim, dim], complex)
|
||||
for isp, sp in enumerate(self.spin_block_names[self.corr_shells[icrsh]['SO']]):
|
||||
ind = self.spin_names_to_ind[
|
||||
self.corr_shells[icrsh]['SO']][sp]
|
||||
for ik in range(self.n_k):
|
||||
n_orb = self.n_orbitals[ik, ind]
|
||||
MMat = numpy.identity(n_orb, numpy.complex_)
|
||||
MMat = numpy.identity(n_orb, complex)
|
||||
MMat = self.hopping[
|
||||
ik, ind, 0:n_orb, 0:n_orb] - (1 - 2 * isp) * self.h_field * MMat
|
||||
projmat = self.proj_mat[ik, ind, icrsh, 0:dim, 0:n_orb]
|
||||
@ -1631,7 +1631,7 @@ class SumkDFT(object):
|
||||
dim = self.corr_shells[icrsh]['dim']
|
||||
spn = self.spin_block_names[self.corr_shells[icrsh]['SO']]
|
||||
for sp in spn:
|
||||
self.dc_imp[icrsh][sp] = numpy.zeros([dim, dim], numpy.float_)
|
||||
self.dc_imp[icrsh][sp] = numpy.zeros([dim, dim], float)
|
||||
self.dc_energ = [0.0 for icrsh in range(self.n_corr_shells)]
|
||||
|
||||
def set_dc(self, dc_imp, dc_energ):
|
||||
@ -1709,7 +1709,7 @@ class SumkDFT(object):
|
||||
Ncr[bl] += dens_mat[block].real.trace()
|
||||
Ncrtot = sum(Ncr.values())
|
||||
for sp in spn:
|
||||
self.dc_imp[icrsh][sp] = numpy.identity(dim, numpy.float_)
|
||||
self.dc_imp[icrsh][sp] = numpy.identity(dim, float)
|
||||
if self.SP == 0: # average the densities if there is no SP:
|
||||
Ncr[sp] = Ncrtot / len(spn)
|
||||
# correction for SO: we have only one block in this case, but
|
||||
@ -2050,14 +2050,14 @@ class SumkDFT(object):
|
||||
# Convert Fermi weights to a density matrix
|
||||
dens_mat_dft = {}
|
||||
for sp in spn:
|
||||
dens_mat_dft[sp] = [fermi_weights[ik, ntoi[sp], :].astype(numpy.complex_) for ik in range(self.n_k)]
|
||||
dens_mat_dft[sp] = [fermi_weights[ik, ntoi[sp], :].astype(complex) for ik in range(self.n_k)]
|
||||
|
||||
|
||||
# Set up deltaN:
|
||||
deltaN = {}
|
||||
for sp in spn:
|
||||
deltaN[sp] = [numpy.zeros([self.n_orbitals[ik, ntoi[sp]], self.n_orbitals[
|
||||
ik, ntoi[sp]]], numpy.complex_) for ik in range(self.n_k)]
|
||||
ik, ntoi[sp]]], complex) for ik in range(self.n_k)]
|
||||
|
||||
ikarray = numpy.arange(self.n_k)
|
||||
for ik in mpi.slice_array(ikarray):
|
||||
@ -2301,7 +2301,7 @@ class SumkDFT(object):
|
||||
def check_projectors(self):
|
||||
"""Calculated the density matrix from projectors (DM = P Pdagger) to check that it is correct and
|
||||
specifically that it matches DFT."""
|
||||
dens_mat = [numpy.zeros([self.corr_shells[icrsh]['dim'], self.corr_shells[icrsh]['dim']], numpy.complex_)
|
||||
dens_mat = [numpy.zeros([self.corr_shells[icrsh]['dim'], self.corr_shells[icrsh]['dim']], complex)
|
||||
for icrsh in range(self.n_corr_shells)]
|
||||
|
||||
for ik in range(self.n_k):
|
||||
|
@ -104,16 +104,16 @@ class SumkDFTTools(SumkDFT):
|
||||
for icrsh in range(self.n_corr_shells):
|
||||
G_loc[icrsh].zero()
|
||||
|
||||
DOS = {sp: numpy.zeros([n_om], numpy.float_)
|
||||
DOS = {sp: numpy.zeros([n_om], float)
|
||||
for sp in self.spin_block_names[self.SO]}
|
||||
DOSproj = [{} for ish in range(self.n_inequiv_shells)]
|
||||
DOSproj_orb = [{} for ish in range(self.n_inequiv_shells)]
|
||||
for ish in range(self.n_inequiv_shells):
|
||||
for sp in self.spin_block_names[self.corr_shells[self.inequiv_to_corr[ish]]['SO']]:
|
||||
dim = self.corr_shells[self.inequiv_to_corr[ish]]['dim']
|
||||
DOSproj[ish][sp] = numpy.zeros([n_om], numpy.float_)
|
||||
DOSproj[ish][sp] = numpy.zeros([n_om], float)
|
||||
DOSproj_orb[ish][sp] = numpy.zeros(
|
||||
[n_om, dim, dim], numpy.complex_)
|
||||
[n_om, dim, dim], complex)
|
||||
|
||||
ikarray = numpy.array(list(range(self.n_k)))
|
||||
for ik in mpi.slice_array(ikarray):
|
||||
@ -240,16 +240,16 @@ class SumkDFTTools(SumkDFT):
|
||||
for block, block_dim in gf_struct_parproj_all[0]]
|
||||
G_loc_all = BlockGf(name_list=spn, block_list=glist_all, make_copies=False)
|
||||
|
||||
DOS = {sp: numpy.zeros([n_om], numpy.float_)
|
||||
DOS = {sp: numpy.zeros([n_om], float)
|
||||
for sp in self.spin_block_names[self.SO]}
|
||||
DOSproj = {}
|
||||
DOSproj_orb = {}
|
||||
|
||||
for sp in self.spin_block_names[self.SO]:
|
||||
dim = n_local_orbs
|
||||
DOSproj[sp] = numpy.zeros([n_om], numpy.float_)
|
||||
DOSproj[sp] = numpy.zeros([n_om], float)
|
||||
DOSproj_orb[sp] = numpy.zeros(
|
||||
[n_om, dim, dim], numpy.complex_)
|
||||
[n_om, dim, dim], complex)
|
||||
|
||||
ikarray = numpy.array(list(range(self.n_k)))
|
||||
for ik in mpi.slice_array(ikarray):
|
||||
@ -374,16 +374,16 @@ class SumkDFTTools(SumkDFT):
|
||||
for ish in range(self.n_shells):
|
||||
G_loc[ish].zero()
|
||||
|
||||
DOS = {sp: numpy.zeros([n_om], numpy.float_)
|
||||
DOS = {sp: numpy.zeros([n_om], float)
|
||||
for sp in self.spin_block_names[self.SO]}
|
||||
DOSproj = [{} for ish in range(self.n_shells)]
|
||||
DOSproj_orb = [{} for ish in range(self.n_shells)]
|
||||
for ish in range(self.n_shells):
|
||||
for sp in self.spin_block_names[self.SO]:
|
||||
dim = self.shells[ish]['dim']
|
||||
DOSproj[ish][sp] = numpy.zeros([n_om], numpy.float_)
|
||||
DOSproj[ish][sp] = numpy.zeros([n_om], float)
|
||||
DOSproj_orb[ish][sp] = numpy.zeros(
|
||||
[n_om, dim, dim], numpy.complex_)
|
||||
[n_om, dim, dim], complex)
|
||||
|
||||
ikarray = numpy.array(list(range(self.n_k)))
|
||||
for ik in mpi.slice_array(ikarray):
|
||||
@ -518,11 +518,11 @@ class SumkDFTTools(SumkDFT):
|
||||
|
||||
spn = self.spin_block_names[self.SO]
|
||||
|
||||
DOS = {sp: numpy.zeros([n_om], numpy.float_)
|
||||
DOS = {sp: numpy.zeros([n_om], float)
|
||||
for sp in self.spin_block_names[self.SO]}
|
||||
#set up temporary arrays for pdos calculations
|
||||
if (pdos):
|
||||
pDOS = {sp: numpy.zeros([self.n_atoms,self.maxlm,n_om], numpy.float_)
|
||||
pDOS = {sp: numpy.zeros([self.n_atoms,self.maxlm,n_om], float)
|
||||
for sp in self.spin_block_names[self.SO]}
|
||||
ntoi = self.spin_names_to_ind[self.SO]
|
||||
else:
|
||||
@ -713,18 +713,18 @@ class SumkDFTTools(SumkDFT):
|
||||
#orthogonal vector used for plane calculations
|
||||
if orthvec is None:
|
||||
#set to [0,0,1] by default
|
||||
orthvec = numpy.zeros(3,dtype=numpy.float_)
|
||||
orthvec = numpy.zeros(3,dtype=float)
|
||||
orthvec[2] = 1.0
|
||||
elif orthvec.size != 3:
|
||||
assert 0, "The input numpy orthvec is not the required size of 3!"
|
||||
|
||||
spn = self.spin_block_names[self.SO]
|
||||
|
||||
Akw = {sp: numpy.zeros([self.n_k, n_om], numpy.float_)
|
||||
Akw = {sp: numpy.zeros([self.n_k, n_om], float)
|
||||
for sp in spn}
|
||||
|
||||
#Cartesian lattice coordinates array
|
||||
vkc = numpy.zeros([self.n_k,3], numpy.float_)
|
||||
vkc = numpy.zeros([self.n_k,3], float)
|
||||
|
||||
ikarray = numpy.array(range(self.n_k))
|
||||
for ik in mpi.slice_array(ikarray):
|
||||
@ -750,8 +750,8 @@ class SumkDFTTools(SumkDFT):
|
||||
iknr = numpy.arange(self.n_k)
|
||||
if sym:
|
||||
vkltmp = self.vkl
|
||||
v = numpy.zeros(3, numpy.float_)
|
||||
v_orth = numpy.zeros(3, numpy.float_)
|
||||
v = numpy.zeros(3, float)
|
||||
v_orth = numpy.zeros(3, float)
|
||||
for isym in range(self.n_symm):
|
||||
#calculate the orthonormal vector after symmetry operation. This is used to
|
||||
#check if the orthonormal vector after the symmetry operation is parallel
|
||||
@ -865,11 +865,11 @@ class SumkDFTTools(SumkDFT):
|
||||
n_om = len(mesh[(mesh > om_minplot)&(mesh < om_maxplot)])
|
||||
|
||||
if ishell is None:
|
||||
Akw = {sp: numpy.zeros([self.n_k, n_om], numpy.float_)
|
||||
Akw = {sp: numpy.zeros([self.n_k, n_om], float)
|
||||
for sp in spn}
|
||||
else:
|
||||
Akw = {sp: numpy.zeros(
|
||||
[self.shells[ishell]['dim'], self.n_k, n_om], numpy.float_) for sp in spn}
|
||||
[self.shells[ishell]['dim'], self.n_k, n_om], float) for sp in spn}
|
||||
|
||||
if ishell is not None:
|
||||
assert isinstance(ishell, int) and ishell in range(len(self.shells)), "ishell must be of type integer and consistent with number of shells."
|
||||
@ -990,7 +990,7 @@ class SumkDFTTools(SumkDFT):
|
||||
spn = self.spin_block_names[self.SO]
|
||||
ntoi = self.spin_names_to_ind[self.SO]
|
||||
# Density matrix in the window
|
||||
self.dens_mat_window = [[numpy.zeros([self.shells[ish]['dim'], self.shells[ish]['dim']], numpy.complex_)
|
||||
self.dens_mat_window = [[numpy.zeros([self.shells[ish]['dim'], self.shells[ish]['dim']], complex)
|
||||
for ish in range(self.n_shells)]
|
||||
for isp in range(len(spn))]
|
||||
# Set up G_loc
|
||||
@ -1262,7 +1262,7 @@ class SumkDFTTools(SumkDFT):
|
||||
print("Omega mesh automatically repined to: ", self.Om_mesh)
|
||||
|
||||
self.Gamma_w = {direction: numpy.zeros(
|
||||
(len(self.Om_mesh), n_om), dtype=numpy.float_) for direction in self.directions}
|
||||
(len(self.Om_mesh), n_om), dtype=float) for direction in self.directions}
|
||||
|
||||
# Sum over all k-points
|
||||
ikarray = numpy.array(list(range(self.n_k)))
|
||||
@ -1270,7 +1270,7 @@ class SumkDFTTools(SumkDFT):
|
||||
# Calculate G_w for ik and initialize A_kw
|
||||
G_w = self.lattice_gf(ik, mu, iw_or_w="w", beta=beta,
|
||||
broadening=broadening, mesh=mesh, with_Sigma=with_Sigma)
|
||||
A_kw = [numpy.zeros((self.n_orbitals[ik][isp], self.n_orbitals[ik][isp], n_om), dtype=numpy.complex_)
|
||||
A_kw = [numpy.zeros((self.n_orbitals[ik][isp], self.n_orbitals[ik][isp], n_om), dtype=complex)
|
||||
for isp in range(n_inequiv_spin_blocks)]
|
||||
|
||||
for isp in range(n_inequiv_spin_blocks):
|
||||
|
@ -105,7 +105,7 @@ else:
|
||||
|
||||
for conjugate in conjugate_values:
|
||||
# construct a random block-diagonal Hloc
|
||||
Hloc = np.zeros((10,10), dtype=np.complex_)
|
||||
Hloc = np.zeros((10,10), dtype=complex)
|
||||
# the Hloc of the first three 2x2 blocks is equal
|
||||
Hloc0 = get_random_hermitian(2)
|
||||
Hloc[:2,:2] = Hloc0
|
||||
|
@ -20,7 +20,7 @@ def get_random_transformation(dim):
|
||||
return T
|
||||
|
||||
# construct a random block-diagonal Hloc
|
||||
Hloc = np.zeros((10,10), dtype=np.complex_)
|
||||
Hloc = np.zeros((10,10), dtype=complex)
|
||||
# the Hloc of the first three 2x2 blocks is equal
|
||||
Hloc0 = get_random_hermitian(2)
|
||||
Hloc[:2,:2] = Hloc0
|
||||
@ -88,7 +88,7 @@ Gt = BlockGf(name_block_generator = [(name,
|
||||
n_points=len(block.mesh),
|
||||
indices=block.indices)) for name, block in G], make_copies=False)
|
||||
|
||||
known_moments = np.zeros((2,10,10), dtype=np.complex)
|
||||
known_moments = np.zeros((2,10,10), dtype=complex)
|
||||
known_moments[1,:] = np.eye(10)
|
||||
tail, err = fit_tail(G['ud'], known_moments)
|
||||
Gt['ud'].set_from_fourier(G['ud'], tail)
|
||||
|
@ -29,7 +29,7 @@ class TestBlockMap(mytest.MyTestCase):
|
||||
self.mock_eigvals = np.zeros((1, 11, 1))
|
||||
|
||||
nproj = 16
|
||||
self.mock_plo = np.zeros((nproj, 1, 1, 11), dtype=np.complex128)
|
||||
self.mock_plo = np.zeros((nproj, 1, 1, 11), dtype=complex)
|
||||
self.mock_proj_params = [{} for i in range(nproj)]
|
||||
ip = 0
|
||||
# Mock d-sites
|
||||
|
@ -73,7 +73,7 @@ class TestProjectorGroupCompl(mytest.MyTestCase):
|
||||
bmax = self.proj_gr.ib_win[ik, isp, 1]+1
|
||||
|
||||
nb = bmax - bmin
|
||||
p_mat = np.zeros((ndim, nb), dtype=np.complex128)
|
||||
p_mat = np.zeros((ndim, nb), dtype=complex)
|
||||
#print(bmin,bmax,nb)
|
||||
# Combine all projectors of the group to one block projector
|
||||
for bl_map in block_maps:
|
||||
|
Loading…
Reference in New Issue
Block a user