fix: np.int / np.float / np. complex are depracted (np v1.20) / removed (np v1.24)

This commit is contained in:
Alexander Hampel 2023-01-23 15:40:57 -05:00
parent 9d1f822730
commit a9e99f2308
19 changed files with 158 additions and 158 deletions

View File

@ -25,19 +25,19 @@ calculation. The default name of this group is `dft_input`. Its contents are
================= ====================================================================== =====================================================================================
Name Type Meaning
================= ====================================================================== =====================================================================================
energy_unit numpy.float Unit of energy used for the calculation.
n_k numpy.int Number of k-points used for the BZ integration.
k_dep_projection numpy.int 1 if the dimension of the projection operators depend on the k-point,
energy_unit float Unit of energy used for the calculation.
n_k int Number of k-points used for the BZ integration.
k_dep_projection int 1 if the dimension of the projection operators depend on the k-point,
0 otherwise.
SP numpy.int 1 for spin-polarised Hamiltonian, 0 for paramagnetic Hamiltonian.
SO numpy.int 1 if spin-orbit interaction is included, 0 otherwise.
charge_below numpy.float Number of electrons in the crystal below the correlated orbitals.
SP int 1 for spin-polarised Hamiltonian, 0 for paramagnetic Hamiltonian.
SO int 1 if spin-orbit interaction is included, 0 otherwise.
charge_below float Number of electrons in the crystal below the correlated orbitals.
Note that this is for compatibility with dmftproj, otherwise set to 0
density_required numpy.float Required total electron density. Needed to determine the chemical potential.
density_required float Required total electron density. Needed to determine the chemical potential.
The density in the projection window is then `density_required`-`charge_below`.
symm_op numpy.int 1 if symmetry operations are used for the BZ sums,
symm_op int 1 if symmetry operations are used for the BZ sums,
0 if all k-points are directly included in the input.
n_shells numpy.int Number of atomic shells for which post-processing is possible.
n_shells int Number of atomic shells for which post-processing is possible.
Note: this is `not` the number of correlated orbitals!
If there are two equivalent atoms in the unit cell, `n_shells` is 2.
shells list of dict {string:int}, dim n_shells x 4 Atomic shell information.
@ -46,17 +46,17 @@ shells list of dict {string:int}, dim n_shells x 4
'l' is the angular quantum number, 'dim' is the dimension of the atomic shell.
e.g. for two equivalent atoms in the unit cell, `atom` runs from 0 to 1,
but `sort` can take only one value 0.
n_corr_shells numpy.int Number of correlated atomic shells.
n_corr_shells int Number of correlated atomic shells.
If there are two correlated equivalent atoms in the unit cell, `n_corr_shells` is 2.
n_inequiv_shells numpy.int Number of inequivalent atomic shells. Needs to be smaller than `n_corr_shells`.
n_inequiv_shells int Number of inequivalent atomic shells. Needs to be smaller than `n_corr_shells`.
The up / downfolding routines mediate between all correlated shells and the
actual inequivalent shells, by using the self-energy etc. for all equal shells
belonging to the same class of inequivalent shells. The mapping is performed with
information stored in `corr_to_inequiv` and `inequiv_to_corr`.
corr_to_inequiv list of numpy.int, dim `n_corr_shells` mapping from correlated shells to inequivalent correlated shells.
corr_to_inequiv list of int, dim `n_corr_shells` mapping from correlated shells to inequivalent correlated shells.
A list of length `n_corr_shells` containing integers, where same numbers mark
equivalent sites.
inequiv_to_corr list of numpy.int, dim `n_inequiv_shells` A list of length `n_inequiv_shells` containing list indices as integers pointing
inequiv_to_corr list of int, dim `n_inequiv_shells` A list of length `n_inequiv_shells` containing list indices as integers pointing
to the corresponding sites in `corr_to_inequiv`.
corr_shells list of dict {string:int}, dim n_corr_shells x 6 Correlated orbital information.
For each correlated shell, have a dict with keys
@ -64,15 +64,15 @@ corr_shells list of dict {string:int}, dim n_corr_shells x 6
'atom' is the atom index, 'sort' defines the equivalency of the atoms,
'l' is the angular quantum number, 'dim' is the dimension of the atomic shell.
'SO' is one if spin-orbit is included, 0 otherwise, 'irep' is a dummy integer 0.
use_rotations numpy.int 1 if local and global coordinate systems are used, 0 otherwise.
use_rotations int 1 if local and global coordinate systems are used, 0 otherwise.
rot_mat list of numpy.array.complex, Rotation matrices for correlated shells, if `use_rotations`.
dim n_corr_shells x [corr_shells['dim'],corr_shells['dim']] These rotations are automatically applied for up / downfolding.
Set to the unity matrix if no rotations are used.
rot_mat_time_inv list of numpy.int, dim n_corr_shells If `SP` is 1, 1 if the coordinate transformation contains inversion, 0 otherwise.
rot_mat_time_inv list of int, dim n_corr_shells If `SP` is 1, 1 if the coordinate transformation contains inversion, 0 otherwise.
If `use_rotations` or `SP` is 0, give a list of zeros.
n_reps numpy.int Number of irreducible representations of the correlated shell.
n_reps int Number of irreducible representations of the correlated shell.
e.g. 2 if eg/t2g splitting is used.
dim_reps list of numpy.int, dim n_reps Dimension of the representations.
dim_reps list of int, dim n_reps Dimension of the representations.
e.g. [2,3] for eg/t2g subsets.
T list of numpy.array.complex, Transformation matrix from the spherical harmonics to impurity problem basis
dim n_inequiv_corr_shell x normally the real cubic harmonics).

View File

@ -666,7 +666,7 @@ class BlockStructure(object):
return self._create_gf_or_matrix(ish, gf_function, BlockGf, space, **kwargs)
def create_matrix(self, ish=0, space='solver', dtype=np.complex_):
def create_matrix(self, ish=0, space='solver', dtype=complex):
""" Create a zero matrix having the correct structure.
For ``space='solver'``, the structure is according to

View File

@ -183,7 +183,7 @@ class ElkConverter(ConverterTools,Elk_tools,read_Elk):
n_orbitals=n_orbitals[:,:1]
#Resize proj_mat, mat, T
#make temporary projector array
proj_mat_tmp = numpy.zeros([n_k, 1, n_corr_shells, max([crsh['dim'] for crsh in corr_shells]), numpy.max(n_orbitals)], numpy.complex_)
proj_mat_tmp = numpy.zeros([n_k, 1, n_corr_shells, max([crsh['dim'] for crsh in corr_shells]), numpy.max(n_orbitals)], complex)
for ish in range(n_corr_shells):
#update proj_mat
for ik in range(n_k):
@ -206,7 +206,7 @@ class ElkConverter(ConverterTools,Elk_tools,read_Elk):
#size of each quadrant in the lm symmetry array.
size=int(0.5*corr_shells[ish]['dim'])
#temporary spin block array for SU(2) spin operations on mat
spinmat = numpy.zeros([size,2,size,2],numpy.complex_)
spinmat = numpy.zeros([size,2,size,2],complex)
for isym in range(n_symm):
#expand size of array
mat[isym][ish]=numpy.lib.pad(mat[isym][ish],((0,size),(0,size)),'constant',constant_values=(0.0))
@ -233,7 +233,7 @@ class ElkConverter(ConverterTools,Elk_tools,read_Elk):
Rearranges the energy eigenvalue arrays into TRIQS format
"""
hopping = numpy.zeros([n_k, n_spin_blocs, numpy.max(n_orbitals), numpy.max(n_orbitals)], numpy.complex_)
hopping = numpy.zeros([n_k, n_spin_blocs, numpy.max(n_orbitals), numpy.max(n_orbitals)], complex)
#loop over spin
for isp in range(n_spin_blocs):
#loop over k-points
@ -295,7 +295,7 @@ class ElkConverter(ConverterTools,Elk_tools,read_Elk):
mpi.report("Reading %s and EFERMI.OUT" % self.eval_file)
[en,occ,nstsv]=read_Elk.read_eig(self)
#read projectors calculated in the Elk calculation
proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max([crsh['dim'] for crsh in corr_shells]), nstsv], numpy.complex_)
proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max([crsh['dim'] for crsh in corr_shells]), nstsv], complex)
mpi.report("Reading projector(s)")
for ish in range(n_corr_shells):
[n_orbitals,band_window,rep,proj_mat]=read_Elk.read_projector(self,corr_shells,n_spin_blocs,ish,proj_mat,ind,T,basis,filext)
@ -349,7 +349,7 @@ class ElkConverter(ConverterTools,Elk_tools,read_Elk):
#require a symmetry matrix to rotate from jatom to iatom. Below finds the non inversion
#symmetric matrices which were used in calculating the projectors
use_rotations = 1
rot_mat = [numpy.identity(corr_shells[icrsh]['dim'], numpy.complex_) for icrsh in range(n_corr_shells)]
rot_mat = [numpy.identity(corr_shells[icrsh]['dim'], complex) for icrsh in range(n_corr_shells)]
for icrsh in range(n_corr_shells):
#incrsh = corr_to_inequiv[icrsh]
#iatom = corr_shells[incrsh]['atom']
@ -407,7 +407,7 @@ class ElkConverter(ConverterTools,Elk_tools,read_Elk):
symm_subgrp=self.symmcorr_subgrp
#Elk does not use time inversion symmetry
time_inv = [0 for j in range(n_symm)]
mat_tinv = [numpy.identity(orbits[orb]['dim'], numpy.complex_)
mat_tinv = [numpy.identity(orbits[orb]['dim'], complex)
for orb in range(n_orbits)]
#Save all the symmetry data
if not (symm_subgrp in ar):
@ -465,7 +465,7 @@ class ElkConverter(ConverterTools,Elk_tools,read_Elk):
en=numpy.loadtxt('BAND.OUT')
nstsv=int(len(en[:,1])/n_k)
#convert the en array into a workable format
entmp = numpy.zeros([n_k,nstsv], numpy.complex_)
entmp = numpy.zeros([n_k,nstsv], complex)
enj=0
for ist in range(nstsv):
for ik in range(n_k):
@ -473,7 +473,7 @@ class ElkConverter(ConverterTools,Elk_tools,read_Elk):
enj+=1
del en
#read projectors
proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max([crsh['dim'] for crsh in corr_shells]), nstsv], numpy.complex_)
proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max([crsh['dim'] for crsh in corr_shells]), nstsv], complex)
mpi.report("Reading projector(s)")
for ish in range(n_corr_shells):
[n_orbitals,band_window,rep,proj_mat]=read_Elk.read_projector(self,corr_shells,n_spin_blocs,ish,proj_mat,ind,T,basis,filext)
@ -546,7 +546,7 @@ class ElkConverter(ConverterTools,Elk_tools,read_Elk):
[bz_weights,vkl]=read_Elk.read_kpoints(self,filext=filext)
#read projectors
proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max([crsh['dim'] for crsh in corr_shells]), nstsv], numpy.complex_)
proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max([crsh['dim'] for crsh in corr_shells]), nstsv], complex)
mpi.report("Reading projector(s)")
for ish in range(n_corr_shells):
[n_orbitals,band_window,rep,proj_mat]=read_Elk.read_projector(self,corr_shells,n_spin_blocs,ish,proj_mat,ind,T,basis,filext)
@ -615,7 +615,7 @@ class ElkConverter(ConverterTools,Elk_tools,read_Elk):
[bc,maxlm] = read_Elk.read_bc(self)
#set up SO bc array
if (self.SO):
tmp = numpy.zeros([2*maxlm,1,self.n_atoms,self.nstsv,self.n_k], numpy.float_)
tmp = numpy.zeros([2*maxlm,1,self.n_atoms,self.nstsv,self.n_k], float)
#put both spinors into the lm array indices.
tmp[0:maxlm,0,:,:,:]=bc[0:maxlm,0,:,:,:]
tmp[maxlm:2*maxlm,0,:,:,:]=bc[0:maxlm,1,:,:,:]
@ -626,7 +626,7 @@ class ElkConverter(ConverterTools,Elk_tools,read_Elk):
#reduce bc matrix to band states stored in hdf file
n_spin_blocs=self.SP+1-self.SO
tmp = numpy.zeros([maxlm,n_spin_blocs,self.n_atoms,numpy.max(self.n_orbitals),self.n_k], numpy.float_)
tmp = numpy.zeros([maxlm,n_spin_blocs,self.n_atoms,numpy.max(self.n_orbitals),self.n_k], float)
for ik in range(self.n_k):
for isp in range(n_spin_blocs):
nst=self.n_orbitals[ik,isp]

View File

@ -42,7 +42,7 @@ class ElkConverterTools:
routine.
"""
eps=1E-8
v=numpy.zeros([3], numpy.float_)
v=numpy.zeros([3], float)
# find the determinant
det=numpy.linalg.det(rot)
if (abs(det-1.0)<eps):
@ -100,7 +100,7 @@ class ElkConverterTools:
"""
Calculate the rotation SU(2) matrix - see Elk's axangsu2 routine.
"""
su2=numpy.zeros([2,2], numpy.complex_)
su2=numpy.zeros([2,2], complex)
t1=numpy.sqrt(numpy.dot(v,v))
if(t1<1E-8):
raise "sym_converter : zero length axis vector!"
@ -143,12 +143,12 @@ class ElkConverterTools:
perm=[]
iea=[]
for isym in range(nsym):
iea.append(numpy.zeros([natmtot,ns], numpy.int_))
iea.append(numpy.zeros([natmtot,ns], int))
#loop over species
for js in range(ns):
#loop over species atoms
v=numpy.zeros([3,na[js]], numpy.float_)
v2=numpy.zeros(3, numpy.float_)
v=numpy.zeros([3,na[js]], float)
v2=numpy.zeros(3, float)
for ia in range(na[js]):
v[:,ia]=self.v3frac(atpos[js][ia][0:3],epslat)
for ia in range(na[js]):
@ -180,14 +180,14 @@ class ElkConverterTools:
#need SciPy routines to get Euler angles - need version 1.4+
#from scipy.spatial.transform import Rotation as R
symmat=[]
rot=numpy.identity(3, numpy.float_)
angi=numpy.zeros(3, numpy.float_)
rot=numpy.identity(3, float)
angi=numpy.zeros(3, float)
#loop over symmetries
for isym in range(nsym):
symmat.append([])
for ish in range(n_shells):
l=shells[ish]['l']
symmat[isym].append(numpy.zeros([2*l+1, 2*l+1], numpy.complex_))
symmat[isym].append(numpy.zeros([2*l+1, 2*l+1], complex))
#get determinant
det=numpy.linalg.det(symlat[isym])
p=1
@ -217,7 +217,7 @@ class ElkConverterTools:
"""
eps=1E-8
pi=numpy.pi
ang=numpy.zeros(3, numpy.float_)
ang=numpy.zeros(3, float)
#get the Euler angles
if((abs(rot[2,0])>eps) or (abs(rot[2,1])>eps)):
ang[0]=numpy.arctan2(rot[2,1],rot[2,0])
@ -243,7 +243,7 @@ class ElkConverterTools:
calculates the rotation matrix in complex spherical harmonics for l.
THIS HAS ONLY BEEN TESTED FOR l=2.
"""
d=numpy.identity(2*l+1, numpy.complex_)
d=numpy.identity(2*l+1, complex)
# generate the rotation matrix about the y-axis
dy=self.ylmroty(angi[1],l)
# apply inversion to odd l values if required
@ -268,7 +268,7 @@ class ElkConverterTools:
#import the factorial function - needed for later versions of scipy (needs testing)
from scipy import special as spec
#calculates the rotation matrix in complex spherical harmonics for l
dy=numpy.identity(2*l+1, numpy.float_)
dy=numpy.identity(2*l+1, float)
#sine and cosine of beta
cb=numpy.cos(beta/2.0)
sb=numpy.sin(beta/2.0)

View File

@ -159,13 +159,13 @@ class readElkfiles:
n_shells=0
n_inequiv_shells=0
#local arrays
neqatom=[]#numpy.zeros([n_shells], numpy.int)
neqatom=[]#numpy.zeros([n_shells], int)
proj=[]
shells=[]#numpy.zeros([n_shells], numpy.int)
corr_shells=[]#numpy.zeros([n_shells], numpy.int)
shells=[]#numpy.zeros([n_shells], int)
corr_shells=[]#numpy.zeros([n_shells], int)
prjtype=[]
wan=[]
proj_info=[]#numpy.zeros([n_shells], numpy.int)
proj_info=[]#numpy.zeros([n_shells], int)
T=[]
basis=[]
inequiv_to_corr=[]
@ -196,7 +196,7 @@ class readElkfiles:
corr_shells.append(shells[n_shells].copy())
n_orb=2*shells[n_shells]['l']+1
#lm submatrix indices
idxlm.append(numpy.zeros(2*lmax+1, dtype=numpy.int_))
idxlm.append(numpy.zeros(2*lmax+1, dtype=int))
nrep=proj[ip]['dim']
for i in range(nrep):
idxlm[n_shells][i]=next(R)-1
@ -205,7 +205,7 @@ class readElkfiles:
basis.append(int(next(R)))
#determine whether which basis the projectors where generated in
#spherical harmonics
T.append(numpy.zeros([n_orb, n_orb], dtype=numpy.complex_))
T.append(numpy.zeros([n_orb, n_orb], dtype=complex))
#Elk generated unitary basis
if (basis[n_shells]==2):
#reads the transformation matrix
@ -354,7 +354,7 @@ class readElkfiles:
dim_rep=gen['dim_rep']
lat=[]
n_k=gen['n_k']
n_orbitals = numpy.zeros([n_k, n_spin_blocks], numpy.int)
n_orbitals = numpy.zeros([n_k, n_spin_blocks], int)
band_window = [None for isp in range(n_spin_blocks)]
for isp in range(n_spin_blocks):
band_window[isp] = numpy.zeros([n_k, 2], dtype=int)
@ -375,7 +375,7 @@ class readElkfiles:
band_window[isp][ik, 0] = proj_dim['ist_min']
band_window[isp][ik, 1] = proj_dim['ist_max']
#define temporary matrix for reading in the projectors
mat = numpy.zeros([dim, n_orbitals[ik,isp]], numpy.complex_)
mat = numpy.zeros([dim, n_orbitals[ik,isp]], complex)
# Real part
for j in range(dim):
for i in range(n_orbitals[ik,isp]):
@ -453,9 +453,9 @@ class readElkfiles:
kp=[]
#reads in the k index, lattice vectors, weights and nmat for each kpt
#array for bz weights
bz_weights = numpy.ones([n_k], numpy.float_) / float(n_k)
bz_weights = numpy.ones([n_k], float) / float(n_k)
#array for lattice vectors
vkl = numpy.ones([n_k,3], numpy.float_)
vkl = numpy.ones([n_k,3], float)
for ik in range(n_k):
#k-grid info
k_entries = ['ik', 'vklx','vkly','vklz', 'bz_weights', 'nmat']
@ -487,9 +487,9 @@ class readElkfiles:
nsym = 48
#set up symmetry matrices
for isym in range(nsym):
symmat.append(numpy.zeros([3, 3], numpy.float_))
spinmat.append(numpy.zeros([3, 3], numpy.float_))
tr.append(numpy.zeros([3], numpy.float_))
symmat.append(numpy.zeros([3, 3], float))
spinmat.append(numpy.zeros([3, 3], float))
tr.append(numpy.zeros([3], float))
#read the number of crystal symmetries
x = next(R)
nsym = int(atof(x[0]))
@ -534,10 +534,10 @@ class readElkfiles:
dft_file='LATTICE.OUT'
R = self.read_elk_file2( dft_file, self.fortran_to_replace)
try:
amat = numpy.zeros([3, 3], numpy.float_)
amatinv = numpy.zeros([3, 3], numpy.float_)
bmat = numpy.zeros([3, 3], numpy.float_)
bmatinv = numpy.zeros([3, 3], numpy.float_)
amat = numpy.zeros([3, 3], float)
amatinv = numpy.zeros([3, 3], float)
bmat = numpy.zeros([3, 3], float)
bmatinv = numpy.zeros([3, 3], float)
#real space lattice matrices
#cycling through information which is not needed
for i in range(4):
@ -612,7 +612,7 @@ class readElkfiles:
#loop over atomss pre species
atpos.append([])
for ia in range(na[js]):
atpos[js].append(numpy.zeros(6, numpy.float_))
atpos[js].append(numpy.zeros(6, float))
x = next(R)
for j in range(6):
atpos[js][ia][j]=atof(x[j])
@ -657,7 +657,7 @@ class readElkfiles:
dim=gen['maxlm']
lmax=numpy.sqrt(dim)-1
bc = numpy.zeros([dim,nspinor,self.n_atoms,self.nstsv,self.n_k], numpy.float_)
bc = numpy.zeros([dim,nspinor,self.n_atoms,self.nstsv,self.n_k], float)
for ik in range(0,self.n_k):
for iatom in range(0,self.n_atoms):

View File

@ -134,7 +134,7 @@ class HkConverter(ConverterTools):
use_rotations = 0
rot_mat = [numpy.identity(
corr_shells[icrsh]['dim'], numpy.complex_) for icrsh in range(n_corr_shells)]
corr_shells[icrsh]['dim'], complex) for icrsh in range(n_corr_shells)]
rot_mat_time_inv = [0 for i in range(n_corr_shells)]
# Representative representations are read from file
@ -152,7 +152,7 @@ class HkConverter(ConverterTools):
# Wien2k)
ll = 2 * corr_shells[inequiv_to_corr[ish]]['l'] + 1
lmax = ll * (corr_shells[inequiv_to_corr[ish]]['SO'] + 1)
T.append(numpy.zeros([lmax, lmax], numpy.complex_))
T.append(numpy.zeros([lmax, lmax], complex))
T[ish] = numpy.array([[0.0, 0.0, 1.0, 0.0, 0.0],
[1.0 / sqrt(2.0), 0.0, 0.0,
@ -170,11 +170,11 @@ class HkConverter(ConverterTools):
# define the number of n_orbitals for all k points: it is the
# number of total bands and independent of k!
n_orbitals = numpy.ones(
[n_k, n_spin_blocs], numpy.int) * sum([sh['dim'] for sh in shells])
[n_k, n_spin_blocs], int) * sum([sh['dim'] for sh in shells])
# Initialise the projectors:
proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max(
[crsh['dim'] for crsh in corr_shells]), numpy.max(n_orbitals)], numpy.complex_)
[crsh['dim'] for crsh in corr_shells]), numpy.max(n_orbitals)], complex)
# Read the projectors from the file:
for ik in range(n_k):
@ -196,9 +196,9 @@ class HkConverter(ConverterTools):
# now define the arrays for weights and hopping ...
# w(k_index), default normalisation
bz_weights = numpy.ones([n_k], numpy.float_) / float(n_k)
bz_weights = numpy.ones([n_k], float) / float(n_k)
hopping = numpy.zeros([n_k, n_spin_blocs, numpy.max(
n_orbitals), numpy.max(n_orbitals)], numpy.complex_)
n_orbitals), numpy.max(n_orbitals)], complex)
if (weights_in_file):
# weights in the file

View File

@ -152,10 +152,10 @@ class ElectronicStructure:
# Spin factor
sp_fac = 2.0 if ns == 1 and not self.nc_flag else 1.0
den_mat = np.zeros((ns, nproj, nproj), dtype=np.float64)
overlap = np.zeros((ns, nproj, nproj), dtype=np.float64)
# ov_min = np.ones((ns, nproj, nproj), dtype=np.float64) * 100.0
# ov_max = np.zeros((ns, nproj, nproj), dtype=np.float64)
den_mat = np.zeros((ns, nproj, nproj), dtype=float)
overlap = np.zeros((ns, nproj, nproj), dtype=float)
# ov_min = np.ones((ns, nproj, nproj), dtype=float) * 100.0
# ov_max = np.zeros((ns, nproj, nproj), dtype=float)
for ispin in range(ns):
for ik in range(nk):
kweight = self.kmesh['kweights'][ik]

View File

@ -268,7 +268,7 @@ class ConfigParameters:
err_mess = "Complex matrix must contain 2*M values:\n%s"%(par_str)
assert 2 * (nm // 2) == nm, err_mess
tmp = np.array(rows, dtype=np.complex128)
tmp = np.array(rows, dtype=complex)
mat = tmp[:, 0::2] + 1.0j * tmp[:, 1::2]
return mat

View File

@ -68,7 +68,7 @@ class ProjectorGroup:
# Determine the minimum and maximum band numbers
if 'bands' in gr_pars:
nk, nband, ns_band = eigvals.shape
ib_win = np.zeros((nk, ns_band, 2), dtype=np.int32)
ib_win = np.zeros((nk, ns_band, 2), dtype=int)
ib_win[:,:,0] = gr_pars['bands'][0]-1
ib_win[:,:,1] = gr_pars['bands'][1]-1
ib_min = gr_pars['bands'][0] - 1
@ -152,7 +152,7 @@ class ProjectorGroup:
block_maps, ndim = self.get_block_matrix_map()
_, ns, nk, _, _ = self.shells[0].proj_win.shape
p_mat = np.zeros((ndim, self.nb_max), dtype=np.complex128)
p_mat = np.zeros((ndim, self.nb_max), dtype=complex)
# Note that 'ns' and 'nk' are the same for all shells
for isp in range(ns):
for ik in range(nk):
@ -201,7 +201,7 @@ class ProjectorGroup:
_, ns, nk, _, _ = self.shells[0].proj_win.shape
self.hk = np.zeros((ns,nk,ndim,ndim), dtype=np.complex128)
self.hk = np.zeros((ns,nk,ndim,ndim), dtype=complex)
# Note that 'ns' and 'nk' are the same for all shells
for isp in range(ns):
for ik in range(nk):
@ -209,7 +209,7 @@ class ProjectorGroup:
bmax = self.ib_win[ik, isp, 1]+1
nb = bmax - bmin
p_mat = np.zeros((ndim, nb), dtype=np.complex128)
p_mat = np.zeros((ndim, nb), dtype=complex)
#print(bmin,bmax,nb)
# Combine all projectors of the group to one block projector
for bl_map in block_maps:
@ -251,8 +251,8 @@ class ProjectorGroup:
block_maps, ndim = self.get_block_matrix_map()
_, ns, nk, _, _ = self.shells[0].proj_win.shape
p_mat = np.zeros((ndim, self.nb_max), dtype=np.complex128)
p_full = np.zeros((1,ns,nk,self.nb_max, self.nb_max), dtype=np.complex128)
p_mat = np.zeros((ndim, self.nb_max), dtype=complex)
p_full = np.zeros((1,ns,nk,self.nb_max, self.nb_max), dtype=complex)
# Note that 'ns' and 'nk' are the same for all shells
@ -452,7 +452,7 @@ class ProjectorGroup:
raise Exception("Energy window does not overlap with the band structure")
nk, nband, ns_band = eigvals.shape
ib_win = np.zeros((nk, ns_band, 2), dtype=np.int32)
ib_win = np.zeros((nk, ns_band, 2), dtype=int)
ib_min = 10000000
ib_max = 0

View File

@ -155,7 +155,7 @@ class ProjectorShell:
assert nr%ns_dim == 0, "Number of rows in TRANSFILE is not compatible with the spin dimension"
ndim = nr // ns_dim
self.tmatrices = np.zeros((nion, nr, nm * ns_dim), dtype=np.complex128)
self.tmatrices = np.zeros((nion, nr, nm * ns_dim), dtype=complex)
if is_complex:
raw_matrices = raw_matrices[:, ::2] + raw_matrices[:, 1::2] * 1j
@ -187,7 +187,7 @@ class ProjectorShell:
ndim = nrow
self.tmatrices = np.zeros((nion, nrow, nm), dtype=np.complex128)
self.tmatrices = np.zeros((nion, nrow, nm), dtype=complex)
for io in range(nion):
self.tmatrices[io, :, :] = raw_matrix
@ -200,9 +200,9 @@ class ProjectorShell:
ndim = nm * ns_dim
# We still need the matrices for the output
self.tmatrices = np.zeros((nion, ndim, ndim), dtype=np.complex128)
self.tmatrices = np.zeros((nion, ndim, ndim), dtype=complex)
for io in range(nion):
self.tmatrices[io, :, :] = np.identity(ndim, dtype=np.complex128)
self.tmatrices[io, :, :] = np.identity(ndim, dtype=complex)
return ndim
@ -230,11 +230,11 @@ class ProjectorShell:
# TODO: implement a non-collinear case
# for a non-collinear case 'ndim' is 'ns * nm'
ndim = self.tmatrices.shape[1]
self.proj_arr = np.zeros((nion, ns, nk, ndim, nb), dtype=np.complex128)
self.proj_arr = np.zeros((nion, ns, nk, ndim, nb), dtype=complex)
for ik in range(nk):
kp = kmesh['kpoints'][ik]
for io, ion in enumerate(self.ion_list):
proj_k = np.zeros((ns, nlm, nb), dtype=np.complex128)
proj_k = np.zeros((ns, nlm, nb), dtype=complex)
qcoord = structure['qcoords'][ion]
# kphase = np.exp(-2.0j * np.pi * np.dot(kp, qcoord))
# kphase = 1.0
@ -249,7 +249,7 @@ class ProjectorShell:
else:
# No transformation: just copy the projectors as they are
self.proj_arr = np.zeros((nion, ns, nk, nlm, nb), dtype=np.complex128)
self.proj_arr = np.zeros((nion, ns, nk, nlm, nb), dtype=complex)
for io, ion in enumerate(self.ion_list):
qcoord = structure['qcoords'][ion]
for m in range(nlm):
@ -282,7 +282,7 @@ class ProjectorShell:
# Set the dimensions of the array
nion, ns, nk, nlm, nbtot = self.proj_arr.shape
# !!! Note that the order of the two last indices is different !!!
self.proj_win = np.zeros((nion, ns, nk, nlm, nb_max), dtype=np.complex128)
self.proj_win = np.zeros((nion, ns, nk, nlm, nb_max), dtype=complex)
# Select projectors for a given energy window
ns_band = self.ib_win.shape[1]
@ -310,14 +310,14 @@ class ProjectorShell:
assert spin_diag, "spin_diag = False is not implemented"
if site_diag:
occ_mats = np.zeros((ns, nion, nlm, nlm), dtype=np.float64)
overlaps = np.zeros((ns, nion, nlm, nlm), dtype=np.float64)
occ_mats = np.zeros((ns, nion, nlm, nlm), dtype=float)
overlaps = np.zeros((ns, nion, nlm, nlm), dtype=float)
else:
ndim = nion * nlm
occ_mats = np.zeros((ns, 1, ndim, ndim), dtype=np.float64)
overlaps = np.zeros((ns, 1, ndim, ndim), dtype=np.float64)
occ_mats = np.zeros((ns, 1, ndim, ndim), dtype=float)
overlaps = np.zeros((ns, 1, ndim, ndim), dtype=float)
# self.proj_win = np.zeros((nion, ns, nk, nlm, nb_max), dtype=np.complex128)
# self.proj_win = np.zeros((nion, ns, nk, nlm, nb_max), dtype=complex)
kweights = el_struct.kmesh['kweights']
occnums = el_struct.ferw
ib1 = self.ib_min
@ -332,7 +332,7 @@ class ProjectorShell:
overlaps[isp, io, :, :] += np.dot(proj_k,
proj_k.conj().T).real * weight
else:
proj_k = np.zeros((ndim, nbtot), dtype=np.complex128)
proj_k = np.zeros((ndim, nbtot), dtype=complex)
for isp in range(ns):
for ik, weight, occ in zip(it.count(), kweights, occnums[isp, :, :]):
for io in range(nion):
@ -363,9 +363,9 @@ class ProjectorShell:
assert site_diag, "site_diag = False is not implemented"
assert spin_diag, "spin_diag = False is not implemented"
loc_ham = np.zeros((ns, nion, nlm, nlm), dtype=np.complex128)
loc_ham = np.zeros((ns, nion, nlm, nlm), dtype=complex)
# self.proj_win = np.zeros((nion, ns, nk, nlm, nb_max), dtype=np.complex128)
# self.proj_win = np.zeros((nion, ns, nk, nlm, nb_max), dtype=complex)
kweights = el_struct.kmesh['kweights']
occnums = el_struct.ferw
ib1 = self.ib_min
@ -403,7 +403,7 @@ class ProjectorShell:
ne = len(emesh)
dos = np.zeros((ne, ns, nion, nlm))
w_k = np.zeros((nk, nb_max, ns, nion, nlm), dtype=np.complex128)
w_k = np.zeros((nk, nb_max, ns, nion, nlm), dtype=complex)
for isp in range(ns):
for ik in range(nk):
is_b = min(isp, ns_band)

View File

@ -251,7 +251,7 @@ class Plocar:
except:
print("!!! WARNING !!!: Error reading E-Fermi from LOCPROJ, trying DOSCAR")
plo = np.zeros((nproj, self.nspin, nk, self.nband), dtype=np.complex128)
plo = np.zeros((nproj, self.nspin, nk, self.nband), dtype=complex)
proj_params = [{} for i in range(nproj)]
iproj_site = 0
@ -685,7 +685,7 @@ def read_symmcar(vasp_dir, symm_filename='SYMMCAR'):
print(" {0:>26} {1:d}".format("L_max:", lmax))
rot_mats = np.zeros((nrot, lmax+1, mmax, mmax))
rot_map = np.zeros((nrot, ntrans, nion), dtype=np.int32)
rot_map = np.zeros((nrot, ntrans, nion), dtype=int)
for irot in range(nrot):
# Empty line

View File

@ -259,7 +259,7 @@ class VaspConverter(ConverterTools):
# NB!: these rotation matrices are specific to Wien2K! Set to identity in VASP
use_rotations = 1
rot_mat = [numpy.identity(corr_shells[icrsh]['dim'],numpy.complex_) for icrsh in range(n_corr_shells)]
rot_mat = [numpy.identity(corr_shells[icrsh]['dim'],complex) for icrsh in range(n_corr_shells)]
rot_mat_time_inv = [0 for i in range(n_corr_shells)]
# TODO: implement transformation matrices
@ -276,16 +276,16 @@ class VaspConverter(ConverterTools):
ll = 2 * corr_shells[inequiv_to_corr[ish]]['l']+1
lmax = ll * (corr_shells[inequiv_to_corr[ish]]['SO'] + 1)
# TODO: at the moment put T-matrices to identities
T.append(numpy.identity(lmax, numpy.complex_))
T.append(numpy.identity(lmax, complex))
# if nc_flag:
## TODO: implement the noncollinear part
# raise NotImplementedError("Noncollinear calculations are not implemented")
# else:
hopping = numpy.zeros([n_k, n_spin_blocs, nb_max, nb_max], numpy.complex_)
f_weights = numpy.zeros([n_k, n_spin_blocs, nb_max], numpy.float_)
hopping = numpy.zeros([n_k, n_spin_blocs, nb_max, nb_max], complex)
f_weights = numpy.zeros([n_k, n_spin_blocs, nb_max], float)
band_window = [numpy.zeros((n_k, 2), dtype=int) for isp in range(n_spin_blocs)]
n_orbitals = numpy.zeros([n_k, n_spin_blocs], numpy.int)
n_orbitals = numpy.zeros([n_k, n_spin_blocs], int)
for isp in range(n_spin_blocs):
@ -299,7 +299,7 @@ class VaspConverter(ConverterTools):
f_weights[ik, isp, ib] = next(rf)
if self.proj_or_hk == 'hk':
hopping = numpy.zeros([n_k, n_spin_blocs, n_orbs, n_orbs], numpy.complex_)
hopping = numpy.zeros([n_k, n_spin_blocs, n_orbs, n_orbs], complex)
# skip header lines
hk_file = self.basename + '.hk%i'%(ig + 1)
f_hk = open(hk_file, 'rt')
@ -324,7 +324,7 @@ class VaspConverter(ConverterTools):
# Projectors
# print n_orbitals
# print [crsh['dim'] for crsh in corr_shells]
proj_mat_csc = numpy.zeros([n_k, n_spin_blocs, sum([sh['dim'] for sh in shells]), numpy.max(n_orbitals)], numpy.complex_)
proj_mat_csc = numpy.zeros([n_k, n_spin_blocs, sum([sh['dim'] for sh in shells]), numpy.max(n_orbitals)], complex)
# TODO: implement reading from more than one projector group
# In 'dmftproj' each ion represents a separate correlated shell.
@ -351,7 +351,7 @@ class VaspConverter(ConverterTools):
proj_mat_csc[ik, isp, ilm, ib] = complex(pr, pi)
# now save only projectors with flag 'corr' to proj_mat
proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max([crsh['dim'] for crsh in corr_shells]), numpy.max(n_orbitals)], numpy.complex_)
proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max([crsh['dim'] for crsh in corr_shells]), numpy.max(n_orbitals)], complex)
if self.proj_or_hk == 'proj':
for ish, sh in enumerate(p_shells):
if sh['corr']:

View File

@ -155,7 +155,7 @@ class Wien2kConverter(ConverterTools):
use_rotations = 1
rot_mat = [numpy.identity(
corr_shells[icrsh]['dim'], numpy.complex_) for icrsh in range(n_corr_shells)]
corr_shells[icrsh]['dim'], complex) for icrsh in range(n_corr_shells)]
# read the matrices
rot_mat_time_inv = [0 for i in range(n_corr_shells)]
@ -186,7 +186,7 @@ class Wien2kConverter(ConverterTools):
# is of dimension 2l+1 without SO, and 2*(2l+1) with SO!
ll = 2 * corr_shells[inequiv_to_corr[ish]]['l'] + 1
lmax = ll * (corr_shells[inequiv_to_corr[ish]]['SO'] + 1)
T.append(numpy.zeros([lmax, lmax], numpy.complex_))
T.append(numpy.zeros([lmax, lmax], complex))
# now read it from file:
for i in range(lmax):
@ -200,14 +200,14 @@ class Wien2kConverter(ConverterTools):
n_spin_blocs = SP + 1 - SO
# read the list of n_orbitals for all k points
n_orbitals = numpy.zeros([n_k, n_spin_blocs], numpy.int)
n_orbitals = numpy.zeros([n_k, n_spin_blocs], int)
for isp in range(n_spin_blocs):
for ik in range(n_k):
n_orbitals[ik, isp] = int(next(R))
# Initialise the projectors:
proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max(
[crsh['dim'] for crsh in corr_shells]), numpy.max(n_orbitals)], numpy.complex_)
[crsh['dim'] for crsh in corr_shells]), numpy.max(n_orbitals)], complex)
# Read the projectors from the file:
for ik in range(n_k):
@ -227,9 +227,9 @@ class Wien2kConverter(ConverterTools):
# now define the arrays for weights and hopping ...
# w(k_index), default normalisation
bz_weights = numpy.ones([n_k], numpy.float_) / float(n_k)
bz_weights = numpy.ones([n_k], float) / float(n_k)
hopping = numpy.zeros([n_k, n_spin_blocs, numpy.max(
n_orbitals), numpy.max(n_orbitals)], numpy.complex_)
n_orbitals), numpy.max(n_orbitals)], complex)
# weights in the file
for ik in range(n_k):
@ -304,7 +304,7 @@ class Wien2kConverter(ConverterTools):
mpi.report("Reading input from %s..." % self.parproj_file)
dens_mat_below = [[numpy.zeros([self.shells[ish]['dim'], self.shells[ish]['dim']], numpy.complex_) for ish in range(self.n_shells)]
dens_mat_below = [[numpy.zeros([self.shells[ish]['dim'], self.shells[ish]['dim']], complex) for ish in range(self.n_shells)]
for isp in range(self.n_spin_blocs)]
R = ConverterTools.read_fortran_file(
@ -315,10 +315,10 @@ class Wien2kConverter(ConverterTools):
# Initialise P, here a double list of matrices:
proj_mat_all = numpy.zeros([self.n_k, self.n_spin_blocs, self.n_shells, max(
n_parproj), max([sh['dim'] for sh in self.shells]), numpy.max(self.n_orbitals)], numpy.complex_)
n_parproj), max([sh['dim'] for sh in self.shells]), numpy.max(self.n_orbitals)], complex)
rot_mat_all = [numpy.identity(
self.shells[ish]['dim'], numpy.complex_) for ish in range(self.n_shells)]
self.shells[ish]['dim'], complex) for ish in range(self.n_shells)]
rot_mat_all_time_inv = [0 for i in range(self.n_shells)]
for ish in range(self.n_shells):
@ -409,14 +409,14 @@ class Wien2kConverter(ConverterTools):
n_k = int(next(R))
# read the list of n_orbitals for all k points
n_orbitals = numpy.zeros([n_k, self.n_spin_blocs], numpy.int)
n_orbitals = numpy.zeros([n_k, self.n_spin_blocs], int)
for isp in range(self.n_spin_blocs):
for ik in range(n_k):
n_orbitals[ik, isp] = int(next(R))
# Initialise the projectors:
proj_mat = numpy.zeros([n_k, self.n_spin_blocs, self.n_corr_shells, max(
[crsh['dim'] for crsh in self.corr_shells]), numpy.max(n_orbitals)], numpy.complex_)
[crsh['dim'] for crsh in self.corr_shells]), numpy.max(n_orbitals)], complex)
# Read the projectors from the file:
for ik in range(n_k):
@ -435,7 +435,7 @@ class Wien2kConverter(ConverterTools):
proj_mat[ik, isp, icrsh, i, j] += 1j * next(R)
hopping = numpy.zeros([n_k, self.n_spin_blocs, numpy.max(
n_orbitals), numpy.max(n_orbitals)], numpy.complex_)
n_orbitals), numpy.max(n_orbitals)], complex)
# Grab the H
# we use now the convention of a DIAGONAL Hamiltonian!!!!
@ -451,7 +451,7 @@ class Wien2kConverter(ConverterTools):
# Initialise P, here a double list of matrices:
proj_mat_all = numpy.zeros([n_k, self.n_spin_blocs, self.n_shells, max(n_parproj), max(
[sh['dim'] for sh in self.shells]), numpy.max(n_orbitals)], numpy.complex_)
[sh['dim'] for sh in self.shells]), numpy.max(n_orbitals)], complex)
for ish in range(self.n_shells):
for ik in range(n_k):
@ -754,7 +754,7 @@ class Wien2kConverter(ConverterTools):
for i_symm in range(n_symm):
mat.append([numpy.zeros([orbits[orb]['dim'], orbits[orb][
'dim']], numpy.complex_) for orb in range(n_orbits)])
'dim']], complex) for orb in range(n_orbits)])
for orb in range(n_orbits):
for i in range(orbits[orb]['dim']):
for j in range(orbits[orb]['dim']):
@ -765,7 +765,7 @@ class Wien2kConverter(ConverterTools):
mat[i_symm][orb][i, j] += 1j * \
next(R) # imaginary part
mat_tinv = [numpy.identity(orbits[orb]['dim'], numpy.complex_)
mat_tinv = [numpy.identity(orbits[orb]['dim'], complex)
for orb in range(n_orbits)]
if ((SO == 0) and (SP == 0)):

View File

@ -581,7 +581,7 @@ class SumkDFT(object):
G_latt << Omega + 1j * broadening
idmat = [numpy.identity(
self.n_orbitals[ik, ntoi[sp]], numpy.complex_) for sp in spn]
self.n_orbitals[ik, ntoi[sp]], complex) for sp in spn]
M = copy.deepcopy(idmat)
for ibl in range(self.n_spin_blocks[self.SO]):
@ -1297,10 +1297,10 @@ class SumkDFT(object):
if res.fun > threshold: continue
# reinterpret the solution as a complex number
y = res.x.view(numpy.complex_)
y = res.x.view(complex)
# reconstruct the T matrix
T = numpy.zeros(N.shape[:-1], dtype=numpy.complex_)
T = numpy.zeros(N.shape[:-1], dtype=complex)
for i in range(len(y)):
T += N[:, :, i] * y[i]
@ -1470,7 +1470,7 @@ class SumkDFT(object):
for icrsh in range(self.n_corr_shells):
for sp in self.spin_block_names[self.corr_shells[icrsh]['SO']]:
dens_mat[icrsh][sp] = numpy.zeros(
[self.corr_shells[icrsh]['dim'], self.corr_shells[icrsh]['dim']], numpy.complex_)
[self.corr_shells[icrsh]['dim'], self.corr_shells[icrsh]['dim']], complex)
ikarray = numpy.array(list(range(self.n_k)))
for ik in mpi.slice_array(ikarray):
@ -1488,7 +1488,7 @@ class SumkDFT(object):
ntoi = self.spin_names_to_ind[self.SO]
spn = self.spin_block_names[self.SO]
dims = {sp:self.n_orbitals[ik, ntoi[sp]] for sp in spn}
MMat = [numpy.zeros([dims[sp], dims[sp]], numpy.complex_) for sp in spn]
MMat = [numpy.zeros([dims[sp], dims[sp]], complex) for sp in spn]
for isp, sp in enumerate(spn):
ind = ntoi[sp]
@ -1569,7 +1569,7 @@ class SumkDFT(object):
for ish in range(self.n_inequiv_shells):
for sp in self.spin_block_names[self.corr_shells[self.inequiv_to_corr[ish]]['SO']]:
eff_atlevels[ish][sp] = numpy.identity(
self.corr_shells[self.inequiv_to_corr[ish]]['dim'], numpy.complex_)
self.corr_shells[self.inequiv_to_corr[ish]]['dim'], complex)
eff_atlevels[ish][sp] *= -self.chemical_potential
eff_atlevels[ish][
sp] -= self.dc_imp[self.inequiv_to_corr[ish]][sp]
@ -1583,13 +1583,13 @@ class SumkDFT(object):
dim = self.corr_shells[icrsh]['dim']
for sp in self.spin_block_names[self.corr_shells[icrsh]['SO']]:
self.Hsumk[icrsh][sp] = numpy.zeros(
[dim, dim], numpy.complex_)
[dim, dim], complex)
for isp, sp in enumerate(self.spin_block_names[self.corr_shells[icrsh]['SO']]):
ind = self.spin_names_to_ind[
self.corr_shells[icrsh]['SO']][sp]
for ik in range(self.n_k):
n_orb = self.n_orbitals[ik, ind]
MMat = numpy.identity(n_orb, numpy.complex_)
MMat = numpy.identity(n_orb, complex)
MMat = self.hopping[
ik, ind, 0:n_orb, 0:n_orb] - (1 - 2 * isp) * self.h_field * MMat
projmat = self.proj_mat[ik, ind, icrsh, 0:dim, 0:n_orb]
@ -1631,7 +1631,7 @@ class SumkDFT(object):
dim = self.corr_shells[icrsh]['dim']
spn = self.spin_block_names[self.corr_shells[icrsh]['SO']]
for sp in spn:
self.dc_imp[icrsh][sp] = numpy.zeros([dim, dim], numpy.float_)
self.dc_imp[icrsh][sp] = numpy.zeros([dim, dim], float)
self.dc_energ = [0.0 for icrsh in range(self.n_corr_shells)]
def set_dc(self, dc_imp, dc_energ):
@ -1709,7 +1709,7 @@ class SumkDFT(object):
Ncr[bl] += dens_mat[block].real.trace()
Ncrtot = sum(Ncr.values())
for sp in spn:
self.dc_imp[icrsh][sp] = numpy.identity(dim, numpy.float_)
self.dc_imp[icrsh][sp] = numpy.identity(dim, float)
if self.SP == 0: # average the densities if there is no SP:
Ncr[sp] = Ncrtot / len(spn)
# correction for SO: we have only one block in this case, but
@ -2050,14 +2050,14 @@ class SumkDFT(object):
# Convert Fermi weights to a density matrix
dens_mat_dft = {}
for sp in spn:
dens_mat_dft[sp] = [fermi_weights[ik, ntoi[sp], :].astype(numpy.complex_) for ik in range(self.n_k)]
dens_mat_dft[sp] = [fermi_weights[ik, ntoi[sp], :].astype(complex) for ik in range(self.n_k)]
# Set up deltaN:
deltaN = {}
for sp in spn:
deltaN[sp] = [numpy.zeros([self.n_orbitals[ik, ntoi[sp]], self.n_orbitals[
ik, ntoi[sp]]], numpy.complex_) for ik in range(self.n_k)]
ik, ntoi[sp]]], complex) for ik in range(self.n_k)]
ikarray = numpy.arange(self.n_k)
for ik in mpi.slice_array(ikarray):
@ -2301,7 +2301,7 @@ class SumkDFT(object):
def check_projectors(self):
"""Calculated the density matrix from projectors (DM = P Pdagger) to check that it is correct and
specifically that it matches DFT."""
dens_mat = [numpy.zeros([self.corr_shells[icrsh]['dim'], self.corr_shells[icrsh]['dim']], numpy.complex_)
dens_mat = [numpy.zeros([self.corr_shells[icrsh]['dim'], self.corr_shells[icrsh]['dim']], complex)
for icrsh in range(self.n_corr_shells)]
for ik in range(self.n_k):

View File

@ -104,16 +104,16 @@ class SumkDFTTools(SumkDFT):
for icrsh in range(self.n_corr_shells):
G_loc[icrsh].zero()
DOS = {sp: numpy.zeros([n_om], numpy.float_)
DOS = {sp: numpy.zeros([n_om], float)
for sp in self.spin_block_names[self.SO]}
DOSproj = [{} for ish in range(self.n_inequiv_shells)]
DOSproj_orb = [{} for ish in range(self.n_inequiv_shells)]
for ish in range(self.n_inequiv_shells):
for sp in self.spin_block_names[self.corr_shells[self.inequiv_to_corr[ish]]['SO']]:
dim = self.corr_shells[self.inequiv_to_corr[ish]]['dim']
DOSproj[ish][sp] = numpy.zeros([n_om], numpy.float_)
DOSproj[ish][sp] = numpy.zeros([n_om], float)
DOSproj_orb[ish][sp] = numpy.zeros(
[n_om, dim, dim], numpy.complex_)
[n_om, dim, dim], complex)
ikarray = numpy.array(list(range(self.n_k)))
for ik in mpi.slice_array(ikarray):
@ -240,16 +240,16 @@ class SumkDFTTools(SumkDFT):
for block, block_dim in gf_struct_parproj_all[0]]
G_loc_all = BlockGf(name_list=spn, block_list=glist_all, make_copies=False)
DOS = {sp: numpy.zeros([n_om], numpy.float_)
DOS = {sp: numpy.zeros([n_om], float)
for sp in self.spin_block_names[self.SO]}
DOSproj = {}
DOSproj_orb = {}
for sp in self.spin_block_names[self.SO]:
dim = n_local_orbs
DOSproj[sp] = numpy.zeros([n_om], numpy.float_)
DOSproj[sp] = numpy.zeros([n_om], float)
DOSproj_orb[sp] = numpy.zeros(
[n_om, dim, dim], numpy.complex_)
[n_om, dim, dim], complex)
ikarray = numpy.array(list(range(self.n_k)))
for ik in mpi.slice_array(ikarray):
@ -374,16 +374,16 @@ class SumkDFTTools(SumkDFT):
for ish in range(self.n_shells):
G_loc[ish].zero()
DOS = {sp: numpy.zeros([n_om], numpy.float_)
DOS = {sp: numpy.zeros([n_om], float)
for sp in self.spin_block_names[self.SO]}
DOSproj = [{} for ish in range(self.n_shells)]
DOSproj_orb = [{} for ish in range(self.n_shells)]
for ish in range(self.n_shells):
for sp in self.spin_block_names[self.SO]:
dim = self.shells[ish]['dim']
DOSproj[ish][sp] = numpy.zeros([n_om], numpy.float_)
DOSproj[ish][sp] = numpy.zeros([n_om], float)
DOSproj_orb[ish][sp] = numpy.zeros(
[n_om, dim, dim], numpy.complex_)
[n_om, dim, dim], complex)
ikarray = numpy.array(list(range(self.n_k)))
for ik in mpi.slice_array(ikarray):
@ -518,11 +518,11 @@ class SumkDFTTools(SumkDFT):
spn = self.spin_block_names[self.SO]
DOS = {sp: numpy.zeros([n_om], numpy.float_)
DOS = {sp: numpy.zeros([n_om], float)
for sp in self.spin_block_names[self.SO]}
#set up temporary arrays for pdos calculations
if (pdos):
pDOS = {sp: numpy.zeros([self.n_atoms,self.maxlm,n_om], numpy.float_)
pDOS = {sp: numpy.zeros([self.n_atoms,self.maxlm,n_om], float)
for sp in self.spin_block_names[self.SO]}
ntoi = self.spin_names_to_ind[self.SO]
else:
@ -713,18 +713,18 @@ class SumkDFTTools(SumkDFT):
#orthogonal vector used for plane calculations
if orthvec is None:
#set to [0,0,1] by default
orthvec = numpy.zeros(3,dtype=numpy.float_)
orthvec = numpy.zeros(3,dtype=float)
orthvec[2] = 1.0
elif orthvec.size != 3:
assert 0, "The input numpy orthvec is not the required size of 3!"
spn = self.spin_block_names[self.SO]
Akw = {sp: numpy.zeros([self.n_k, n_om], numpy.float_)
Akw = {sp: numpy.zeros([self.n_k, n_om], float)
for sp in spn}
#Cartesian lattice coordinates array
vkc = numpy.zeros([self.n_k,3], numpy.float_)
vkc = numpy.zeros([self.n_k,3], float)
ikarray = numpy.array(range(self.n_k))
for ik in mpi.slice_array(ikarray):
@ -750,8 +750,8 @@ class SumkDFTTools(SumkDFT):
iknr = numpy.arange(self.n_k)
if sym:
vkltmp = self.vkl
v = numpy.zeros(3, numpy.float_)
v_orth = numpy.zeros(3, numpy.float_)
v = numpy.zeros(3, float)
v_orth = numpy.zeros(3, float)
for isym in range(self.n_symm):
#calculate the orthonormal vector after symmetry operation. This is used to
#check if the orthonormal vector after the symmetry operation is parallel
@ -865,11 +865,11 @@ class SumkDFTTools(SumkDFT):
n_om = len(mesh[(mesh > om_minplot)&(mesh < om_maxplot)])
if ishell is None:
Akw = {sp: numpy.zeros([self.n_k, n_om], numpy.float_)
Akw = {sp: numpy.zeros([self.n_k, n_om], float)
for sp in spn}
else:
Akw = {sp: numpy.zeros(
[self.shells[ishell]['dim'], self.n_k, n_om], numpy.float_) for sp in spn}
[self.shells[ishell]['dim'], self.n_k, n_om], float) for sp in spn}
if ishell is not None:
assert isinstance(ishell, int) and ishell in range(len(self.shells)), "ishell must be of type integer and consistent with number of shells."
@ -990,7 +990,7 @@ class SumkDFTTools(SumkDFT):
spn = self.spin_block_names[self.SO]
ntoi = self.spin_names_to_ind[self.SO]
# Density matrix in the window
self.dens_mat_window = [[numpy.zeros([self.shells[ish]['dim'], self.shells[ish]['dim']], numpy.complex_)
self.dens_mat_window = [[numpy.zeros([self.shells[ish]['dim'], self.shells[ish]['dim']], complex)
for ish in range(self.n_shells)]
for isp in range(len(spn))]
# Set up G_loc
@ -1262,7 +1262,7 @@ class SumkDFTTools(SumkDFT):
print("Omega mesh automatically repined to: ", self.Om_mesh)
self.Gamma_w = {direction: numpy.zeros(
(len(self.Om_mesh), n_om), dtype=numpy.float_) for direction in self.directions}
(len(self.Om_mesh), n_om), dtype=float) for direction in self.directions}
# Sum over all k-points
ikarray = numpy.array(list(range(self.n_k)))
@ -1270,7 +1270,7 @@ class SumkDFTTools(SumkDFT):
# Calculate G_w for ik and initialize A_kw
G_w = self.lattice_gf(ik, mu, iw_or_w="w", beta=beta,
broadening=broadening, mesh=mesh, with_Sigma=with_Sigma)
A_kw = [numpy.zeros((self.n_orbitals[ik][isp], self.n_orbitals[ik][isp], n_om), dtype=numpy.complex_)
A_kw = [numpy.zeros((self.n_orbitals[ik][isp], self.n_orbitals[ik][isp], n_om), dtype=complex)
for isp in range(n_inequiv_spin_blocks)]
for isp in range(n_inequiv_spin_blocks):

View File

@ -105,7 +105,7 @@ else:
for conjugate in conjugate_values:
# construct a random block-diagonal Hloc
Hloc = np.zeros((10,10), dtype=np.complex_)
Hloc = np.zeros((10,10), dtype=complex)
# the Hloc of the first three 2x2 blocks is equal
Hloc0 = get_random_hermitian(2)
Hloc[:2,:2] = Hloc0

View File

@ -20,7 +20,7 @@ def get_random_transformation(dim):
return T
# construct a random block-diagonal Hloc
Hloc = np.zeros((10,10), dtype=np.complex_)
Hloc = np.zeros((10,10), dtype=complex)
# the Hloc of the first three 2x2 blocks is equal
Hloc0 = get_random_hermitian(2)
Hloc[:2,:2] = Hloc0
@ -88,7 +88,7 @@ Gt = BlockGf(name_block_generator = [(name,
n_points=len(block.mesh),
indices=block.indices)) for name, block in G], make_copies=False)
known_moments = np.zeros((2,10,10), dtype=np.complex)
known_moments = np.zeros((2,10,10), dtype=complex)
known_moments[1,:] = np.eye(10)
tail, err = fit_tail(G['ud'], known_moments)
Gt['ud'].set_from_fourier(G['ud'], tail)

View File

@ -29,7 +29,7 @@ class TestBlockMap(mytest.MyTestCase):
self.mock_eigvals = np.zeros((1, 11, 1))
nproj = 16
self.mock_plo = np.zeros((nproj, 1, 1, 11), dtype=np.complex128)
self.mock_plo = np.zeros((nproj, 1, 1, 11), dtype=complex)
self.mock_proj_params = [{} for i in range(nproj)]
ip = 0
# Mock d-sites

View File

@ -73,7 +73,7 @@ class TestProjectorGroupCompl(mytest.MyTestCase):
bmax = self.proj_gr.ib_win[ik, isp, 1]+1
nb = bmax - bmin
p_mat = np.zeros((ndim, nb), dtype=np.complex128)
p_mat = np.zeros((ndim, nb), dtype=complex)
#print(bmin,bmax,nb)
# Combine all projectors of the group to one block projector
for bl_map in block_maps: