mirror of
https://github.com/triqs/dft_tools
synced 2024-12-21 11:53:41 +01:00
Updating import directives, minor correction to commit
This commit is contained in:
parent
72c7f57110
commit
9d87d0be15
@ -1,10 +1,10 @@
|
||||
import pytriqs.utility.mpi as mpi
|
||||
from pytriqs.operators.util import *
|
||||
from pytriqs.archive import HDFArchive
|
||||
from pytriqs.applications.impurity_solvers.cthyb import *
|
||||
from pytriqs.gf.local import *
|
||||
from pytriqs.applications.dft.sumk_dft import *
|
||||
from pytriqs.applications.dft.converters.wien2k_converter import *
|
||||
from triqs_cthyb import *
|
||||
from pytriqs.gf import *
|
||||
from triqs_dft_tools.sumk_dft import *
|
||||
from triqs_dft_tools.converters.wien2k_converter import *
|
||||
|
||||
dft_filename='Gd_fcc'
|
||||
U = 9.6
|
||||
@ -52,12 +52,12 @@ spin_names = ["up","down"]
|
||||
orb_names = [i for i in range(n_orb)]
|
||||
|
||||
# Use GF structure determined by DFT blocks
|
||||
gf_struct = SK.gf_struct_solver[0]
|
||||
gf_struct = [(block, indices) for block, indices in SK.gf_struct_solver[0].iteritems()]
|
||||
# Construct U matrix for density-density calculations
|
||||
Umat, Upmat = U_matrix_kanamori(n_orb=n_orb, U_int=U, J_hund=J)
|
||||
# Construct Hamiltonian and solver
|
||||
h_int = h_int_density(spin_names, orb_names, map_operator_structure=SK.sumk_to_solver[0], U=Umat, Uprime=Upmat, H_dump="H.txt")
|
||||
S = Solver(beta=beta, gf_struct=list(gf_struct))
|
||||
S = Solver(beta=beta, gf_struct=gf_struct)
|
||||
|
||||
if previous_present:
|
||||
chemical_potential = 0
|
||||
|
@ -1,4 +1,4 @@
|
||||
.. module:: pytriqs.applications.dft
|
||||
.. module:: triqs_dft_tools
|
||||
|
||||
.. _documentation:
|
||||
|
||||
|
@ -23,11 +23,11 @@ Loading modules
|
||||
|
||||
First, we load the necessary modules::
|
||||
|
||||
from pytriqs.applications.dft.sumk_dft import *
|
||||
from pytriqs.gf.local import *
|
||||
from triqs_dft_tools.sumk_dft import *
|
||||
from pytriqs.gf import *
|
||||
from pytriqs.archive import HDFArchive
|
||||
from pytriqs.operators.util import *
|
||||
from pytriqs.applications.impurity_solvers.cthyb import *
|
||||
from triqs_cthyb import *
|
||||
|
||||
The last two lines load the modules for the construction of the
|
||||
:ref:`CTHYB solver <triqscthyb:welcome>`.
|
||||
@ -80,7 +80,7 @@ each material individually. A guide on how to set the tail fit parameters is giv
|
||||
|
||||
|
||||
The next step is to initialize the
|
||||
:class:`solver class <pytriqs.applications.impurity_solvers.cthyb.Solver>`.
|
||||
:class:`solver class <triqs_cthyb.Solver>`.
|
||||
It consist of two parts:
|
||||
|
||||
#. Calculating the multi-band interaction matrix, and constructing the
|
||||
@ -94,7 +94,7 @@ The first step is done using methods of the :ref:`TRIQS <triqslibs:welcome>` lib
|
||||
spin_names = ["up","down"]
|
||||
orb_names = [i for i in range(n_orb)]
|
||||
# Use GF structure determined by DFT blocks:
|
||||
gf_struct = SK.gf_struct_solver[0]
|
||||
gf_struct = [(block, indices) for block, indices in SK.gf_struct_solver[0].iteritems()]
|
||||
# Construct U matrix for density-density calculations:
|
||||
Umat, Upmat = U_matrix_kanamori(n_orb=n_orb, U_int=U, J_hund=J)
|
||||
|
||||
@ -104,7 +104,7 @@ Kanamori definitions of :math:`U` and :math:`J`.
|
||||
Next, we construct the Hamiltonian and the solver::
|
||||
|
||||
h_int = h_int_density(spin_names, orb_names, map_operator_structure=SK.sumk_to_solver[0], U=Umat, Uprime=Upmat)
|
||||
S = Solver(beta=beta, gf_struct=list(gf_struct))
|
||||
S = Solver(beta=beta, gf_struct=gf_struct)
|
||||
|
||||
As you see, we take only density-density interactions into
|
||||
account. Other Hamiltonians with, e.g. with full rotational invariant interactions are:
|
||||
@ -213,7 +213,7 @@ and perform only one DMFT iteration. The resulting self energy can be tail fitte
|
||||
S.Sigma_iw[name].fit_tail(fit_n_moments = 4, fit_min_n = 60, fit_max_n = 140)
|
||||
|
||||
Plot the self energy and adjust the tail fit parameters such that you obtain a
|
||||
proper fit. The :meth:`fit_tail function <pytriqs.gf.local.tools.tail_fit>` is part
|
||||
proper fit. The :meth:`fit_tail function <pytriqs.gf.tools.tail_fit>` is part
|
||||
of the :ref:`TRIQS <triqslibs:welcome>` library.
|
||||
|
||||
For a self energy which is going to zero for :math:`i\omega \rightarrow 0` our suggestion is
|
||||
|
@ -27,7 +27,7 @@ Initialisation
|
||||
All tools described below are collected in an extension of the :class:`SumkDFT <dft.sumk_dft.SumkDFT>` class and are
|
||||
loaded by importing the module :class:`SumkDFTTools <dft.sumk_dft_tools.SumkDFTTools>`::
|
||||
|
||||
from pytriqs.applications.dft.sumk_dft_tools import *
|
||||
from triqs_dft_tools.sumk_dft_tools import *
|
||||
|
||||
The initialisation of the class is equivalent to that of the :class:`SumkDFT <dft.sumk_dft.SumkDFT>`
|
||||
class::
|
||||
@ -37,7 +37,7 @@ class::
|
||||
Note that all routines available in :class:`SumkDFT <dft.sumk_dft.SumkDFT>` are also available here.
|
||||
|
||||
If required, we have to load and initialise the real frequency self energy. Most conveniently,
|
||||
you have your self energy already stored as a real frequency :class:`BlockGf <pytriqs.gf.local.BlockGf>` object
|
||||
you have your self energy already stored as a real frequency :class:`BlockGf <pytriqs.gf.BlockGf>` object
|
||||
in a hdf5 file::
|
||||
|
||||
ar = HDFArchive('case.h5', 'a')
|
||||
@ -45,10 +45,10 @@ in a hdf5 file::
|
||||
|
||||
You may also have your self energy stored in text files. For this case the :ref:`TRIQS <triqslibs:welcome>` library offers
|
||||
the function :meth:`read_gf_from_txt`, which is able to load the data from text files of one Greens function block
|
||||
into a real frequency :class:`ReFreqGf <pytriqs.gf.local.ReFreqGf>` object. Loading each block separately and
|
||||
building up a :class:´BlockGf <pytriqs.gf.local.BlockGf>´ is done with::
|
||||
into a real frequency :class:`ReFreqGf <pytriqs.gf.ReFreqGf>` object. Loading each block separately and
|
||||
building up a :class:´BlockGf <pytriqs.gf.BlockGf>´ is done with::
|
||||
|
||||
from pytriqs.gf.local.tools import *
|
||||
from pytriqs.gf.tools import *
|
||||
# get block names
|
||||
n_list = [n for n,nl in SK.gf_struct_solver[0].iteritems()]
|
||||
# load sigma for each block - in this example sigma is composed of 1x1 blocks
|
||||
|
@ -107,7 +107,7 @@ Now we convert these files into an hdf5 file that can be used for the
|
||||
DMFT calculations. For this purpose we
|
||||
use the python module :class:`Wien2kConverter <dft.converters.wien2k_converter.Wien2kConverter>`. It is initialized as::
|
||||
|
||||
from pytriqs.applications.dft.converters.wien2k_converter import *
|
||||
from triqs_dft_tools.converters.wien2k_converter import *
|
||||
Converter = Wien2kConverter(filename = case)
|
||||
|
||||
The only necessary parameter to this construction is the parameter `filename`.
|
||||
@ -337,7 +337,7 @@ matrix of the imaginary part, and then move on to the next :math:`\mathbf{k}`-po
|
||||
|
||||
The converter itself is used as::
|
||||
|
||||
from pytriqs.applications.dft.converters.hk_converter import *
|
||||
from triqs_dft_tools.converters.hk_converter import *
|
||||
Converter = HkConverter(filename = hkinputfile)
|
||||
Converter.convert_dft_input()
|
||||
|
||||
@ -371,7 +371,7 @@ as a placeholder for the actual prefix chosen by the user when creating the
|
||||
input for :program:`wannier90`.
|
||||
Once these two files are available, one can use the converter as follows::
|
||||
|
||||
from pytriqs.applications.dft.converters import Wannier90Converter
|
||||
from triqs_dft_tools.converters import Wannier90Converter
|
||||
Converter = Wannier90Converter(seedname='seedname')
|
||||
Converter.convert_dft_input()
|
||||
|
||||
|
@ -22,7 +22,7 @@ The first thing is the :class:`SumkDFT <dft.sumk_dft.SumkDFT>` class.
|
||||
It contains all basic routines that are necessary to perform a summation in k-space
|
||||
to get the local quantities used in DMFT. It is initialized by::
|
||||
|
||||
from pytriqs.applications.dft.sumk_dft import *
|
||||
from triqs_dft_tools.sumk_dft import *
|
||||
SK = SumkDFT(hdf_file = filename + '.h5')
|
||||
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
from pytriqs.applications.dft.sumk_dft import *
|
||||
from pytriqs.applications.dft.converters.wien2k_converter import *
|
||||
from triqs_dft_tools.sumk_dft import *
|
||||
from triqs_dft_tools.converters.wien2k_converter import *
|
||||
from pytriqs.applications.impurity_solvers.hubbard_I.hubbard_solver import Solver
|
||||
|
||||
import os
|
||||
|
@ -1,5 +1,5 @@
|
||||
from pytriqs.applications.dft.sumk_dft_tools import *
|
||||
from pytriqs.applications.dft.converters.wien2k_converter import *
|
||||
from triqs_dft_tools.sumk_dft_tools import *
|
||||
from triqs_dft_tools.converters.wien2k_converter import *
|
||||
from pytriqs.applications.impurity_solvers.hubbard_I.hubbard_solver import Solver
|
||||
|
||||
# Creates the data directory, cd into it:
|
||||
|
@ -1,9 +1,9 @@
|
||||
import pytriqs.utility.mpi as mpi
|
||||
from pytriqs.operators.util import *
|
||||
from pytriqs.archive import HDFArchive
|
||||
from pytriqs.applications.impurity_solvers.cthyb import *
|
||||
from pytriqs.gf.local import *
|
||||
from pytriqs.applications.dft.sumk_dft import *
|
||||
from triqs_cthyb import *
|
||||
from pytriqs.gf import *
|
||||
from triqs_dft_tools.sumk_dft import *
|
||||
|
||||
dft_filename='SrVO3'
|
||||
U = 4.0
|
||||
@ -30,7 +30,7 @@ p["fit_min_n"] = 30
|
||||
p["fit_max_n"] = 60
|
||||
|
||||
# If conversion step was not done, we could do it here. Uncomment the lines it you want to do this.
|
||||
#from pytriqs.applications.dft.converters.wien2k_converter import *
|
||||
#from triqs_dft_tools.converters.wien2k_converter import *
|
||||
#Converter = Wien2kConverter(filename=dft_filename, repacking=True)
|
||||
#Converter.convert_dft_input()
|
||||
#mpi.barrier()
|
||||
@ -58,14 +58,14 @@ spin_names = ["up","down"]
|
||||
orb_names = [i for i in range(n_orb)]
|
||||
|
||||
# Use GF structure determined by DFT blocks
|
||||
gf_struct = SK.gf_struct_solver[0]
|
||||
gf_struct = [(block, indices) for block, indices in SK.gf_struct_solver[0].iteritems()]
|
||||
|
||||
# Construct U matrix for density-density calculations
|
||||
Umat, Upmat = U_matrix_kanamori(n_orb=n_orb, U_int=U, J_hund=J)
|
||||
|
||||
# Construct density-density Hamiltonian and solver
|
||||
h_int = h_int_density(spin_names, orb_names, map_operator_structure=SK.sumk_to_solver[0], U=Umat, Uprime=Upmat, H_dump="H.txt")
|
||||
S = Solver(beta=beta, gf_struct=list(gf_struct))
|
||||
S = Solver(beta=beta, gf_struct=gf_struct)
|
||||
|
||||
if previous_present:
|
||||
chemical_potential = 0
|
||||
|
@ -1,10 +1,10 @@
|
||||
import pytriqs.utility.mpi as mpi
|
||||
from pytriqs.operators.util import *
|
||||
from pytriqs.archive import HDFArchive
|
||||
from pytriqs.applications.impurity_solvers.cthyb import *
|
||||
from pytriqs.gf.local import *
|
||||
from pytriqs.applications.dft.sumk_dft import *
|
||||
from pytriqs.applications.dft.converters.wien2k_converter import *
|
||||
from triqs_cthyb import *
|
||||
from pytriqs.gf import *
|
||||
from triqs_dft_tools.sumk_dft import *
|
||||
from triqs_dft_tools.converters.wien2k_converter import *
|
||||
|
||||
dft_filename='SrVO3'
|
||||
U = 9.6
|
||||
@ -31,7 +31,7 @@ p["fit_min_n"] = 30
|
||||
p["fit_max_n"] = 60
|
||||
|
||||
# If conversion step was not done, we could do it here. Uncomment the lines it you want to do this.
|
||||
#from pytriqs.applications.dft.converters.wien2k_converter import *
|
||||
#from triqs_dft_tools.converters.wien2k_converter import *
|
||||
#Converter = Wien2kConverter(filename=dft_filename, repacking=True)
|
||||
#Converter.convert_dft_input()
|
||||
#mpi.barrier()
|
||||
@ -59,14 +59,14 @@ spin_names = ["up","down"]
|
||||
orb_names = [i for i in range(n_orb)]
|
||||
|
||||
# Use GF structure determined by DFT blocks
|
||||
gf_struct = SK.gf_struct_solver[0]
|
||||
gf_struct = [(block, indices) for block, indices in SK.gf_struct_solver[0].iteritems()]
|
||||
|
||||
# Construct Slater U matrix
|
||||
Umat = U_matrix(n_orb=n_orb, U_int=U, J_hund=J, basis='cubic',)
|
||||
|
||||
# Construct Hamiltonian and solver
|
||||
h_int = h_int_slater(spin_names, orb_names, map_operator_structure=SK.sumk_to_solver[0], U_matrix=Umat)
|
||||
S = Solver(beta=beta, gf_struct=list(gf_struct))
|
||||
S = Solver(beta=beta, gf_struct=gf_struct)
|
||||
|
||||
if previous_present:
|
||||
chemical_potential = 0
|
||||
|
@ -76,8 +76,8 @@ Using the transport code
|
||||
|
||||
First we have to read the Wien2k files and store the relevant information in the hdf5 archive::
|
||||
|
||||
from pytriqs.applications.dft.converters.wien2k_converter import *
|
||||
from pytriqs.applications.dft.sumk_dft_tools import *
|
||||
from triqs_dft_tools.converters.wien2k_converter import *
|
||||
from triqs_dft_tools.sumk_dft_tools import *
|
||||
|
||||
Converter = Wien2kConverter(filename='case', repacking=True)
|
||||
Converter.convert_transport_input()
|
||||
|
@ -1,6 +1,6 @@
|
||||
.. index:: DFTTools
|
||||
|
||||
.. module:: pytriqs.applications.dft
|
||||
.. module:: triqs_dft_tools
|
||||
|
||||
.. _dft:
|
||||
|
||||
|
@ -21,7 +21,7 @@
|
||||
################################################################################
|
||||
|
||||
from types import *
|
||||
#from pytriqs.applications.dft.U_matrix import *
|
||||
#from triqs_dft_tools.U_matrix import *
|
||||
from U_matrix import *
|
||||
from pytriqs.gf import *
|
||||
#from hubbard_I import gf_hi_fullu, sigma_atomic_fullu
|
||||
|
@ -1,6 +1,6 @@
|
||||
#from pytriqs.applications.dft.sumk_dft import *
|
||||
#from triqs_dft_tools.sumk_dft import *
|
||||
from sumk_dft import *
|
||||
#from pytriqs.applications.dft.converters.wien2k_converter import *
|
||||
#from triqs_dft_tools.converters.wien2k_converter import *
|
||||
from converters.vasp_converter import *
|
||||
#from pytriqs.applications.impurity_solvers.hubbard_I.hubbard_solver import Solver
|
||||
from hf_solver import Solver
|
||||
|
@ -502,7 +502,7 @@ class Wien2kConverter(ConverterTools):
|
||||
- symmetries from :file:`case.outputs`,
|
||||
|
||||
if those Wien2k files are present and stores the data in the hdf5 archive.
|
||||
This function is automatically called by :meth:`convert_dft_input <pytriqs.applications.dft.converters.wien2k_converter.Wien2kConverter.convert_dft_input>`.
|
||||
This function is automatically called by :meth:`convert_dft_input <triqs_dft_tools.converters.wien2k_converter.Wien2kConverter.convert_dft_input>`.
|
||||
|
||||
"""
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
from pytriqs.applications.dft.sumk_dft import *
|
||||
from pytriqs.applications.dft.converters import Wien2kConverter
|
||||
from triqs_dft_tools.sumk_dft import *
|
||||
from triqs_dft_tools.converters import Wien2kConverter
|
||||
from pytriqs.gf import *
|
||||
from pytriqs.archive import *
|
||||
import pytriqs.utility.mpi as mpi
|
||||
|
@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
|
||||
@CMAKE_INSTALL_PREFIX@/bin/pytriqs -m pytriqs.applications.dft.converters.plovasp.converter $@
|
||||
@CMAKE_INSTALL_PREFIX@/bin/pytriqs -m triqs_dft_tools.converters.plovasp.converter $@
|
||||
|
||||
|
@ -83,5 +83,5 @@ stdbuf -o 0 $MPIRUN_CMD -np $NPROC "$VASP_DIR" &
|
||||
|
||||
PYTRIQS=@CMAKE_INSTALL_PREFIX@/bin/pytriqs
|
||||
|
||||
$MPIRUN_CMD -np $NPROC $PYTRIQS -m pytriqs.applications.dft.converters.plovasp.sc_dmft $(jobs -p) $NITER $DMFT_SCRIPT 'plo.cfg' || kill %1
|
||||
$MPIRUN_CMD -np $NPROC $PYTRIQS -m triqs_dft_tools.converters.plovasp.sc_dmft $(jobs -p) $NITER $DMFT_SCRIPT 'plo.cfg' || kill %1
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user