diff --git a/doc/guide/transport.rst b/doc/guide/transport.rst index 46b80306..ba7a06ce 100644 --- a/doc/guide/transport.rst +++ b/doc/guide/transport.rst @@ -5,11 +5,19 @@ Transport calculations Formalism --------- -The conductivity and the Seebeck coefficient in direction :math:`\alpha\beta` are defined as [#transp]_: +The conductivity, the Seebeck coefficient and the electronic contribution to the thermal conductivity in direction :math:`\alpha\beta` are defined as [#transp1]_ [#transp2]_: .. math:: - \sigma_{\alpha\beta} = \beta e^{2} A_{0,\alpha\beta} \ \ \ \text{and} \ \ \ S_{\alpha\beta} = -\frac{k_B}{|e|}\frac{A_{1,\alpha\beta}}{A_{0,\alpha\beta}}, + \sigma_{\alpha\beta} = \beta e^{2} A_{0,\alpha\beta} + +.. math:: + + S_{\alpha\beta} = -\frac{k_B}{|e|}\frac{A_{1,\alpha\beta}}{A_{0,\alpha\beta}}, + +.. math:: + + \kappa^{\text{el}}_{\alpha\beta} = k_B \left(A_{2,\alpha\beta} - \frac{A_{1,\alpha\beta}^2}{A_{0,\alpha\beta}}\right), in which the kinetic coefficients :math:`A_{n,\alpha\beta}` are given by @@ -102,7 +110,7 @@ As next step we can calculate the transport distribution :math:`\Gamma_{\alpha\b Here the transport distribution is calculated in :math:`xx` direction for the frequencies :math:`\Omega=0.0` and :math:`0.1`. To use the previously obtained self energy we set with_Sigma to True and the broadening to :math:`0.0`. -As we also want to calculate the Seebeck coefficient we have to include :math:`\Omega=0.0` in the mesh. +As we also want to calculate the Seebeck coefficient and the thermal conductivity we have to include :math:`\Omega=0.0` in the mesh. Note that the current version of the code repines the :math:`\Omega` values to the closest values on the self energy mesh. For complete description of the input parameters see the :meth:`transport_distribution reference `. @@ -114,10 +122,10 @@ You can retrieve it from the archive by:: SK.Gamma_w, SK.Om_meshr, SK.omega, SK.directions = SK.load(['Gamma_w','Om_meshr','omega','directions']) -Finally the optical conductivity :math:`\sigma(\Omega)` and the Seebeck coefficient :math:`S` can be obtained with:: +Finally the optical conductivity :math:`\sigma(\Omega)`, the Seebeck coefficient :math:`S` and the thermal conductivity :math:`\kappa^{\text{el}}` can be obtained with:: SK.conductivity_and_seebeck(beta=40) - SK.save(['seebeck','optic_cond']) + SK.save(['seebeck','optic_cond','kappa']) It is strongly advised to check convergence in the number of k-points! @@ -125,5 +133,6 @@ It is strongly advised to check convergence in the number of k-points! References ---------- -.. [#transp] `V. S. Oudovenko, G. Palsson, K. Haule, G. Kotliar, S. Y. Savrasov, Phys. Rev. B 73, 035120 (2006) `_ +.. [#transp1] `V. S. Oudovenko, G. Palsson, K. Haule, G. Kotliar, S. Y. Savrasov, Phys. Rev. B 73, 035120 (2006) `_ +.. [#transp2] `J. M. Tomczak, K. Haule, T. Miyake, A. Georges, G. Kotliar, Phys. Rev. B 82, 085104 (2010) `_ .. [#userguide] `P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, ISBN 3-9501031-1-2 `_