diff --git a/doc/CMakeLists.txt b/doc/CMakeLists.txt index af1d88d8..0e137f0e 100644 --- a/doc/CMakeLists.txt +++ b/doc/CMakeLists.txt @@ -18,6 +18,6 @@ add_custom_target(doc_sphinx ALL DEPENDS ${sphinx_top} ${CMAKE_CURRENT_BINARY_DI # --------------------------------- install(DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/html/ COMPONENT documentation DESTINATION share/doc/triqs_dft_tools FILES_MATCHING - REGEX "\\.(html|pdf|png|gif|jpg|js|xsl|css|py|txt|inv|bib)$" + REGEX "\\.(html|pdf|png|gif|jpg|js|xsl|css|py|txt|inv|bib|cfg)$" PATTERN "_*" ) diff --git a/doc/guide/conv_vasp.rst b/doc/guide/conv_vasp.rst index fb80eac7..9064cfd9 100644 --- a/doc/guide/conv_vasp.rst +++ b/doc/guide/conv_vasp.rst @@ -5,9 +5,7 @@ Interface with VASP =================== .. warning:: - The VASP interface is in the alpha-version and the VASP part of it is not - yet publicly released. The documentation may, thus, be subject to changes - before the final release. + The VASP interface is in the alpha-version. The documentation may, thus, be subject to changes before the final release. *Limitations of the alpha-version:* @@ -26,7 +24,8 @@ in the :ref:`PLOVasp User's Guide `. Here, a quick-start guide is prese The VASP interface relies on new options introduced since version 5.4.x. In particular, a new INCAR-option `LOCPROJ` -and new `LORBIT` modes 13 and 14 have been added. +and new `LORBIT` modes 13 and 14 have been added as well as the new ICHARG +mode 5 for charge self-consistent calculations Option `LOCPROJ` selects a set of localized projectors that will be written to file `LOCPROJ` after a successful VASP run. @@ -41,7 +40,7 @@ with the indices corresponding to the site position in the POSCAR file; `` chooses a particular type of the local basis function. The recommended projector type is `Pr 2`. The formalism for this type of projectors is presented in -`M. Schüler et al. 2018 J. Phys.: Condens. Matter 30 475901 `_. +`M. Schüler et al. 2018 J. Phys.: Condens. Matter 30 475901 `_. For details on `LOCPROJ` also have a look in the `VASP wiki `_ The allowed labels of the local states defined in terms of cubic harmonics are: diff --git a/doc/guide/plovasp.rst b/doc/guide/plovasp.rst index 99f5e1d9..b1e64fe8 100644 --- a/doc/guide/plovasp.rst +++ b/doc/guide/plovasp.rst @@ -55,21 +55,25 @@ A PLOVasp input file can contain three types of sections: Section [General] """"""""""""""""" -The entire section is optional and it contains three parameters: +The entire section is optional and it contains four parameters: * **BASENAME** (string): provides a base name for output files. Default filenames are :file:`vasp.*`. * **DOSMESH** ([float float] integer): if this parameter is given, the projected density of states for each projected orbital will be - evaluated and stored to files :file:`pdos_.dat`, where `n` is the - orbital index. The energy - mesh is defined by three numbers: `EMIN` `EMAX` `NPOINTS`. The first two + evaluated and stored to files :file:`pdos__.dat`, where `s` is the + shell index and `n` the ion index. The energy mesh is defined by three + numbers: `EMIN` `EMAX` `NPOINTS`. The first two can be omitted in which case they are taken to be equal to the projector energy window. **Important note**: at the moment this option works only if the tetrahedron integration method (`ISMEAR = -4` or `-5`) is used in VASP to produce `LOCPROJ`. * **EFERMI** (float): provides the Fermi level. This value overrides the one extracted from VASP output files. +* **HK** (True/False): If True, the projectors are applied the the Kohn-Sham + eigenvalues which results in a Hamitlonian H(k) in orbital basis. The H(k) + is written for each group to a file :file:`Basename.hk`. It is recommended + to also set `COMPLEMENT = True` (see below). Default is False. There are no required parameters in this section. @@ -94,6 +98,8 @@ given by `LSHELL` must be present in the LOCPROJ file. There are additional optional parameters that allow one to transform the local states: +* **CORR** (True/False): Determines if shell is correlated or not. At least one + shell has to be correlated. Default is True. * **TRANSFORM** (matrix): local transformation matrix applied to all states in the projector shell. The matrix is defined by a (multiline) block of floats, with each line corresponding to a row. The number of columns @@ -131,6 +137,13 @@ Optional group parameters: condition will be enforced on each site separately but the Wannier functions on different sites will not be orthogonal. If `NORMION = False`, the Wannier functions on different sites included in the group will be orthogonal to each other. +* **BANDS** (int int): the energy window specified by two ints: band index of + lowest band and band index of highest band. Using this overrides the selection + in `EWINDOW`. +* **COMPLEMENT** (True/False). If True, the orthogonal complement is calculated + resulting in unitary (quadratic) projectors, i.e., the same number of orbitals + as bands. It is required to have an equal number of bands in the energy window + at each k-point. Default is False. .. _transformation_file: diff --git a/doc/tutorials.rst b/doc/tutorials.rst index d02cdeb6..dd8c7a15 100644 --- a/doc/tutorials.rst +++ b/doc/tutorials.rst @@ -23,3 +23,12 @@ Full charge self consistency with Wien2k: :math:`\gamma`-Ce tutorials/ce-gamma-fscs_wien2k +A full example with VASP: NiO +----------------------------------------------------------- + +.. toctree:: + :maxdepth: 2 + + + tutorials/nio_csc + diff --git a/doc/tutorials/images_scripts/INCAR b/doc/tutorials/images_scripts/INCAR new file mode 100644 index 00000000..45dc19f2 --- /dev/null +++ b/doc/tutorials/images_scripts/INCAR @@ -0,0 +1,18 @@ +System = NiO + +ISMEAR = -5 + +# the energy window to optimize projector channels +EMIN = -3 +EMAX = 7 + +NBANDS = 16 +LMAXMIX = 6 + +# switch off all symmetries +ISYM = -1 + +# project to Ni d and O p states +LORBIT = 14 +LOCPROJ = 1 : d : Pr 1 +LOCPROJ = 2 : p : Pr 1 diff --git a/doc/tutorials/images_scripts/INCAR.rst b/doc/tutorials/images_scripts/INCAR.rst new file mode 100644 index 00000000..0a5cc0ac --- /dev/null +++ b/doc/tutorials/images_scripts/INCAR.rst @@ -0,0 +1,7 @@ +.. _INCAR: + +INCAR +----------- + +.. literalinclude:: INCAR + :language: bash diff --git a/doc/tutorials/images_scripts/KPOINTS b/doc/tutorials/images_scripts/KPOINTS new file mode 100644 index 00000000..7099c814 --- /dev/null +++ b/doc/tutorials/images_scripts/KPOINTS @@ -0,0 +1,4 @@ +Automatically generated mesh + 0 +Gamma + 6 6 6 \ No newline at end of file diff --git a/doc/tutorials/images_scripts/KPOINTS.rst b/doc/tutorials/images_scripts/KPOINTS.rst new file mode 100644 index 00000000..93aa5f3b --- /dev/null +++ b/doc/tutorials/images_scripts/KPOINTS.rst @@ -0,0 +1,7 @@ +.. _KPOINTS: + +KPOINTS +----------- + +.. literalinclude:: KPOINTS + :language: bash diff --git a/doc/tutorials/images_scripts/NiO_local_lattice_GF.py b/doc/tutorials/images_scripts/NiO_local_lattice_GF.py new file mode 100644 index 00000000..02dbe051 --- /dev/null +++ b/doc/tutorials/images_scripts/NiO_local_lattice_GF.py @@ -0,0 +1,90 @@ +from itertools import * +import numpy as np +import pytriqs.utility.mpi as mpi +from pytriqs.archive import * +from pytriqs.gf import * +from triqs_dft_tools.sumk_dft import * +from triqs_dft_tools.sumk_dft_tools import * +from pytriqs.operators.util.hamiltonians import * +from pytriqs.operators.util.U_matrix import * +from triqs_cthyb import * +import warnings +warnings.filterwarnings("ignore", category=FutureWarning) + +filename = 'vasp' +SK = SumkDFT(hdf_file = filename+'.h5', use_dft_blocks = False) + +beta = 5.0 + +# We analyze the block structure of the Hamiltonian +Sigma = SK.block_structure.create_gf(beta=beta) + +SK.put_Sigma([Sigma]) +G = SK.extract_G_loc() +SK.analyse_block_structure_from_gf(G, threshold = 1e-3) + + +# Setup CTQMC Solver +n_orb = SK.corr_shells[0]['dim'] +spin_names = ['up','down'] +orb_names = [i for i in range(0,n_orb)] + + +# Print some information on the master node +iteration_offset = 0 +Sigma_iw = 0 +if mpi.is_master_node(): + ar = HDFArchive(filename+'.h5','a') + if not 'DMFT_results' in ar: ar.create_group('DMFT_results') + if not 'Iterations' in ar['DMFT_results']: ar['DMFT_results'].create_group('Iterations') + if 'iteration_count' in ar['DMFT_results']: + iteration_offset = ar['DMFT_results']['iteration_count']+1 + print('offset',iteration_offset) + Sigma_iw = ar['DMFT_results']['Iterations']['Sigma_it'+str(iteration_offset-1)] + SK.dc_imp = ar['DMFT_results']['Iterations']['dc_imp'+str(iteration_offset-1)] + SK.dc_energ = ar['DMFT_results']['Iterations']['dc_energ'+str(iteration_offset-1)] + SK.chemical_potential = ar['DMFT_results']['Iterations']['chemical_potential'+str(iteration_offset-1)].real + +iteration_offset = mpi.bcast(iteration_offset) +Sigma_iw = mpi.bcast(Sigma_iw) +SK.dc_imp = mpi.bcast(SK.dc_imp) +SK.dc_energ = mpi.bcast(SK.dc_energ) +SK.chemical_potential = mpi.bcast(SK.chemical_potential) + + +SK.put_Sigma(Sigma_imp = [Sigma_iw]) + +ikarray = numpy.array(range(SK.n_k)) + +# set up the orbitally resolved local lattice greens function: +n_orbs = SK.proj_mat_csc.shape[2] +spn = SK.spin_block_names[SK.SO] +mesh = Sigma_iw.mesh +block_structure = [range(n_orbs) for sp in spn] +gf_struct = [(spn[isp], block_structure[isp]) + for isp in range(SK.n_spin_blocks[SK.SO])] +block_ind_list = [block for block, inner in gf_struct] +glist = lambda: [GfImFreq(indices=inner, mesh=mesh) + for block, inner in gf_struct] + +G_latt_orb = BlockGf(name_list=block_ind_list, + block_list=glist(), make_copies=False) +G_latt_orb.zero() + +for ik in mpi.slice_array(ikarray): + G_latt_KS = SK.lattice_gf(ik=ik, beta=beta) + G_latt_KS *= SK.bz_weights[ik] + for bname, gf in G_latt_orb: + add_g_ik = gf.copy() + add_g_ik.zero() + add_g_ik << SK.downfold(ik, 0, bname, G_latt_KS[bname], gf, shells='csc', ir=None) + gf << gf + add_g_ik + +G_latt_orb << mpi.all_reduce( + mpi.world, G_latt_orb, lambda x, y: x + y) + +mpi.barrier() + +if mpi.is_master_node(): + ar['DMFT_results']['Iterations']['G_latt_orb_it'+str(iteration_offset-1)] = G_latt_orb +if mpi.is_master_node(): del ar diff --git a/doc/tutorials/images_scripts/POSCAR b/doc/tutorials/images_scripts/POSCAR new file mode 100644 index 00000000..65f73f29 --- /dev/null +++ b/doc/tutorials/images_scripts/POSCAR @@ -0,0 +1,10 @@ +NiO +4.17 #taken from 9x9x9 with sigma=0.2 ismear=2 + +0.0000000000 +0.5000000000 +0.5000000000 + +0.5000000000 +0.0000000000 +0.5000000000 + +0.5000000000 +0.5000000000 +0.0000000000 +Ni O + 1 1 +Direct + +0.0000000000 +0.0000000000 +0.0000000000 + +0.5000000000 +0.5000000000 +0.5000000000 diff --git a/doc/tutorials/images_scripts/POSCAR.rst b/doc/tutorials/images_scripts/POSCAR.rst new file mode 100644 index 00000000..35153ff5 --- /dev/null +++ b/doc/tutorials/images_scripts/POSCAR.rst @@ -0,0 +1,7 @@ +.. _POSCAR: + +POSCAR +----------- + +.. literalinclude:: POSCAR + :language: bash diff --git a/doc/tutorials/images_scripts/converter.py b/doc/tutorials/images_scripts/converter.py new file mode 100644 index 00000000..8bdabb9b --- /dev/null +++ b/doc/tutorials/images_scripts/converter.py @@ -0,0 +1,3 @@ +from triqs_dft_tools.converters.vasp_converter import * +Converter = VaspConverter(filename = 'nio') +Converter.convert_dft_input() diff --git a/doc/tutorials/images_scripts/converter.py.rst b/doc/tutorials/images_scripts/converter.py.rst new file mode 100644 index 00000000..4b1ca3a8 --- /dev/null +++ b/doc/tutorials/images_scripts/converter.py.rst @@ -0,0 +1,10 @@ +.. _converter.py: + +converter.py +------------------- + +Download :download:`converter.py <./converter.py>`. + + +.. literalinclude:: converter.py + :language: python diff --git a/doc/tutorials/images_scripts/nio.py b/doc/tutorials/images_scripts/nio.py new file mode 100644 index 00000000..1d238840 --- /dev/null +++ b/doc/tutorials/images_scripts/nio.py @@ -0,0 +1,149 @@ +from itertools import * +import numpy as np +import pytriqs.utility.mpi as mpi +from pytriqs.archive import * +from pytriqs.gf import * +from triqs_dft_tools.sumk_dft import * +from triqs_dft_tools.sumk_dft_tools import * +from pytriqs.operators.util.hamiltonians import * +from pytriqs.operators.util.U_matrix import * +from triqs_cthyb import * + +filename = 'vasp' + +SK = SumkDFT(hdf_file = filename+'.h5', use_dft_blocks = False) + +beta = 5.0 + +Sigma = SK.block_structure.create_gf(beta=beta) +SK.put_Sigma([Sigma]) +G = SK.extract_G_loc() +SK.analyse_block_structure_from_gf(G, threshold = 1e-3) +for i_sh in range(len(SK.deg_shells)): + num_block_deg_orbs = len(SK.deg_shells[i_sh]) + mpi.report('found {0:d} blocks of degenerate orbitals in shell {1:d}'.format(num_block_deg_orbs, i_sh)) + for iblock in range(num_block_deg_orbs): + mpi.report('block {0:d} consists of orbitals:'.format(iblock)) + for keys in SK.deg_shells[i_sh][iblock].keys(): + mpi.report(' '+keys) + +# Setup CTQMC Solver + +n_orb = SK.corr_shells[0]['dim'] +spin_names = ['up','down'] +orb_names = [i for i in range(0,n_orb)] +orb_hyb = False + +#gf_struct = set_operator_structure(spin_names, orb_names, orb_hyb) +gf_struct = SK.gf_struct_solver[0] +mpi.report('Sumk to Solver: %s'%SK.sumk_to_solver) +mpi.report('GF struct sumk: %s'%SK.gf_struct_sumk) +mpi.report('GF struct solver: %s'%SK.gf_struct_solver) + +S = Solver(beta=beta, gf_struct=gf_struct) + +# Construct the Hamiltonian and save it in Hamiltonian_store.txt +H = Operator() +U = 8.0 +J = 1.0 + + +U_sph = U_matrix(l=2, U_int=U, J_hund=J) +U_cubic = transform_U_matrix(U_sph, spherical_to_cubic(l=2, convention='')) +Umat, Upmat = reduce_4index_to_2index(U_cubic) + +H = h_int_density(spin_names, orb_names, map_operator_structure=SK.sumk_to_solver[0], U=Umat, Uprime=Upmat) + +# Print some information on the master node +mpi.report('Greens function structure is: %s '%gf_struct) +mpi.report('U Matrix set to:\n%s'%Umat) +mpi.report('Up Matrix set to:\n%s'%Upmat) + +# Parameters for the CTQMC Solver +p = {} +p["max_time"] = -1 +p["random_name"] = "" +p["random_seed"] = 123 * mpi.rank + 567 +p["length_cycle"] = 100 +p["n_warmup_cycles"] = 20000 +p["n_cycles"] = 200000 +p["fit_max_moment"] = 4 +p["fit_min_n"] = 30 +p["fit_max_n"] = 50 +p["perform_tail_fit"] = True + +# Double Counting: 0 FLL, 1 Held, 2 AMF +DC_type = 0 + +# Prepare hdf file and and check for previous iterations +n_iterations = 10 + +iteration_offset = 0 +if mpi.is_master_node(): + ar = HDFArchive(filename+'.h5','a') + if not 'DMFT_results' in ar: ar.create_group('DMFT_results') + if not 'Iterations' in ar['DMFT_results']: ar['DMFT_results'].create_group('Iterations') + if 'iteration_count' in ar['DMFT_results']: + iteration_offset = ar['DMFT_results']['iteration_count']+1 + S.Sigma_iw = ar['DMFT_results']['Iterations']['Sigma_it'+str(iteration_offset-1)] + SK.dc_imp = ar['DMFT_results']['Iterations']['dc_imp'+str(iteration_offset-1)] + SK.dc_energ = ar['DMFT_results']['Iterations']['dc_energ'+str(iteration_offset-1)] + SK.chemical_potential = ar['DMFT_results']['Iterations']['chemical_potential'+str(iteration_offset-1)].real + +iteration_offset = mpi.bcast(iteration_offset) +S.Sigma_iw = mpi.bcast(S.Sigma_iw) +SK.dc_imp = mpi.bcast(SK.dc_imp) +SK.dc_energ = mpi.bcast(SK.dc_energ) +SK.chemical_potential = mpi.bcast(SK.chemical_potential) + +# Calc the first G0 +SK.put_Sigma(Sigma_imp = [S.Sigma_iw]) +SK.calc_mu(precision=0.01) +S.G_iw << SK.extract_G_loc()[0] +SK.symm_deg_gf(S.G_iw, orb=0) + +#Init the DC term and the self-energy if no previous iteration was found +if iteration_offset == 0: + dm = S.G_iw.density() + SK.calc_dc(dm, U_interact=U, J_hund=J, orb=0, use_dc_formula=DC_type) + S.Sigma_iw << SK.dc_imp[0]['up'][0,0] + +mpi.report('%s DMFT cycles requested. Starting with iteration %s.'%(n_iterations,iteration_offset)) + +# The infamous DMFT self consistency cycle +for it in range(iteration_offset, iteration_offset + n_iterations): + + mpi.report('Doing iteration: %s'%it) + + # Get G0 + S.G0_iw << inverse(S.Sigma_iw + inverse(S.G_iw)) + # Solve the impurity problem + S.solve(h_int = H, **p) + if mpi.is_master_node(): + ar['DMFT_results']['Iterations']['Gimp_it'+str(it)] = S.G_iw + ar['DMFT_results']['Iterations']['Gtau_it'+str(it)] = S.G_tau + ar['DMFT_results']['Iterations']['Sigma_uns_it'+str(it)] = S.Sigma_iw + # Calculate double counting + dm = S.G_iw.density() + SK.calc_dc(dm, U_interact=U, J_hund=J, orb=0, use_dc_formula=DC_type) + # Get new G + SK.symm_deg_gf(S.Sigma_iw,orb=0) + SK.put_Sigma(Sigma_imp=[S.Sigma_iw]) + SK.calc_mu(precision=0.01) + S.G_iw << SK.extract_G_loc()[0] + + # print densities + for sig,gf in S.G_iw: + mpi.report("Orbital %s density: %.6f"%(sig,dm[sig][0,0])) + mpi.report('Total charge of Gloc : %.6f'%S.G_iw.total_density()) + + if mpi.is_master_node(): + ar['DMFT_results']['iteration_count'] = it + ar['DMFT_results']['Iterations']['Sigma_it'+str(it)] = S.Sigma_iw + ar['DMFT_results']['Iterations']['Gloc_it'+str(it)] = S.G_iw + ar['DMFT_results']['Iterations']['G0loc_it'+str(it)] = S.G0_iw + ar['DMFT_results']['Iterations']['dc_imp'+str(it)] = SK.dc_imp + ar['DMFT_results']['Iterations']['dc_energ'+str(it)] = SK.dc_energ + ar['DMFT_results']['Iterations']['chemical_potential'+str(it)] = SK.chemical_potential + +if mpi.is_master_node(): del ar diff --git a/doc/tutorials/images_scripts/nio.py.rst b/doc/tutorials/images_scripts/nio.py.rst new file mode 100644 index 00000000..489447c4 --- /dev/null +++ b/doc/tutorials/images_scripts/nio.py.rst @@ -0,0 +1,9 @@ +.. _nio.py: + +nio.py +----------- + +Download :download:`nio.py <./nio.py>`. + +.. literalinclude:: nio.py + :language: python diff --git a/doc/tutorials/images_scripts/plo.cfg b/doc/tutorials/images_scripts/plo.cfg new file mode 100644 index 00000000..91c72333 --- /dev/null +++ b/doc/tutorials/images_scripts/plo.cfg @@ -0,0 +1,27 @@ +[General] +BASENAME = nio +DOSMESH = -21 55 400 + +[Group 1] +SHELLS = 1 2 +EWINDOW = -9 2 +NORMION = False +NORMALIZE = True + +[Shell 1] # Ni d shell +LSHELL = 2 +IONS = 1 +CORR = True +TRANSFORM = 1.0 0.0 0.0 0.0 0.0 + 0.0 1.0 0.0 0.0 0.0 + 0.0 0.0 1.0 0.0 0.0 + 0.0 0.0 0.0 1.0 0.0 + 0.0 0.0 0.0 0.0 1.0 + +[Shell 2] # O p shell +LSHELL = 1 +IONS = 2 +CORR = False +TRANSFORM = 1.0 0.0 0.0 + 0.0 1.0 0.0 + 0.0 0.0 1.0 \ No newline at end of file diff --git a/doc/tutorials/images_scripts/plo.cfg.rst b/doc/tutorials/images_scripts/plo.cfg.rst new file mode 100644 index 00000000..1db06dae --- /dev/null +++ b/doc/tutorials/images_scripts/plo.cfg.rst @@ -0,0 +1,9 @@ +.. _plo.cfg: + +plo.cfg +----------- + +Download :download:`plo.cfg<./plo.cfg>`. + +.. literalinclude:: plo.cfg + :language: bash diff --git a/doc/tutorials/nio_csc.rst b/doc/tutorials/nio_csc.rst new file mode 100644 index 00000000..a2d7e94d --- /dev/null +++ b/doc/tutorials/nio_csc.rst @@ -0,0 +1,59 @@ +.. _nio_csc: + +DFT and projections +================================================== + +We will perform charge self-consitent DFT+DMFT calcluations for the charge-transfer insulator NiO. We still start from scratch and provide all necessary input files to do the calculations. + +VASP setup +------------------------------- +We start by running a simple VASP calculation to converge the charge density initially. +Use the :ref:`INCAR`, :ref:`POSCAR`, and :ref:`KPOINTS` provided and use your +own :file:`POTCAR` file. + +Let us take a look in the :file:`INCAR`, where we have to specify local orbitals as basis +for our many-body calculation. + +.. literalinclude:: images_scripts/INCAR + +`LORBIT = 14` takes care of optimizing the projectors in the energy window defined +by `EMIN` and `EMAX`. We switch off all symmetries with `ISYM=-1` since symmetries +are not implemented in the later DMFT scripts. Finally, we select the relevant orbitals +for atom 1 (Ni, d-orbitals) and 2 (O, p-orbitals) by the two `LOCPROJ` lines. +For details refer to the VASP wiki on the `LOCPROJ `_ flag. The projectors are stored in the file `LOCPROJ`. + + +plovasp +------------------------------ +Next, we postprocess the projectors, which VASP stored in the file `LOCPROJ`. +We do this by invoking :program:`plovasp plo.cfg` which is configured by an input file, e.g., named :ref:`plo.cfg`. + +.. literalinclude:: images_scripts/plo.cfg + +Here, in `[General]' we set the basename and the grid for calculating the density of +states. In `[Group 1]` we define a group of two shells which are orthonormalized with +respect to states in an energy window from `-9` to `2` for all ions simultanously +(`NORMION = False`). We define the two shells, which correspond to the Ni d states +and the O p states. Only the Ni shell is treated as correlated (`CORR = True`), i.e., +is supplemented with a Coulomb interaction later in the DMFT calculation. + +Converting to hdf5 file +------------------------------- +We gather the output generated by :program:`plovasp` into a hdf5 archive which :program:`dft_tools` is able to read. We do this by running :program:`python converter.py` on the script :ref:`converter.py`: + +.. literalinclude:: images_scripts/converter.py + +Now we are all set to perform a dmft calculation. + +DMFT +================================================== + +dmft script +------------------------------ + +Since the python script for performing the dmft loop pretty much resembles that presented in the tutorial on :ref:`srvo3`, we will not go into detail here but simply provide the script :ref:`nio.py`. Following Kunes et al. in `PRB 75 165115 (2007) `_ we use :math:`U=8` and :math:`J=1`. Here, we use :math:`\beta=5` instead of :math:`\beta=10` to speed up the calculations. + +Local lattice Green's function for all projected orbitals +---------------------- +We calculate the local lattice Green's function - now also for the uncorrelated orbitals, i.e., the O p states. Therefor we use :download:`NiO_local_lattice_GF.py