3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-25 13:53:40 +01:00

fourier_real: scalar_valued implementation

This commit is contained in:
Laura Messio 2013-07-19 10:55:37 +02:00 committed by Olivier Parcollet
parent f4d42a4ec8
commit a69e2f52aa
2 changed files with 172 additions and 126 deletions

View File

@ -1,5 +1,5 @@
/******************************************************************************* /*******************************************************************************
* *
* TRIQS: a Toolbox for Research in Interacting Quantum Systems * TRIQS: a Toolbox for Research in Interacting Quantum Systems
* *
* Copyright (C) 2011 by M. Ferrero, O. Parcollet * Copyright (C) 2011 by M. Ferrero, O. Parcollet
@ -23,106 +23,128 @@
#include <fftw3.h> #include <fftw3.h>
namespace triqs { namespace gf { namespace triqs { namespace gf {
namespace { namespace {
double pi = std::acos(-1); double pi = std::acos(-1);
dcomplex I(0,1); dcomplex I(0,1);
inline dcomplex th_expo(double t, double a ) { return (t > 0 ? -I * exp(-a*t) : ( t < 0 ? 0 : -0.5 * I * exp(-a*t) ) ) ; } inline dcomplex th_expo(double t, double a ) { return (t > 0 ? -I * exp(-a*t) : ( t < 0 ? 0 : -0.5 * I * exp(-a*t) ) ) ; }
inline dcomplex th_expo_neg(double t, double a ) { return (t < 0 ? I * exp( a*t) : ( t > 0 ? 0 : 0.5 * I * exp( a*t) ) ) ; } inline dcomplex th_expo_neg(double t, double a ) { return (t < 0 ? I * exp( a*t) : ( t > 0 ? 0 : 0.5 * I * exp( a*t) ) ) ; }
inline dcomplex th_expo_inv(double w, double a ) { return 1./(w+I*a) ; } inline dcomplex th_expo_inv(double w, double a ) { return 1./(w+I*a) ; }
inline dcomplex th_expo_neg_inv(double w, double a ) { return 1./(w-I*a) ; } inline dcomplex th_expo_neg_inv(double w, double a ) { return 1./(w-I*a) ; }
}
struct impl_worker {
tqa::vector<dcomplex> g_in, g_out;
void direct (gf_view<refreq,scalar_valued> gw, gf_view<retime,scalar_valued> const gt){
size_t L = gt.mesh().size();
if (gw.mesh().size() != L) TRIQS_RUNTIME_ERROR << "Meshes are different";
double test = std::abs(gt.mesh().delta() * gw.mesh().delta() * L / (2*pi) -1);
if (test > 1.e-10) TRIQS_RUNTIME_ERROR << "Meshes are not compatible";
const double tmin = gt.mesh().x_min();
const double wmin = gw.mesh().x_min();
//a is a number very larger than delta_w and very smaller than wmax-wmin, used in the tail computation
const double a = gw.mesh().delta() * sqrt( double(L) );
auto ta = gt(freq_infty());
g_in.resize(L);
g_in() = 0;
g_out.resize(L);
dcomplex t1 = ta(1)(0,0), t2= ta.get_or_zero(2)(0,0);
dcomplex a1 = (t1 + I * t2/a )/2., a2 = (t1 - I * t2/a )/2.;
for (auto const & t : gt.mesh())
g_in(t.index()) = (gt(t) - (a1*th_expo(t,a) + a2*th_expo_neg(t,a))) * std::exp(I*t*wmin);
details::fourier_base(g_in, g_out, L, true);
for (auto const & w : gw.mesh())
gw(w) = gt.mesh().delta() * std::exp(I*(w-wmin)*tmin) * g_out(w.index())
+ a1*th_expo_inv(w,a) + a2*th_expo_neg_inv(w,a);
gw.singularity() = gt.singularity();// set tail
} }
//-------------------------------------------------------------------------------------- void inverse(gf_view<retime,scalar_valued> gt, gf_view<refreq,scalar_valued> const gw){
void fourier_impl(gf_view<refreq> gw, gf_view<retime> const gt) { size_t L = gw.mesh().size();
if ( L != gt.mesh().size()) TRIQS_RUNTIME_ERROR << "Meshes are different";
size_t L = gt.mesh().size(); double test = std::abs(gt.mesh().delta() * gw.mesh().delta() * L / (2*pi) -1);
if (gw.mesh().size() != L) TRIQS_RUNTIME_ERROR << "Meshes are different"; if (test > 1.e-10) TRIQS_RUNTIME_ERROR << "Meshes are not compatible";
double test = std::abs(gt.mesh().delta() * gw.mesh().delta() * L / (2*pi) -1);
if (test > 1.e-10) TRIQS_RUNTIME_ERROR << "Meshes are not compatible"; const double tmin = gt.mesh().x_min();
const double wmin = gw.mesh().x_min();
const double tmin = gt.mesh().x_min(); //a is a number very larger than delta_w and very smaller than wmax-wmin, used in the tail computation
const double wmin = gw.mesh().x_min(); const double a = gw.mesh().delta() * sqrt( double(L) );
//a is a number very larger than delta_w and very smaller than wmax-wmin, used in the tail computation
const double a = gw.mesh().delta() * sqrt( double(L) ); auto ta = gw(freq_infty());
tqa::vector<dcomplex> g_in(L), g_out(L);
auto ta = gt(freq_infty());
tqa::vector<dcomplex> g_in(L), g_out(L); dcomplex t1 = ta(1)(0,0), t2 = ta.get_or_zero(2)(0,0);
dcomplex a1 = (t1 + I * t2/a )/2., a2 = (t1 - I * t2/a )/2.;
for (size_t n1=0; n1<gw.data().shape()[1];n1++) { g_in() = 0;
for (size_t n2=0; n2<gw.data().shape()[2];n2++) {
for (auto const & w: gw.mesh())
dcomplex t1 = ta(1)(n1,n2), t2= ta.get_or_zero(2)(n1,n2); g_in(w.index()) = (gw(w) - a1*th_expo_inv(w,a) - a2*th_expo_neg_inv(w,a) ) * std::exp(-I*w*tmin);
dcomplex a1 = (t1 + I * t2/a )/2., a2 = (t1 - I * t2/a )/2.;
details::fourier_base(g_in, g_out, L, false);
g_in() = 0;
const double corr = 1.0/(gt.mesh().delta()*L);
for (auto const & t : gt.mesh()) { for (auto const & t : gt.mesh())
g_in(t.index()) = (gt(t)(n1,n2) - (a1*th_expo(t,a) + a2*th_expo_neg(t,a))) * std::exp(I*t*wmin); gt(t) = corr * std::exp(I*wmin*(tmin-t)) *
} g_out( t.index() ) + a1 * th_expo(t,a) + a2 * th_expo_neg(t,a) ;
details::fourier_base(g_in, g_out, L, true); // set tail
gt.singularity() = gw.singularity();
for (auto const & w : gw.mesh()) {
gw(w)(n1,n2) = gt.mesh().delta() * std::exp(I*(w-wmin)*tmin) * g_out(w.index())
+ a1*th_expo_inv(w,a) + a2*th_expo_neg_inv(w,a);
}
}
}
// set tail
gw.singularity() = gt.singularity();
} }
//--------------------------------------------------------------------------- };
void inverse_fourier_impl (gf_view<retime> gt, gf_view<refreq> const gw) {
//--------------------------------------------------------------------------------------
size_t L = gw.mesh().size();
if ( L != gt.mesh().size()) TRIQS_RUNTIME_ERROR << "Meshes are different"; void fourier_impl(gf_view<refreq,scalar_valued> gw, gf_view<retime,scalar_valued> const gt, scalar_valued){
double test = std::abs(gt.mesh().delta() * gw.mesh().delta() * L / (2*pi) -1); impl_worker w;
if (test > 1.e-10) TRIQS_RUNTIME_ERROR << "Meshes are not compatible"; w.direct(gw, gt);
}
const double tmin = gt.mesh().x_min();
const double wmin = gw.mesh().x_min(); void fourier_impl(gf_view<refreq,matrix_valued> gw, gf_view<retime,matrix_valued> const gt, matrix_valued){
//a is a number very larger than delta_w and very smaller than wmax-wmin, used in the tail computation impl_worker w;
const double a = gw.mesh().delta() * sqrt( double(L) ); for (size_t n1=0; n1<gw.data().shape()[1];n1++)
for (size_t n2=0; n2<gw.data().shape()[2];n2++) {
auto ta = gw(freq_infty()); auto gw_sl=slice_target_to_scalar(gw, n1, n2);
tqa::vector<dcomplex> g_in(L), g_out(L); auto gt_sl=slice_target_to_scalar(gt, n1, n2);
w.direct(gw_sl, gt_sl);
for (size_t n1=0; n1<gt.data().shape()[1];n1++) { }
for (size_t n2=0; n2<gt.data().shape()[2];n2++) { }
dcomplex t1 = ta(1)(n1,n2), t2 = ta.get_or_zero(2)(n1,n2); //---------------------------------------------------------------------------
dcomplex a1 = (t1 + I * t2/a )/2., a2 = (t1 - I * t2/a )/2.;
g_in() = 0; void inverse_fourier_impl (gf_view<retime,scalar_valued> gt, gf_view<refreq,scalar_valued> const gw, scalar_valued){
impl_worker w;
for (auto const & w: gw.mesh()) w.inverse(gt,gw);
g_in(w.index()) = (gw(w)(n1,n2) - a1*th_expo_inv(w,a) - a2*th_expo_neg_inv(w,a) ) * std::exp(-I*w*tmin); }
details::fourier_base(g_in, g_out, L, false); void inverse_fourier_impl (gf_view<retime,matrix_valued> gt, gf_view<refreq,matrix_valued> const gw, matrix_valued){
impl_worker w;
const double corr = 1.0/(gt.mesh().delta()*L); for (size_t n1=0; n1<gt.data().shape()[1];n1++)
for (auto const & t : gt.mesh()) for (size_t n2=0; n2<gt.data().shape()[2];n2++) {
gt(t)(n1,n2) = corr * std::exp(I*wmin*(tmin-t)) * auto gt_sl=slice_target_to_scalar(gt, n1, n2);
g_out( t.index() ) + a1 * th_expo(t,a) + a2 * th_expo_neg(t,a) ; auto gw_sl=slice_target_to_scalar(gw, n1, n2);
} w.inverse(gt_sl, gw_sl);
} }
}
// set tail
gt.singularity() = gw.singularity(); //---------------------------------------------------------------------------
} void triqs_gf_view_assign_delegation( gf_view<refreq,matrix_valued> g, gf_keeper<tags::fourier,retime,matrix_valued> const & L) { fourier_impl (g,L.g, matrix_valued());}
void triqs_gf_view_assign_delegation( gf_view<refreq,scalar_valued> g, gf_keeper<tags::fourier,retime,scalar_valued> const & L) { fourier_impl (g,L.g, scalar_valued());}
//--------------------------------------------------------------------------- void triqs_gf_view_assign_delegation( gf_view<retime,matrix_valued> g, gf_keeper<tags::fourier,refreq,matrix_valued> const & L) { inverse_fourier_impl(g,L.g, matrix_valued());}
void triqs_gf_view_assign_delegation( gf_view<retime,scalar_valued> g, gf_keeper<tags::fourier,refreq,scalar_valued> const & L) { inverse_fourier_impl(g,L.g, scalar_valued());}
gf_keeper<tags::fourier,retime> lazy_fourier (gf_view<retime> const & g) { return g;}
gf_keeper<tags::fourier,refreq> lazy_inverse_fourier (gf_view<refreq> const & g) { return g;}
void triqs_gf_view_assign_delegation( gf_view<refreq> g, gf_keeper<tags::fourier,retime> const & L) { fourier_impl (g,L.g);}
void triqs_gf_view_assign_delegation( gf_view<retime> g, gf_keeper<tags::fourier,refreq> const & L) { inverse_fourier_impl(g,L.g);}
}} }}

View File

@ -28,33 +28,57 @@
namespace triqs { namespace gf { namespace triqs { namespace gf {
// First the implementation of the fourier transform // First the implementation of the fourier transform
void fourier_impl (gf_view<refreq> gw , gf_view<retime> const gt); void fourier_impl (gf_view<refreq,scalar_valued> gw , gf_view<retime,scalar_valued> const gt, scalar_valued);
void inverse_fourier_impl (gf_view<retime> gt, gf_view<refreq> const gw); void fourier_impl (gf_view<refreq,matrix_valued> gw , gf_view<retime,matrix_valued> const gt, matrix_valued);
void inverse_fourier_impl (gf_view<retime,scalar_valued> gt, gf_view<refreq,scalar_valued> const gw, scalar_valued);
inline gf_view<refreq> fourier (gf_view<retime> const & gt) { void inverse_fourier_impl (gf_view<retime,matrix_valued> gt, gf_view<refreq,matrix_valued> const gw, matrix_valued);
double pi = std::acos(-1);
size_t L = gt.mesh().size(); inline gf_view<refreq,matrix_valued> fourier (gf_view<retime, matrix_valued> const gt) {
double wmin = -pi * (L-1) / (L*gt.mesh().delta()); double pi = std::acos(-1);
double wmax = pi * (L-1) / (L*gt.mesh().delta()); size_t L = gt.mesh().size();
auto gw = make_gf<refreq>(wmin, wmax, L, gt.data().shape().front_pop()); double wmin = -pi * (L-1) / (L*gt.mesh().delta());
auto V = gw(); double wmax = pi * (L-1) / (L*gt.mesh().delta());
fourier_impl(V, gt); auto gw = make_gf<refreq,matrix_valued>(wmin, wmax, L, gt.data().shape().front_pop());
return gw; auto V = gw();
fourier_impl(V, gt, matrix_valued());
return gw;
} }
inline gf_view<refreq,scalar_valued> fourier (gf_view<retime, scalar_valued> const gt) {
inline gf_view<retime> inverse_fourier (gf_view<refreq> const & gw) { double pi = std::acos(-1);
double pi = std::acos(-1); size_t L = gt.mesh().size();
size_t L = gw.mesh().size(); double wmin = -pi * (L-1) / (L*gt.mesh().delta());
double tmin = -pi * (L-1) / (L*gw.mesh().delta()); double wmax = pi * (L-1) / (L*gt.mesh().delta());
double tmax = pi * (L-1) / (L*gw.mesh().delta()); auto gw = make_gf<refreq,scalar_valued>(wmin, wmax, L);
auto gt = make_gf<retime>(tmin, tmax, L, gw.data().shape().front_pop()); auto V = gw();
auto V = gt(); fourier_impl(V, gt, scalar_valued());
inverse_fourier_impl(V, gw); return gw;
return gt;
} }
gf_keeper<tags::fourier,retime> lazy_fourier (gf_view<retime> const & g); inline gf_view<retime,matrix_valued> inverse_fourier (gf_view<refreq,matrix_valued> const gw) {
gf_keeper<tags::fourier,refreq> lazy_inverse_fourier (gf_view<refreq> const & g); double pi = std::acos(-1);
size_t L = gw.mesh().size();
double tmin = -pi * (L-1) / (L*gw.mesh().delta());
double tmax = pi * (L-1) / (L*gw.mesh().delta());
auto gt = make_gf<retime,matrix_valued>(tmin, tmax, L, gw.data().shape().front_pop());
auto V = gt();
inverse_fourier_impl(V, gw, matrix_valued());
return gt;
}
inline gf_view<retime,scalar_valued> inverse_fourier (gf_view<refreq,scalar_valued> const gw) {
double pi = std::acos(-1);
size_t L = gw.mesh().size();
double tmin = -pi * (L-1) / (L*gw.mesh().delta());
double tmax = pi * (L-1) / (L*gw.mesh().delta());
auto gt = make_gf<retime,scalar_valued>(tmin, tmax, L);
auto V = gt();
inverse_fourier_impl(V, gw, scalar_valued());
return gt;
}
inline gf_keeper<tags::fourier,retime,scalar_valued> lazy_fourier (gf_view<retime,scalar_valued> const & g) { return g;}
inline gf_keeper<tags::fourier,refreq,scalar_valued> lazy_inverse_fourier (gf_view<refreq,scalar_valued> const & g) { return g;}
inline gf_keeper<tags::fourier,retime,matrix_valued> lazy_fourier (gf_view<retime,matrix_valued> const & g) { return g;}
inline gf_keeper<tags::fourier,refreq,matrix_valued> lazy_inverse_fourier (gf_view<refreq,matrix_valued> const & g) { return g;}
void triqs_gf_view_assign_delegation( gf_view<refreq> g, gf_keeper<tags::fourier,retime> const & L); void triqs_gf_view_assign_delegation( gf_view<refreq> g, gf_keeper<tags::fourier,retime> const & L);
void triqs_gf_view_assign_delegation( gf_view<retime> g, gf_keeper<tags::fourier,refreq> const & L); void triqs_gf_view_assign_delegation( gf_view<retime> g, gf_keeper<tags::fourier,refreq> const & L);