mirror of
https://github.com/triqs/dft_tools
synced 2024-12-21 20:03:41 +01:00
Moved U_matrix to TRIQS library
This commit is contained in:
parent
8bfc950cb1
commit
86b1461c52
@ -1,11 +1,10 @@
|
||||
import pytriqs.utility.mpi as mpi
|
||||
from pytriqs.operators.hamiltonians import *
|
||||
from pytriqs.operators.util import *
|
||||
from pytriqs.archive import HDFArchive
|
||||
from pytriqs.applications.impurity_solvers.cthyb import *
|
||||
from pytriqs.gf.local import *
|
||||
from pytriqs.applications.dft.sumk_dft import *
|
||||
from pytriqs.applications.dft.converters.wien2k_converter import *
|
||||
from pytriqs.applications.dft.U_matrix import *
|
||||
|
||||
dft_filename='Gd_fcc'
|
||||
U = 9.6
|
||||
|
@ -42,7 +42,6 @@ This is the reference manual for the python routines.
|
||||
reference/converters
|
||||
reference/sumk_dft
|
||||
reference/sumk_dft_tools
|
||||
reference/U_matrix
|
||||
reference/symmetry
|
||||
reference/transbasis
|
||||
|
||||
|
@ -91,7 +91,7 @@ First, we load the necessary modules::
|
||||
from pytriqs.applications.dft.converters.wien2k_converter import *
|
||||
from pytriqs.gf.local import *
|
||||
from pytriqs.archive import HDFArchive
|
||||
from pytriqs.operators.hamiltonians import *
|
||||
from pytriqs.operators.util import *
|
||||
from pytriqs.applications.impurity_solvers.cthyb import *
|
||||
|
||||
|
||||
|
@ -1,5 +0,0 @@
|
||||
U_matrix
|
||||
========
|
||||
|
||||
.. automodule:: pytriqs.applications.dft.U_matrix
|
||||
:members:
|
@ -1,61 +0,0 @@
|
||||
* remove inequiv_shells from sumk_dft, modify update_archive scripts
|
||||
|
||||
==========================
|
||||
Substitutions:
|
||||
* <<= --> <<
|
||||
* retval -> read_value
|
||||
* Gupf -> G_upfold
|
||||
* read_symmetry_input -> convert_symmetry_input
|
||||
* Symm_corr -> symmcorr
|
||||
* gf_struct_corr -> gf_struct_sumk
|
||||
* n_s -> n_symm
|
||||
|
||||
internal substitutions:
|
||||
Symm_par --> symmpar
|
||||
sig -> bname
|
||||
names_to_ind -> spin_names_to_ind
|
||||
n_spin_blocks_gf -> n_spin_blocks
|
||||
block_names -> spin_block_names
|
||||
a_list -> block_ind_list
|
||||
a,al -> block,inner
|
||||
shellmap -> corr_to_inequiv
|
||||
invshellmap -> inequiv_to_corr
|
||||
n_inequiv_corr_shells -> n_inequiv_shells
|
||||
**********
|
||||
* changed default h5 subgroup names
|
||||
|
||||
SumK_LDA -> dft_input
|
||||
dft_band_input
|
||||
SymmCorr -> dft_symmcorr_input
|
||||
SumK_LDA_ParProj -> dft_parproj_input
|
||||
SymmPar -> dft_symmpar_input
|
||||
|
||||
def __init__(self, filename, dft_subgrp = 'SumK_LDA', symm_subgrp = 'SymmCorr', repacking = False):
|
||||
-->
|
||||
def __init__(self, filename, dft_subgrp = 'dft_input', symm_subgrp = 'dft_symm_input', repacking = False):
|
||||
|
||||
declare all groupnames in init
|
||||
|
||||
symm_subgrp -> symmcorr_subgrp
|
||||
symm_par_subgrp -> symmpar_subgrp
|
||||
par_proj_subgrp -> parproj_subgrp
|
||||
|
||||
symm_data -> symmcorr_data
|
||||
par_proj_data -> parproj_data
|
||||
symm_par_data -> symmpar_data
|
||||
|
||||
**********
|
||||
* separated read_fortran_file, __repack, inequiv_shells into new converter_tools class from which hk and wien converters are derived
|
||||
|
||||
* truncated write loops in calc_density_correction
|
||||
|
||||
* moved find_dc, find_mu_nonint, check_projectors, sorts_of_atoms,
|
||||
number_of_atoms to end, not to be documented.
|
||||
* replaced all instances of
|
||||
exec "self.%s = mpi.bcast(self.%s)"%(it,it)
|
||||
with
|
||||
setattr(self,it,mpi.bcast(getattr(self,it))
|
||||
* replaced long archive saves in converters by setattr construction
|
||||
* removed G_upfolded_id -- looked redundant
|
||||
* write corr_to_inequiv, inequiv_to_corr, n_inequiv_shells (shellmap, invshellmap, n_inequiv_corr_shells) in converter
|
||||
* merge simple_point_dens_mat and density_gf into a single function density_matrix
|
@ -1,532 +0,0 @@
|
||||
from math import sqrt
|
||||
from scipy.misc import factorial as fact
|
||||
from itertools import product
|
||||
import numpy as np
|
||||
|
||||
# The interaction matrix in desired basis
|
||||
# U^{spherical}_{m1 m2 m3 m4} = \sum_{k=0}^{2l} F_k angular_matrix_element(l, k, m1, m2, m3, m4)
|
||||
def U_matrix(l, radial_integrals=None, U_int=None, J_hund=None, basis='spherical', T=None):
|
||||
r"""
|
||||
Calculate the full four-index U matrix being given either radial_integrals or U_int and J_hund.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
l : integer
|
||||
Angular momentum of shell being treated (l=2 for d shell, l=3 for f shell).
|
||||
radial_integrals : list, optional
|
||||
Slater integrals [F0,F2,F4,..].
|
||||
Must be provided if U_int and J_hund are not given.
|
||||
Preferentially used to compute the U_matrix if provided alongside U_int and J_hund.
|
||||
U_int : scalar, optional
|
||||
Value of the screened Hubbard interaction.
|
||||
Must be provided if radial_integrals are not given.
|
||||
J_hund : scalar, optional
|
||||
Value of the Hund's coupling.
|
||||
Must be provided if radial_integrals are not given.
|
||||
basis : string, optional
|
||||
The basis in which the interaction matrix should be computed.
|
||||
Takes the values
|
||||
|
||||
- 'spherical': spherical harmonics,
|
||||
- 'cubic': cubic harmonics,
|
||||
- 'other': other basis type as given by the transformation matrix T.
|
||||
|
||||
T : real/complex numpy array, optional
|
||||
Transformation matrix for basis change.
|
||||
Must be provided if basis='other'.
|
||||
|
||||
Returns
|
||||
-------
|
||||
U_matrix : float numpy array
|
||||
The four-index interaction matrix in the chosen basis.
|
||||
|
||||
"""
|
||||
|
||||
# Check all necessary information is present and consistent
|
||||
if radial_integrals is None and (U_int is None and J_hund is None):
|
||||
raise ValueError("U_matrix: provide either the radial_integrals or U_int and J_hund.")
|
||||
if radial_integrals is None and (U_int is not None and J_hund is not None):
|
||||
radial_integrals = U_J_to_radial_integrals(l, U_int, J_hund)
|
||||
if radial_integrals is not None and (U_int is not None and J_hund is not None):
|
||||
if len(radial_integrals)-1 != l:
|
||||
raise ValueError("U_matrix: inconsistency in l and number of radial_integrals provided.")
|
||||
if (radial_integrals - U_J_to_radial_integrals(l, U_int, J_hund)).any() != 0.0:
|
||||
print "Warning: U_matrix: radial_integrals provided do not match U_int and J_hund. Using radial_integrals to calculate U_matrix."
|
||||
|
||||
# Full interaction matrix
|
||||
# Basis of spherical harmonics Y_{-2}, Y_{-1}, Y_{0}, Y_{1}, Y_{2}
|
||||
# U^{spherical}_{m1 m2 m3 m4} = \sum_{k=0}^{2l} F_k angular_matrix_element(l, k, m1, m2, m3, m4)
|
||||
U_matrix = np.zeros((2*l+1,2*l+1,2*l+1,2*l+1),dtype=float)
|
||||
|
||||
m_range = range(-l,l+1)
|
||||
for n, F in enumerate(radial_integrals):
|
||||
k = 2*n
|
||||
for m1, m2, m3, m4 in product(m_range,m_range,m_range,m_range):
|
||||
U_matrix[m1+l,m2+l,m3+l,m4+l] += F * angular_matrix_element(l,k,m1,m2,m3,m4)
|
||||
|
||||
# Transform from spherical basis if needed
|
||||
if basis == "cubic": T = spherical_to_cubic(l)
|
||||
if basis == "other" and T is None:
|
||||
raise ValueError("U_matrix: provide T for other bases.")
|
||||
if T is not None: U_matrix = transform_U_matrix(U_matrix, T)
|
||||
|
||||
return U_matrix
|
||||
|
||||
# Convert full 4-index U matrix to 2-index density-density form
|
||||
def reduce_4index_to_2index(U_4index):
|
||||
r"""
|
||||
Reduces the four-index matrix to two-index matrices for parallel and anti-parallel spins.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
U_4index : float numpy array
|
||||
The four-index interaction matrix.
|
||||
|
||||
Returns
|
||||
-------
|
||||
U : float numpy array
|
||||
The two-index interaction matrix for parallel spins.
|
||||
Uprime : float numpy array
|
||||
The two-index interaction matrix for anti-parallel spins.
|
||||
|
||||
"""
|
||||
|
||||
size = len(U_4index) # 2l+1
|
||||
U = np.zeros((size,size),dtype=float) # matrix for same spin
|
||||
Uprime = np.zeros((size,size),dtype=float) # matrix for opposite spin
|
||||
|
||||
m_range = range(size)
|
||||
for m,mp in product(m_range,m_range):
|
||||
U[m,mp] = U_4index[m,mp,m,mp].real - U_4index[m,mp,mp,m].real
|
||||
Uprime[m,mp] = U_4index[m,mp,m,mp].real
|
||||
|
||||
return U, Uprime
|
||||
|
||||
# Construct the 2-index matrices for the density-density form
|
||||
def U_matrix_kanamori(n_orb, U_int, J_hund):
|
||||
r"""
|
||||
Calculate the Kanamori U and Uprime matrices.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_orb : integer
|
||||
Number of orbitals in basis.
|
||||
U_int : scalar
|
||||
Value of the screened Hubbard interaction.
|
||||
J_hund : scalar
|
||||
Value of the Hund's coupling.
|
||||
|
||||
Returns
|
||||
-------
|
||||
U : float numpy array
|
||||
The two-index interaction matrix for parallel spins.
|
||||
Uprime : float numpy array
|
||||
The two-index interaction matrix for anti-parallel spins.
|
||||
|
||||
"""
|
||||
|
||||
U = np.zeros((n_orb,n_orb),dtype=float) # matrix for same spin
|
||||
Uprime = np.zeros((n_orb,n_orb),dtype=float) # matrix for opposite spin
|
||||
|
||||
m_range = range(n_orb)
|
||||
for m,mp in product(m_range,m_range):
|
||||
if m == mp:
|
||||
Uprime[m,mp] = U_int
|
||||
else:
|
||||
U[m,mp] = U_int - 3.0*J_hund
|
||||
Uprime[m,mp] = U_int - 2.0*J_hund
|
||||
|
||||
return U, Uprime
|
||||
|
||||
# Get t2g or eg components
|
||||
def t2g_submatrix(U, convention=''):
|
||||
r"""
|
||||
Extract the t2g submatrix of the full d-manifold two- or four-index U matrix.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
U : float numpy array
|
||||
Two- or four-index interaction matrix.
|
||||
convention : string, optional
|
||||
The basis convention.
|
||||
Takes the values
|
||||
|
||||
- '': basis ordered as ("xy","yz","z^2","xz","x^2-y^2"),
|
||||
- 'wien2k': basis ordered as ("z^2","x^2-y^2","xy","yz","xz").
|
||||
|
||||
Returns
|
||||
-------
|
||||
U_t2g : float numpy array
|
||||
The t2g component of the interaction matrix.
|
||||
|
||||
"""
|
||||
if convention == 'wien2k':
|
||||
return subarray(U, len(U.shape)*[(2,3,4)])
|
||||
else:
|
||||
return subarray(U, len(U.shape)*[(0,1,3)])
|
||||
|
||||
def eg_submatrix(U, convention=''):
|
||||
r"""
|
||||
Extract the eg submatrix of the full d-manifold two- or four-index U matrix.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
U : float numpy array
|
||||
Two- or four-index interaction matrix.
|
||||
convention : string, optional
|
||||
The basis convention.
|
||||
Takes the values
|
||||
|
||||
- '': basis ordered as ("xy","yz","z^2","xz","x^2-y^2"),
|
||||
- 'wien2k': basis ordered as ("z^2","x^2-y^2","xy","yz","xz").
|
||||
|
||||
|
||||
Returns
|
||||
-------
|
||||
U_eg : float numpy array
|
||||
The eg component of the interaction matrix.
|
||||
|
||||
"""
|
||||
if convention == 'wien2k':
|
||||
return subarray(U, len(U.shape)*[(0,1)])
|
||||
else:
|
||||
return subarray(U, len(U.shape)*[(2,4)])
|
||||
|
||||
# Transform the interaction matrix into another basis
|
||||
def transform_U_matrix(U_matrix, T):
|
||||
r"""
|
||||
Transform a four-index interaction matrix into another basis.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
U_matrix : float numpy array
|
||||
The four-index interaction matrix in the original basis.
|
||||
T : real/complex numpy array, optional
|
||||
Transformation matrix for basis change.
|
||||
Must be provided if basis='other'.
|
||||
|
||||
Returns
|
||||
-------
|
||||
U_matrix : float numpy array
|
||||
The four-index interaction matrix in the new basis.
|
||||
|
||||
"""
|
||||
return np.einsum("ij,kl,jlmo,mn,op",np.conj(T),np.conj(T),U_matrix,np.transpose(T),np.transpose(T))
|
||||
|
||||
# Rotation matrices: complex harmonics to cubic harmonics
|
||||
# Complex harmonics basis: ..., Y_{-2}, Y_{-1}, Y_{0}, Y_{1}, Y_{2}, ...
|
||||
def spherical_to_cubic(l, convention=''):
|
||||
r"""
|
||||
Get the spherical harmonics to cubic harmonics transformation matrix.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
l : integer
|
||||
Angular momentum of shell being treated (l=2 for d shell, l=3 for f shell).
|
||||
convention : string, optional
|
||||
The basis convention.
|
||||
Takes the values
|
||||
|
||||
- '': basis ordered as ("xy","yz","z^2","xz","x^2-y^2"),
|
||||
- 'wien2k': basis ordered as ("z^2","x^2-y^2","xy","yz","xz").
|
||||
|
||||
Returns
|
||||
-------
|
||||
T : real/complex numpy array
|
||||
Transformation matrix for basis change.
|
||||
|
||||
"""
|
||||
size = 2*l+1
|
||||
T = np.zeros((size,size),dtype=complex)
|
||||
if convention != 'wien2k' and l != 2:
|
||||
raise ValueError("spherical_to_cubic: wien2k convention only implemented only for l=2")
|
||||
if l == 0:
|
||||
cubic_names = ("s")
|
||||
elif l == 1:
|
||||
cubic_names = ("x","y","z")
|
||||
T[0,0] = 1.0/sqrt(2); T[0,2] = -1.0/sqrt(2)
|
||||
T[1,0] = 1j/sqrt(2); T[1,2] = 1j/sqrt(2)
|
||||
T[2,1] = 1.0
|
||||
elif l == 2:
|
||||
if convention == 'wien2k':
|
||||
cubic_names = ("z^2","x^2-y^2","xy","yz","xz")
|
||||
T[0,2] = 1.0
|
||||
T[1,0] = 1.0/sqrt(2); T[1,4] = 1.0/sqrt(2)
|
||||
T[2,0] = -1j/sqrt(2); T[2,4] = 1j/sqrt(2)
|
||||
T[3,1] = 1j/sqrt(2); T[3,3] = -1j/sqrt(2)
|
||||
T[4,1] = 1.0/sqrt(2); T[4,3] = 1.0/sqrt(2)
|
||||
else:
|
||||
cubic_names = ("xy","yz","z^2","xz","x^2-y^2")
|
||||
T[0,0] = 1j/sqrt(2); T[0,4] = -1j/sqrt(2)
|
||||
T[1,1] = 1j/sqrt(2); T[1,3] = 1j/sqrt(2)
|
||||
T[2,2] = 1.0
|
||||
T[3,1] = 1.0/sqrt(2); T[3,3] = -1.0/sqrt(2)
|
||||
T[4,0] = 1.0/sqrt(2); T[4,4] = 1.0/sqrt(2)
|
||||
elif l == 3:
|
||||
cubic_names = ("x(x^2-3y^2)","z(x^2-y^2)","xz^2","z^3","yz^2","xyz","y(3x^2-y^2)")
|
||||
T[0,0] = 1.0/sqrt(2); T[0,6] = -1.0/sqrt(2)
|
||||
T[1,1] = 1.0/sqrt(2); T[1,5] = 1.0/sqrt(2)
|
||||
T[2,2] = 1.0/sqrt(2); T[2,4] = -1.0/sqrt(2)
|
||||
T[3,5] = 1.0
|
||||
T[4,2] = 1j/sqrt(2); T[4,4] = 1j/sqrt(2)
|
||||
T[5,1] = 1j/sqrt(2); T[5,5] = -1j/sqrt(2)
|
||||
T[6,0] = 1j/sqrt(2); T[6,6] = 1j/sqrt(2)
|
||||
else: raise ValueError("spherical_to_cubic: implemented only for l=0,1,2,3")
|
||||
|
||||
return T
|
||||
|
||||
# Names of cubic harmonics
|
||||
def cubic_names(l):
|
||||
r"""
|
||||
Get the names of the cubic harmonics.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
l : integer or string
|
||||
Angular momentum of shell being treated.
|
||||
Also takes 't2g' and 'eg' as arguments.
|
||||
|
||||
Returns
|
||||
-------
|
||||
cubic_names : tuple of strings
|
||||
Names of the orbitals.
|
||||
|
||||
"""
|
||||
if l == 0 or l == 's':
|
||||
return ("s")
|
||||
elif l == 1 or l == 'p':
|
||||
return ("x","y","z")
|
||||
elif l == 2 or l == 'd':
|
||||
return ("xy","yz","z^2","xz","x^2-y^2")
|
||||
elif l == 't2g':
|
||||
return ("xy","yz","xz")
|
||||
elif l == 'eg':
|
||||
return ("z^2","x^2-y^2")
|
||||
elif l == 3 or l == 'f':
|
||||
return ("x(x^2-3y^2)","z(x^2-y^2)","xz^2","z^3","yz^2","xyz","y(3x^2-y^2)")
|
||||
else: raise ValueError("cubic_names: implemented only for l=0,1,2,3")
|
||||
|
||||
# Convert U,J -> radial integrals F_k
|
||||
def U_J_to_radial_integrals(l, U_int, J_hund):
|
||||
r"""
|
||||
Determine the radial integrals F_k from U_int and J_hund.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
l : integer
|
||||
Angular momentum of shell being treated (l=2 for d shell, l=3 for f shell).
|
||||
U_int : scalar
|
||||
Value of the screened Hubbard interaction.
|
||||
J_hund : scalar
|
||||
Value of the Hund's coupling.
|
||||
|
||||
Returns
|
||||
-------
|
||||
radial_integrals : list
|
||||
Slater integrals [F0,F2,F4,..].
|
||||
|
||||
"""
|
||||
|
||||
F = np.zeros((l+1),dtype=float)
|
||||
if l == 2:
|
||||
F[0] = U_int
|
||||
F[1] = J_hund * 14.0 / (1.0 + 0.63)
|
||||
F[2] = 0.630 * F[1]
|
||||
elif l == 3:
|
||||
F[0] = U_int
|
||||
F[1] = 6435.0 * J_hund / (286.0 + 195.0 * 451.0 / 675.0 + 250.0 * 1001.0 / 2025.0)
|
||||
F[2] = 451.0 * F[1] / 675.0
|
||||
F[3] = 1001.0 * F[1] / 2025.0
|
||||
else: raise ValueError("U_J_to_radial_integrals: implemented only for l=2,3")
|
||||
|
||||
return F
|
||||
|
||||
# Convert radial integrals F_k -> U,J
|
||||
def radial_integrals_to_U_J(l, F):
|
||||
r"""
|
||||
Determine U_int and J_hund from the radial integrals.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
l : integer
|
||||
Angular momentum of shell being treated (l=2 for d shell, l=3 for f shell).
|
||||
F : list
|
||||
Slater integrals [F0,F2,F4,..].
|
||||
|
||||
Returns
|
||||
-------
|
||||
U_int : scalar
|
||||
Value of the screened Hubbard interaction.
|
||||
J_hund : scalar
|
||||
Value of the Hund's coupling.
|
||||
|
||||
"""
|
||||
|
||||
if l == 2:
|
||||
U_int = F[0]
|
||||
J_hund = F[1] * (1.0 + 0.63) / 14.0
|
||||
elif l == 3:
|
||||
U_int = F[0]
|
||||
J_hund = F[1] * (286.0 + 195.0 * 451.0 / 675.0 + 250.0 * 1001.0 / 2025.0) / 6435.0
|
||||
else: raise ValueError("radial_integrals_to_U_J: implemented only for l=2,3")
|
||||
|
||||
return U_int,J_hund
|
||||
|
||||
# Angular matrix elements of particle-particle interaction
|
||||
# (2l+1)^2 ((l 0) (k 0) (l 0))^2 \sum_{q=-k}^{k} (-1)^{m1+m2+q} ((l -m1) (k q) (l m3)) ((l -m2) (k -q) (l m4))
|
||||
def angular_matrix_element(l, k, m1, m2, m3, m4):
|
||||
r"""
|
||||
Calculate the angular matrix element
|
||||
|
||||
.. math::
|
||||
(2l+1)^2
|
||||
\begin{pmatrix}
|
||||
l & k & l \\
|
||||
0 & 0 & 0
|
||||
\end{pmatrix}^2
|
||||
\sum_{q=-k}^k (-1)^{m_1+m_2+q}
|
||||
\begin{pmatrix}
|
||||
l & k & l \\
|
||||
-m_1 & q & m_3
|
||||
\end{pmatrix}
|
||||
\begin{pmatrix}
|
||||
l & k & l \\
|
||||
-m_2 & -q & m_4
|
||||
\end{pmatrix}.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
l : integer
|
||||
k : integer
|
||||
m1 : integer
|
||||
m2 : integer
|
||||
m3 : integer
|
||||
m4 : integer
|
||||
|
||||
Returns
|
||||
-------
|
||||
ang_mat_ele : scalar
|
||||
Angular matrix element.
|
||||
|
||||
"""
|
||||
ang_mat_ele = 0
|
||||
for q in range(-k,k+1):
|
||||
ang_mat_ele += three_j_symbol((l,-m1),(k,q),(l,m3))*three_j_symbol((l,-m2),(k,-q),(l,m4))*(-1.0 if (m1+q+m2) % 2 else 1.0)
|
||||
ang_mat_ele *= (2*l+1)**2 * (three_j_symbol((l,0),(k,0),(l,0))**2)
|
||||
return ang_mat_ele
|
||||
|
||||
# Wigner 3-j symbols
|
||||
# ((j1 m1) (j2 m2) (j3 m3))
|
||||
def three_j_symbol(jm1, jm2, jm3):
|
||||
r"""
|
||||
Calculate the three-j symbol
|
||||
|
||||
.. math::
|
||||
\begin{pmatrix}
|
||||
l_1 & l_2 & l_3\\
|
||||
m_1 & m_2 & m_3
|
||||
\end{pmatrix}.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
jm1 : tuple of integers
|
||||
(j_1 m_1)
|
||||
jm2 : tuple of integers
|
||||
(j_2 m_2)
|
||||
jm3 : tuple of integers
|
||||
(j_3 m_3)
|
||||
|
||||
Returns
|
||||
-------
|
||||
three_j_sym : scalar
|
||||
Three-j symbol.
|
||||
|
||||
"""
|
||||
j1, m1 = jm1
|
||||
j2, m2 = jm2
|
||||
j3, m3 = jm3
|
||||
|
||||
if (m1+m2+m3 != 0 or
|
||||
m1 < -j1 or m1 > j1 or
|
||||
m2 < -j2 or m2 > j2 or
|
||||
m3 < -j3 or m3 > j3 or
|
||||
j3 > j1 + j2 or
|
||||
j3 < abs(j1-j2)):
|
||||
return .0
|
||||
|
||||
three_j_sym = -1.0 if (j1-j2-m3) % 2 else 1.0
|
||||
three_j_sym *= sqrt(fact(j1+j2-j3)*fact(j1-j2+j3)*fact(-j1+j2+j3)/fact(j1+j2+j3+1))
|
||||
three_j_sym *= sqrt(fact(j1-m1)*fact(j1+m1)*fact(j2-m2)*fact(j2+m2)*fact(j3-m3)*fact(j3+m3))
|
||||
|
||||
t_min = max(j2-j3-m1,j1-j3+m2,0)
|
||||
t_max = min(j1-m1,j2+m2,j1+j2-j3)
|
||||
|
||||
t_sum = 0
|
||||
for t in range(t_min,t_max+1):
|
||||
t_sum += (-1.0 if t % 2 else 1.0)/(fact(t)*fact(j3-j2+m1+t)*fact(j3-j1-m2+t)*fact(j1+j2-j3-t)*fact(j1-m1-t)*fact(j2+m2-t))
|
||||
|
||||
three_j_sym *= t_sum
|
||||
return three_j_sym
|
||||
|
||||
# Clebsch-Gordan coefficients
|
||||
# < j1 m1 j2 m2 | j3 m3 > = (-1)^{j1-j2+m3} \sqrt{2j3+1} ((j1 m1) (j2 m2) (j3 -m3))
|
||||
def clebsch_gordan(jm1, jm2, jm3):
|
||||
r"""
|
||||
Calculate the Clebsh-Gordan coefficient
|
||||
|
||||
.. math::
|
||||
\langle j_1 m_1 j_2 m_2 | j_3 m_3 \rangle = (-1)^{j_1-j_2+m_3} \sqrt{2 j_3 + 1}
|
||||
\begin{pmatrix}
|
||||
j_1 & j_2 & j_3\\
|
||||
m_1 & m_2 & -m_3
|
||||
\end{pmatrix}.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
jm1 : tuple of integers
|
||||
(j_1 m_1)
|
||||
jm2 : tuple of integers
|
||||
(j_2 m_2)
|
||||
jm3 : tuple of integers
|
||||
(j_3 m_3)
|
||||
|
||||
Returns
|
||||
-------
|
||||
cgcoeff : scalar
|
||||
Clebsh-Gordan coefficient.
|
||||
|
||||
"""
|
||||
norm = sqrt(2*jm3[0]+1)*(-1 if jm1[0]-jm2[0]+jm3[1] % 2 else 1)
|
||||
return norm*three_j_symbol(jm1,jm2,(jm3[0],-jm3[1]))
|
||||
|
||||
# Create subarray containing columns in idxlist
|
||||
# e.g. idxlist = [(0),(2,3),(0,1,2,3)] gives
|
||||
# column 0 for 1st dim,
|
||||
# columns 2 and 3 for 2nd dim,
|
||||
# columns 0,1,2 and 3 for 3rd dim.
|
||||
def subarray(a,idxlist,n=None) :
|
||||
r"""
|
||||
Extract a subarray from a matrix-like object.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : matrix or array
|
||||
idxlist : list of tuples
|
||||
Columns that need to be extracted for each dimension.
|
||||
|
||||
Returns
|
||||
-------
|
||||
subarray : matrix or array
|
||||
|
||||
Examples
|
||||
--------
|
||||
idxlist = [(0),(2,3),(0,1,2,3)] gives
|
||||
|
||||
- column 0 for 1st dim,
|
||||
- columns 2 and 3 for 2nd dim,
|
||||
- columns 0, 1, 2 and 3 for 3rd dim.
|
||||
|
||||
"""
|
||||
if n is None: n = len(a.shape)-1
|
||||
sa = a[tuple(slice(x) for x in a.shape[:n]) + (idxlist[n],)]
|
||||
return subarray(sa,idxlist, n-1) if n > 0 else sa
|
@ -23,11 +23,6 @@
|
||||
from sumk_dft import SumkDFT
|
||||
from symmetry import Symmetry
|
||||
from sumk_dft_tools import SumkDFTTools
|
||||
from U_matrix import *
|
||||
from converters import *
|
||||
|
||||
__all__=['SumkDFT','Symmetry','SumkDFTTools','Wien2kConverter','HkConverter',
|
||||
'U_J_to_radial_integrals', 'U_matrix', 'U_matrix_kanamori',
|
||||
'angular_matrix_element', 'clebsch_gordan', 'cubic_names', 'eg_submatrix',
|
||||
'reduce_4index_to_2index', 'spherical_to_cubic', 't2g_submatrix',
|
||||
'three_j_symbol', 'transform_U_matrix']
|
||||
__all__=['SumkDFT','Symmetry','SumkDFTTools','Wien2kConverter','HkConverter']
|
||||
|
@ -347,7 +347,7 @@ class SumkDFT:
|
||||
Parameters
|
||||
----------
|
||||
ish : integer
|
||||
Shell index of GF to be upfolded.
|
||||
Shell index of GF to be rotated.
|
||||
|
||||
- if shells='corr': ish labels all correlated shells (equivalent or not)
|
||||
- if shells='all': ish labels only representative (inequivalent) non-correlated shells
|
||||
|
@ -6,6 +6,4 @@ triqs_add_test_hdf(wien2k_convert " -p 1.e-6" )
|
||||
triqs_add_test_hdf(hk_convert " -p 1.e-6" )
|
||||
triqs_add_test_hdf(sumkdft_basic " -d 1.e-6" )
|
||||
triqs_add_test_hdf(srvo3_Gloc " -d 1.e-6" )
|
||||
triqs_add_test_hdf(U_mat " -d 1.e-6" )
|
||||
triqs_add_test_hdf(srvo3_transp " -d 1.e-6" )
|
||||
|
||||
|
Binary file not shown.
@ -1,36 +0,0 @@
|
||||
################################################################################
|
||||
#
|
||||
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
#
|
||||
# Copyright (C) 2011 by M. Aichhorn, L. Pourovskii, V. Vildosola
|
||||
#
|
||||
# TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
# terms of the GNU General Public License as published by the Free Software
|
||||
# Foundation, either version 3 of the License, or (at your option) any later
|
||||
# version.
|
||||
#
|
||||
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
# details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along with
|
||||
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
################################################################################
|
||||
|
||||
from pytriqs.archive import *
|
||||
import numpy
|
||||
from pytriqs.applications.dft.U_matrix import *
|
||||
|
||||
U_sph = U_matrix(l=2, U_int=2.0, J_hund=0.5)
|
||||
U_cubic = transform_U_matrix(U_sph,spherical_to_cubic(l=2))
|
||||
U,Up = reduce_4index_to_2index(U_cubic)
|
||||
|
||||
ar = HDFArchive('U_mat.output.h5')
|
||||
ar['Ufull_sph'] = U_sph
|
||||
ar['Ufull_cubic'] = U_cubic
|
||||
ar['U'] = U
|
||||
ar['Up'] = Up
|
||||
|
||||
del ar
|
@ -23,7 +23,7 @@ from pytriqs.archive import *
|
||||
from pytriqs.gf.local import *
|
||||
from pytriqs.applications.dft.sumk_dft import *
|
||||
from pytriqs.applications.dft.converters.wien2k_converter import *
|
||||
from pytriqs.operators.hamiltonians import set_operator_structure
|
||||
from pytriqs.operators.util import set_operator_structure
|
||||
|
||||
# Basic input parameters
|
||||
beta = 40
|
||||
|
Loading…
Reference in New Issue
Block a user