mirror of
https://github.com/triqs/dft_tools
synced 2024-12-21 20:03:41 +01:00
Merge branch 'master' into vasp
Conflicts: doc/guide/dftdmft_selfcons.rst python/CMakeLists.txt python/converters/__init__.py python/sumk_dft.py test/CMakeLists.txt
This commit is contained in:
commit
8378013faa
@ -14,14 +14,16 @@ Olivier Parcollet (CEA Saclay). A first step has been the definition of the
|
||||
framework and the construction of the projective Wannier functions as input for
|
||||
the DMFT calculations [#dft_tools1]_. This has been followed by the introduction
|
||||
of full charge self-consistency [#dft_tools2]_, necessary for total energy
|
||||
calculations.
|
||||
calculations. The package at hand is fully implemented as an application
|
||||
based on the TRIQS library [#dft_tools3]_.
|
||||
|
||||
**Developers**: M. Aichhorn, L. Pourovskii, V. Vildosola, C. Martins, P. Seth, M. Zingl
|
||||
**Developers**: M. Aichhorn, L. Pourovskii, P.Seth, V. Vildosola, M. Zingl, O. E. Peil, X. Deng, J. Mravlje, G. Kraberger, C. Martins, M. Ferrero, O. Parcollet
|
||||
|
||||
**Related papers**:
|
||||
|
||||
.. [#dft_tools1] `M. Aichhorn, L. Pourovskii, V. Vildosola, M. Ferrero, O. Parcollet, T. Miyake, A. Georges, and S. Biermann, Phys. Rev. B 80, 085101 (2009) <http://link.aps.org/doi/10.1103/PhysRevB.80.085101>`_ (:download:`bibtex file <dft_tools1.bib>`)
|
||||
.. [#dft_tools2] `M. Aichhorn, L. Pourovskii, and A. Georges, Phys. Rev. B 84, 054529 (2011) <http://link.aps.org/doi/10.1103/PhysRevB.84.054529>`_ (:download:`bibtex file <dft_tools2.bib>`)
|
||||
.. [#dft_tools3] `M. Aichhorn, L. Pourovskii, P.Seth, V. Vildosola, M. Zingl, O. E. Peil, X. Deng, J. Marvlje, G. Kraberger, C. Martins, M. Ferrero, and O. Parcollet, Commt. Phys. Commun. 204, 200 (2016) <http://www.sciencedirect.com/science/article/pii/S0010465516300728>`_ (:download:`bibtex file <dft_tools3.bib>`)
|
||||
|
||||
This application is a part of our scientific work and we would appreciate if
|
||||
projects using it will include a citation to the above relevant papers. In
|
||||
|
@ -1,3 +1,5 @@
|
||||
.. _dftplusdmft:
|
||||
|
||||
Introduction to DFT+DMFT
|
||||
========================
|
||||
|
||||
@ -8,7 +10,7 @@ terms it states that electrons in a crystal form bands of allowed
|
||||
states in momentum space. These states are then filled by the
|
||||
electrons according to Pauli's principle up the Fermi level. With this
|
||||
simple picture one can explain the electronic band structure of simple
|
||||
materials such as elementary copper or aluminium.
|
||||
materials such as elementary copper or aluminum.
|
||||
|
||||
Following this principle one can easily classify all existing
|
||||
materials into metals and insulators, with semiconductors being
|
||||
@ -17,9 +19,8 @@ spectrum. Following this band theory, a system is a metal if there is
|
||||
an odd number of electrons in the valence bands, since this leads to a
|
||||
partially filled band, cutting the Fermi energy and, thus, producing a
|
||||
Fermi surface, i.e metallic behavior. On the other hand, an even
|
||||
number of electrons leads to
|
||||
completely filled bands with a finite excitation gap to the conduction
|
||||
bands, i.e. insulating behavior.
|
||||
number of electrons leads to completely filled bands with a finite
|
||||
excitation gap to the conduction bands, i.e. insulating behavior.
|
||||
|
||||
This classification works pretty well for a large class of
|
||||
materials, where the electronic band structures are reproduced by
|
||||
@ -41,7 +42,7 @@ current
|
||||
because of the strong Coulomb repulsion between the electrons. With
|
||||
reference to Sir Nevill Mott, who contributed substantially to the
|
||||
explanation of this effect in the 1930's, these materials are in
|
||||
general reffered to as Mott insulators.
|
||||
general referred to as Mott insulators.
|
||||
|
||||
Density-functional theory in a (very small) nutshell
|
||||
----------------------------------------------------
|
||||
@ -63,7 +64,7 @@ that is discussed in the literature on DFT, let us just note that the
|
||||
main result of DFT calculations are the Kohn-Sham energies
|
||||
:math:`\varepsilon_{\nu\mathbf{k}}` and the Kohn-Sham orbitals :math:`\psi_{\nu\mathbf{k}}(\mathbf{r})`.
|
||||
This set of equations is exact, however, the exchange correlation
|
||||
potential :math:`V_{xc}(\mathbf{r})` is not known explicitely. In
|
||||
potential :math:`V_{xc}(\mathbf{r})` is not known explicitly. In
|
||||
order to do actual calculations, it needs to be approximated in some
|
||||
way. The local density approximation is one of the most famous
|
||||
approximations used in this context. This approximation works well for
|
||||
@ -75,7 +76,7 @@ From DFT to DMFT
|
||||
|
||||
In order to extend our calculations to strong correlations, we need to
|
||||
go from a description by bands to a description in terms of
|
||||
(localised) orbitals: Wannier functions.
|
||||
(localized) orbitals: Wannier functions.
|
||||
|
||||
In principle, Wannier functions :math:`\chi_{\mu\sigma}(\mathbf{r})`
|
||||
are nothing else than a Fourier transform of the Bloch basis set from
|
||||
@ -88,7 +89,7 @@ where we introduced also the spin degree of freedom :math:`\sigma`. The
|
||||
unitary matrix :math:`U_{\mu\nu}` is not uniquely defined, but allows for a
|
||||
certain amount of freedom in the calculation of Wannier function. A
|
||||
very popular choice is the constraint that the resulting Wannier
|
||||
functions should be maximally localised in space. Another route,
|
||||
functions should be maximally localized in space. Another route,
|
||||
computationally much lighter and more stable, are projective Wannier
|
||||
functions. This scheme is used for the Wien2k interface in this
|
||||
package.
|
||||
@ -98,7 +99,7 @@ A central quantity in this scheme is the projection operator
|
||||
:math:`\nu` a Bloch band index.
|
||||
Its definition and how it is calculated can be found in the original
|
||||
literature or in the extensive documentation of the
|
||||
:program:`dmftproj` program shipped with :program:`dft_tools`.
|
||||
:program:`dmftproj` program shipped with :program:`DFTTools`.
|
||||
|
||||
Using projective Wannier functions for DMFT
|
||||
-------------------------------------------
|
||||
@ -121,7 +122,7 @@ with the DFT Green function
|
||||
|
||||
This non-interacting Green function :math:`G^0_{mn}(i\omega)` defines,
|
||||
together with the interaction Hamiltonian, the Anderson impurity
|
||||
model. The DMFT self-consitency cycle can now be formulated as
|
||||
model. The DMFT self-consistency cycle can now be formulated as
|
||||
follows:
|
||||
|
||||
#. Take :math:`G^0_{mn}(i\omega)` and the interaction Hamiltonian and
|
||||
@ -173,9 +174,9 @@ Full charge self-consistency
|
||||
|
||||
The feedback of the electronic correlations to the Kohn-Sham orbitals
|
||||
is included by the interacting density matrix. With going into the
|
||||
details, it basically consists of calculating the Kohn Sham density
|
||||
details, it basically consists of calculating the Kohn-Sham density
|
||||
:math:`\rho(\mathbf{r})` in the presence of this interacting density
|
||||
matrix. This new density now defines a new Kohn Sham
|
||||
matrix. This new density now defines a new Kohn-Sham
|
||||
exchange-correlation potential, which in turn leads to new
|
||||
:math:`\varepsilon_{\nu\mathbf{k}}`,
|
||||
:math:`\psi_{\nu\mathbf{k}}(\mathbf{r})`, and projectors
|
||||
@ -186,4 +187,4 @@ step 3, before the local lattice Green
|
||||
function is downfolded again into orbital space.
|
||||
|
||||
How all these calculations can be done in practice with this
|
||||
:program:`dft_tools` package is subject of the user guide in this documentation.
|
||||
:program:`DFTTools` package is subject of the user guide in this documentation.
|
||||
|
72
doc/basicnotions/first.rst
Normal file
72
doc/basicnotions/first.rst
Normal file
@ -0,0 +1,72 @@
|
||||
What you should know
|
||||
====================
|
||||
|
||||
Probably, you can hardly wait to perform your first DFT+DMFT calculation
|
||||
with the :program:`DFTTools` package. This documentation and user guide
|
||||
should make it as easy as possible to get started quickly.
|
||||
However, it is mutually important to sort out a few prerequisites first.
|
||||
|
||||
What is :program:`DFTTools`?
|
||||
----------------------------
|
||||
|
||||
:program:`DFTTools` connects the :ref:`TRIQS <triqslibs:welcome>` library
|
||||
to realistic materials calculations based
|
||||
on density functional theory (DFT). It allows an efficient implementation
|
||||
of DFT plus dynamical mean-field theory (DMFT) calculations and it supplies
|
||||
tools and methods to construct Wannier functions and to perform the
|
||||
DMFT self-consistency cycle in this basis set. Post-processing tools,
|
||||
such as band-structure plotting or the calculation of transport properties
|
||||
are also implemented. The package comes with a fully charge self-consistent
|
||||
interface to the Wien2k band structure code, as well as a generic interface.
|
||||
We assume that you are already know about DFT and the usage of Wien2k.
|
||||
|
||||
Have a look at :ref:`DFT+DMFT page <dftplusdmft>` for a brief introduction on
|
||||
the DFT+DMFT method and on how the theory is reflected in the
|
||||
:ref:`basic structure <structure>` of the :program:`DFTTools` package.
|
||||
|
||||
|
||||
Understand the philosophy of :program:`DFTTools`
|
||||
------------------------------------------------
|
||||
|
||||
The purpose of :program:`DFTTools` is to provide the necessary tools
|
||||
required for a DFT+DMFT calculations. Putting those tools together to a working
|
||||
DFT+DMFT implementation is the task of the user. We do not
|
||||
supply an universal script which runs with the click of a button, simply because
|
||||
each material requires a different treatment or different settings.
|
||||
Building your own script offers a great deal of flexibility and customizability.
|
||||
Additionally, the :ref:`DFTTools user guide <documentation>` is there to support you
|
||||
during this process.
|
||||
|
||||
It should go without saying, but the verification of outputs and the inspection
|
||||
of results on their meaningfulness is the responsibility of the user.
|
||||
|
||||
The :program:`DFTTools` package is a toolbox and **not** a black box!
|
||||
|
||||
|
||||
Learn how to use :ref:`TRIQS <triqslibs:welcome>` (and the :ref:`CTHYB <triqscthyb:welcome>` solver)
|
||||
----------------------------------------------------------------------------------------------------
|
||||
|
||||
As :program:`DFTTools` is a :ref:`TRIQS <triqslibs:welcome>` based application
|
||||
it is beneficial to invest a few hours to become familiar with
|
||||
the :ref:`TRIQS <triqslibs:welcome>` basics first. The
|
||||
:ref:`TRIQS tutorial <triqslibs:tutorials>` covers
|
||||
the most important aspects of :ref:`TRIQS <triqslibs:welcome>`. We recommend
|
||||
downloading our hands-on training in the form of ipython notebooks from
|
||||
the `tutorials repository on GitHub <https://github.com/TRIQS/tutorials>`_.
|
||||
Tutorials 1 to 6 are on the :ref:`TRIQS <triqslibs:welcome>` library, whereas tutorials
|
||||
7 and 8 are more specific to the usage of the :ref:`CTHYB <triqscthyb:welcome>`
|
||||
hybridization-expansion solver. In general, those tutorials will take at least a full day to finish.
|
||||
|
||||
Afterwards you can continue with the :ref:`DFTTools user guide <documentation>`.
|
||||
|
||||
|
||||
Maximum Entropy (MaxEnt)
|
||||
------------------------
|
||||
|
||||
Analytic continuation is needed for many :ref:`post-processing tools <analysis>`, e.g. to
|
||||
calculate the spectral function, the correlated band structure (:math:`A(k,\omega)`)
|
||||
and to perform :ref:`transport calculations <Transport>`.
|
||||
You can use the Pade approximation available in the :ref:`TRIQS <triqslibs:welcome>` library, however,
|
||||
it turns out to be very unstable for noisy numerical data. Most of the time, the MaxEnt method
|
||||
is used to obtain data on the real-frequency axis. At the moment neither :ref:`TRIQS <triqslibs:welcome>` nor
|
||||
:program:`DFTTools` provide such routines.
|
@ -1,18 +1,21 @@
|
||||
Structure of DFT Tools
|
||||
======================
|
||||
.. _structure:
|
||||
|
||||
Structure of :program:`DFTTools`
|
||||
================================
|
||||
|
||||
.. image:: images/structure.png
|
||||
:width: 700
|
||||
:align: center
|
||||
|
||||
The central part of :program:`dft_tools`, which is performing the
|
||||
The central part of :program:`DFTTools`, which is performing the
|
||||
steps for the DMFT self-consistency cycle, is written following the
|
||||
same philosophy as the :ref:`TRIQS <triqslibs:welcome>` toolbox. At
|
||||
the user level, easy-to-use python modules are provided that allow to
|
||||
write simple and short scripts performing the actual
|
||||
calculation. Here, we will describe the general structure of the
|
||||
package, for the details of how to use the modules, please consult the
|
||||
user guide of this :ref:`documentation`.
|
||||
write simple and short scripts performing the actual calculation.
|
||||
The usage of those modules is presented in the user guide of this
|
||||
:ref:`documentation`. Before considering the user guide, we suggest
|
||||
to read the following introduction on the general structure of
|
||||
the :program:`DFTTools` package.
|
||||
|
||||
The interface layer
|
||||
-------------------
|
||||
@ -30,37 +33,37 @@ Wien2k interface
|
||||
""""""""""""""""
|
||||
|
||||
This interface layer consists of two parts. First, the output from Wien2k
|
||||
is taken, and localised Wannier orbitals are constructed. This is done
|
||||
by the fortran program :program:`dmftproj`. The second part consist in
|
||||
is taken, and localized Wannier orbitals are constructed. This is done
|
||||
by the FORTRAN program :program:`dmftproj`. The second part consist in
|
||||
the conversion of the :program:`dmftproj` into the hdf5 file
|
||||
format to be used for the DMFT calculation. This step is done by a
|
||||
python routine called :class:`Wien2kConverter`, that reads the text output and
|
||||
creates the hdf5 input file with the necessary ingredients. Quite
|
||||
naturally, :program:`dft_tools` will adopt this converter concept also for future
|
||||
naturally, :program:`DFTTools` will adopt this converter concept also for future
|
||||
developments for other DFT packages.
|
||||
|
||||
General interface
|
||||
"""""""""""""""""
|
||||
|
||||
In addition to the specialised Wien2k interface, :program:`dft_tools`
|
||||
In addition to the specialized Wien2k interface, :program:`DFTTools`
|
||||
provides also a very light-weight general interface. It basically
|
||||
consists of a very simple :class:`HkConverter`. As input it requires a
|
||||
hamiltonian matrix :math:`H_{mn}(\mathbf{k})` written already in
|
||||
localised-orbital indices :math:`m,n`, on a :math:`\mathbf{k}`-point
|
||||
Hamiltonian matrix :math:`H_{mn}(\mathbf{k})` written already in
|
||||
localized-orbital indices :math:`m,n`, on a :math:`\mathbf{k}`-point
|
||||
grid covering the Brillouin zone, and just a few other informations
|
||||
like total numer of electrons, how many correlated atoms in the unit
|
||||
cell, and so on. It converts this hamiltonian into a hdf5 format and
|
||||
like total number of electrons, how many correlated atoms in the unit
|
||||
cell, and so on. It converts this Hamiltonian into a hdf5 format and
|
||||
sets some variables to standard values, such that it can be used with
|
||||
the python modules performing the DMFT calculation. How the
|
||||
hamiltonian matrix :math:`H_{mn}(\mathbf{k})` is actually calculated,
|
||||
is **not** part of this interace.
|
||||
Hamiltonian matrix :math:`H_{mn}(\mathbf{k})` is actually calculated,
|
||||
is **not** part of this interface.
|
||||
|
||||
The DMFT calculation
|
||||
--------------------
|
||||
|
||||
As mentioned above, there are a few python routines that allow to
|
||||
perform the multi-band DMFT calculation in the context of real
|
||||
materials. The major part is contained inte module
|
||||
materials. The major part is contained in the module
|
||||
:class:`SumkDFT`. It contains routines to
|
||||
|
||||
* calculate local Greens functions
|
||||
@ -69,7 +72,7 @@ materials. The major part is contained inte module
|
||||
* calculate the double-counting correction
|
||||
* calculate the chemical potential in order to get the electron count right
|
||||
* other things like determining the structure of the local
|
||||
hamiltonian, rotating from local to global coordinate systems, etc.
|
||||
Hamiltonian, rotating from local to global coordinate systems, etc.
|
||||
|
||||
At the user level, all these routines can be used to construct
|
||||
situation- and problem-dependent DMFT calculations in a very efficient
|
||||
@ -90,8 +93,8 @@ Post-processing
|
||||
|
||||
The main result of DMFT calculation is the interacting Greens function
|
||||
and the Self energy. However, one is normally interested in
|
||||
quantitites like band structure, density of states, or transport
|
||||
properties. In order to calculate these things, :program:`dft_tools`
|
||||
quantities like band structure, density of states, or transport
|
||||
properties. In order to calculate these things, :program:`DFTTools`
|
||||
provides the post-processing modules :class:`SumkDFTTools`. It
|
||||
contains routines to calculate
|
||||
|
||||
@ -102,11 +105,8 @@ contains routines to calculate
|
||||
or thermopower.
|
||||
|
||||
.. warning::
|
||||
At the moment neither :ref:`TRIQS<triqslibs:welcome>` nor :program:`dft_tools`
|
||||
At the moment neither :ref:`TRIQS<triqslibs:welcome>` nor :program:`DFTTools`
|
||||
provides Maximum Entropy routines! You can use the Pade
|
||||
approximants implemented in the TRIQS library, or you use your own
|
||||
approximation implemented in the :ref:`TRIQS <triqslibs:welcome>` library, or you use your own
|
||||
home-made Maximum Entropy code to do the analytic continuation from
|
||||
Matsubara to the real-frequency axis.
|
||||
|
||||
|
||||
|
||||
|
@ -17,7 +17,7 @@ extensions = ['sphinx.ext.autodoc',
|
||||
|
||||
source_suffix = '.rst'
|
||||
|
||||
project = u'TRIQS_DFT Tools'
|
||||
project = u'TRIQS DFTTools'
|
||||
copyright = u'2011-2013, M. Aichhorn, L. Pourovskii, V. Vildosola, C. Martins'
|
||||
version = '@DFT_TOOLS_VERSION@'
|
||||
release = '@DFT_TOOLS_RELEASE@'
|
||||
@ -28,16 +28,15 @@ templates_path = ['@CMAKE_SOURCE_DIR@/doc/_templates']
|
||||
html_theme = 'triqs'
|
||||
html_theme_path = ['@TRIQS_THEMES_PATH@']
|
||||
html_show_sphinx = False
|
||||
html_context = {'header_title': 'dft_tools',
|
||||
'header_subtitle': 'connecting <a class="triqs" style="font-size: 12px" href="http://ipht.cea.fr/triqs">TRIQS</a> to DFT packages',
|
||||
html_context = {'header_title': 'dft tools',
|
||||
'header_subtitle': 'connecting <a class="triqs" style="font-size: 12px" href="http://triqs.ipht.cnrs.fr/1.x">TRIQS</a> to DFT packages',
|
||||
'header_links': [['Install', 'install'],
|
||||
['Documentation', 'documentation'],
|
||||
['Issues', 'issues'],
|
||||
['About dft_tools', 'about']]}
|
||||
['About DFTTools', 'about']]}
|
||||
html_static_path = ['@CMAKE_SOURCE_DIR@/doc/_static']
|
||||
html_sidebars = {'index': ['sideb.html', 'searchbox.html']}
|
||||
|
||||
htmlhelp_basename = 'TRIQSDftToolsdoc'
|
||||
|
||||
intersphinx_mapping = {'python': ('http://docs.python.org/2.7', None), 'triqslibs': ('http://ipht.cea.fr/triqs', None),
|
||||
'triqscthyb': ('http://ipht.cea.fr/triqs/applications/cthyb', None)}
|
||||
intersphinx_mapping = {'python': ('http://docs.python.org/2.7', None), 'triqslibs': ('http://triqs.ipht.cnrs.fr/1.x', None), 'triqscthyb': ('https://triqs.ipht.cnrs.fr/1.x/applications/cthyb/', None)}
|
||||
|
13
doc/dft_tools3.bib
Normal file
13
doc/dft_tools3.bib
Normal file
@ -0,0 +1,13 @@
|
||||
@Article{TRIQS/DFTTools,
|
||||
title = "TRIQS/DFTTools: A \{TRIQS\} application for ab initio calculations of correlated materials ",
|
||||
journal = "Computer Physics Communications ",
|
||||
volume = "204",
|
||||
number = "",
|
||||
pages = "200 - 208",
|
||||
year = "2016",
|
||||
note = "",
|
||||
issn = "0010-4655",
|
||||
doi = "http://dx.doi.org/10.1016/j.cpc.2016.03.014",
|
||||
url = "http://www.sciencedirect.com/science/article/pii/S0010465516300728",
|
||||
author = "Markus Aichhorn and Leonid Pourovskii and Priyanka Seth and Veronica Vildosola and Manuel Zingl and Oleg E. Peil and Xiaoyu Deng and Jernej Mravlje and Gernot J. Kraberger and Cyril Martins and Michel Ferrero and Olivier Parcollet",
|
||||
}
|
@ -1,4 +1,4 @@
|
||||
.. module:: pytriqs.applications.dft_tools
|
||||
.. module:: pytriqs.applications.dft
|
||||
|
||||
.. _documentation:
|
||||
|
||||
@ -11,6 +11,7 @@ Basic notions
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
|
||||
basicnotions/first
|
||||
basicnotions/dft_dmft
|
||||
basicnotions/structure
|
||||
|
||||
@ -23,6 +24,7 @@ User guide
|
||||
|
||||
guide/conversion
|
||||
guide/dftdmft_singleshot
|
||||
guide/SrVO3
|
||||
guide/dftdmft_selfcons
|
||||
guide/analysis
|
||||
guide/full_tutorial
|
||||
@ -43,6 +45,7 @@ This is the reference manual for the python routines.
|
||||
reference/sumk_dft_tools
|
||||
reference/symmetry
|
||||
reference/transbasis
|
||||
reference/block_structure
|
||||
|
||||
|
||||
FAQs
|
||||
|
224
doc/guide/SrVO3.rst
Normal file
224
doc/guide/SrVO3.rst
Normal file
@ -0,0 +1,224 @@
|
||||
.. _SrVO3:
|
||||
|
||||
SrVO3 (single-shot)
|
||||
===================
|
||||
|
||||
We will discuss now how to set up a full working calculation,
|
||||
including the initialization of the :ref:`CTHYB solver <triqscthyb:welcome>`.
|
||||
Some additional parameter are introduced to make the calculation
|
||||
more efficient. This is a more advanced example, which is
|
||||
also suited for parallel execution. The conversion, which
|
||||
we assume to be carried out already, is discussed :ref:`here <conversion>`.
|
||||
|
||||
For the convenience of the user, we provide also two
|
||||
working python scripts in this documentation. One for a calculation
|
||||
using Kanamori definitions (:download:`dft_dmft_cthyb.py
|
||||
<images_scripts/dft_dmft_cthyb.py>`) and one with a
|
||||
rotational-invariant Slater interaction Hamiltonian (:download:`dft_dmft_cthyb_slater.py
|
||||
<images_scripts/dft_dmft_cthyb.py>`). The user has to adapt these
|
||||
scripts to his own needs.
|
||||
|
||||
Loading modules
|
||||
---------------
|
||||
|
||||
First, we load the necessary modules::
|
||||
|
||||
from pytriqs.applications.dft.sumk_dft import *
|
||||
from pytriqs.gf.local import *
|
||||
from pytriqs.archive import HDFArchive
|
||||
from pytriqs.operators.util import *
|
||||
from pytriqs.applications.impurity_solvers.cthyb import *
|
||||
|
||||
The last two lines load the modules for the construction of the
|
||||
:ref:`CTHYB solver <triqscthyb:welcome>`.
|
||||
|
||||
Initializing SumkDFT
|
||||
--------------------
|
||||
|
||||
We define some parameters, which should be self-explanatory::
|
||||
|
||||
dft_filename = 'SrVO3' # filename
|
||||
U = 4.0 # interaction parameters
|
||||
J = 0.65
|
||||
beta = 40 # inverse temperature
|
||||
loops = 15 # number of DMFT loops
|
||||
mix = 0.8 # mixing factor of Sigma after solution of the AIM
|
||||
dc_type = 1 # DC type: 0 FLL, 1 Held, 2 AMF
|
||||
use_blocks = True # use bloc structure from DFT input
|
||||
prec_mu = 0.0001 # precision of chemical potential
|
||||
|
||||
|
||||
And next, we can initialize the :class:`SumkDFT <dft.sumk_dft.SumkDFT>` class::
|
||||
|
||||
SK = SumkDFT(hdf_file=dft_filename+'.h5',use_dft_blocks=use_blocks)
|
||||
|
||||
Initializing the solver
|
||||
-----------------------
|
||||
|
||||
We also have to specify the :ref:`CTHYB solver <triqscthyb:welcome>` related settings.
|
||||
We assume that the DMFT script for SrVO3 is executed on 16 cores. A sufficient set
|
||||
of parameters for a first guess is::
|
||||
|
||||
p = {}
|
||||
# solver
|
||||
p["random_seed"] = 123 * mpi.rank + 567
|
||||
p["length_cycle"] = 200
|
||||
p["n_warmup_cycles"] = 100000
|
||||
p["n_cycles"] = 1000000
|
||||
# tail fit
|
||||
p["perform_tail_fit"] = True
|
||||
p["fit_max_moment"] = 4
|
||||
p["fit_min_n"] = 30
|
||||
p["fit_max_n"] = 60
|
||||
|
||||
Here we use a tail fit to deal with numerical noise of higher Matsubara frequencies.
|
||||
For other options and more details on the solver parameters, we refer the user to
|
||||
the :ref:`CTHYB solver <triqscthyb:welcome>` documentation.
|
||||
It is important to note that the solver parameters have to be adjusted for
|
||||
each material individually. A guide on how to set the tail fit parameters is given
|
||||
:ref:`below <tailfit>`.
|
||||
|
||||
|
||||
The next step is to initialize the
|
||||
:class:`solver class <pytriqs.applications.impurity_solvers.cthyb.Solver>`.
|
||||
It consist of two parts:
|
||||
|
||||
#. Calculating the multi-band interaction matrix, and constructing the
|
||||
interaction Hamiltonian.
|
||||
#. Initializing the solver class itself.
|
||||
|
||||
The first step is done using methods of the :ref:`TRIQS <triqslibs:welcome>` library::
|
||||
|
||||
n_orb = SK.corr_shells[0]['dim']
|
||||
l = SK.corr_shells[0]['l']
|
||||
spin_names = ["up","down"]
|
||||
orb_names = [i for i in range(n_orb)]
|
||||
# Use GF structure determined by DFT blocks:
|
||||
gf_struct = SK.gf_struct_solver[0]
|
||||
# Construct U matrix for density-density calculations:
|
||||
Umat, Upmat = U_matrix_kanamori(n_orb=n_orb, U_int=U, J_hund=J)
|
||||
|
||||
We assumed here that we want to use an interaction matrix with
|
||||
Kanamori definitions of :math:`U` and :math:`J`.
|
||||
|
||||
Next, we construct the Hamiltonian and the solver::
|
||||
|
||||
h_int = h_int_density(spin_names, orb_names, map_operator_structure=SK.sumk_to_solver[0], U=Umat, Uprime=Upmat)
|
||||
S = Solver(beta=beta, gf_struct=gf_struct)
|
||||
|
||||
As you see, we take only density-density interactions into
|
||||
account. Other Hamiltonians with, e.g. with full rotational invariant interactions are:
|
||||
|
||||
* h_int_kanamori
|
||||
* h_int_slater
|
||||
|
||||
For other choices of the interaction matrices (e.g Slater representation) or
|
||||
Hamiltonians, we refer to the reference manual of the :ref:`TRIQS <triqslibs:welcome>`
|
||||
library.
|
||||
|
||||
DMFT cycle
|
||||
----------
|
||||
|
||||
Now we can go to the definition of the self-consistency step. It consists again
|
||||
of the basic steps discussed in the :ref:`previous section <singleshot>`, with
|
||||
some additional refinements::
|
||||
|
||||
for iteration_number in range(1,loops+1):
|
||||
if mpi.is_master_node(): print "Iteration = ", iteration_number
|
||||
|
||||
SK.symm_deg_gf(S.Sigma_iw,orb=0) # symmetrizing Sigma
|
||||
SK.set_Sigma([ S.Sigma_iw ]) # put Sigma into the SumK class
|
||||
chemical_potential = SK.calc_mu( precision = prec_mu ) # find the chemical potential for given density
|
||||
S.G_iw << SK.extract_G_loc()[0] # calc the local Green function
|
||||
mpi.report("Total charge of Gloc : %.6f"%S.G_iw.total_density())
|
||||
|
||||
# Init the DC term and the real part of Sigma, if no previous runs found:
|
||||
if (iteration_number==1 and previous_present==False):
|
||||
dm = S.G_iw.density()
|
||||
SK.calc_dc(dm, U_interact = U, J_hund = J, orb = 0, use_dc_formula = dc_type)
|
||||
S.Sigma_iw << SK.dc_imp[0]['up'][0,0]
|
||||
|
||||
# Calculate new G0_iw to input into the solver:
|
||||
S.G0_iw << S.Sigma_iw + inverse(S.G_iw)
|
||||
S.G0_iw << inverse(S.G0_iw)
|
||||
|
||||
# Solve the impurity problem:
|
||||
S.solve(h_int=h_int, **p)
|
||||
|
||||
# Solved. Now do post-solution stuff:
|
||||
mpi.report("Total charge of impurity problem : %.6f"%S.G_iw.total_density())
|
||||
|
||||
# Now mix Sigma and G with factor mix, if wanted:
|
||||
if (iteration_number>1 or previous_present):
|
||||
if mpi.is_master_node():
|
||||
ar = HDFArchive(dft_filename+'.h5','a')
|
||||
mpi.report("Mixing Sigma and G with factor %s"%mix)
|
||||
S.Sigma_iw << mix * S.Sigma_iw + (1.0-mix) * ar['dmft_output']['Sigma_iw']
|
||||
S.G_iw << mix * S.G_iw + (1.0-mix) * ar['dmft_output']['G_iw']
|
||||
del ar
|
||||
S.G_iw << mpi.bcast(S.G_iw)
|
||||
S.Sigma_iw << mpi.bcast(S.Sigma_iw)
|
||||
|
||||
# Write the final Sigma and G to the hdf5 archive:
|
||||
if mpi.is_master_node():
|
||||
ar = HDFArchive(dft_filename+'.h5','a')
|
||||
ar['dmft_output']['iterations'] = iteration_number
|
||||
ar['dmft_output']['G_0'] = S.G0_iw
|
||||
ar['dmft_output']['G_tau'] = S.G_tau
|
||||
ar['dmft_output']['G_iw'] = S.G_iw
|
||||
ar['dmft_output']['Sigma_iw'] = S.Sigma_iw
|
||||
del ar
|
||||
|
||||
# Set the new double counting:
|
||||
dm = S.G_iw.density() # compute the density matrix of the impurity problem
|
||||
SK.calc_dc(dm, U_interact = U, J_hund = J, orb = 0, use_dc_formula = dc_type)
|
||||
|
||||
# Save stuff into the user_data group of hdf5 archive in case of rerun:
|
||||
SK.save(['chemical_potential','dc_imp','dc_energ'])
|
||||
|
||||
|
||||
This is all we need for the DFT+DMFT calculation.
|
||||
You can see in this code snippet, that all results of this calculation
|
||||
will be stored in a separate subgroup in the hdf5 file, called `dmft_output`.
|
||||
Note that this script performs 15 DMFT cycles, but does not check for
|
||||
convergence. Of course, it would be possible to build in convergence criteria.
|
||||
A simple check for convergence can be also done if you store multiple quantities
|
||||
of each iteration and analyze the convergence by hand. In general, it is advisable
|
||||
to start with a lower statistics (less measurements), but then increase it at a
|
||||
point close to converged results (e.g. after a few initial iterations). This helps
|
||||
to keep computational costs low during the first iterations.
|
||||
|
||||
Using the Kanamori Hamiltonian and the parameters above (but on 16 cores),
|
||||
your self energy after the **first iteration** should look like the
|
||||
self energy shown below.
|
||||
|
||||
.. image:: images_scripts/SrVO3_Sigma_iw_it1.png
|
||||
:width: 700
|
||||
:align: center
|
||||
|
||||
|
||||
.. _tailfit:
|
||||
|
||||
Tail fit parameters
|
||||
-------------------
|
||||
|
||||
A good way to identify suitable tail fit parameters is by "human inspection".
|
||||
Therefore disabled the tail fitting first::
|
||||
|
||||
p["perform_tail_fit"] = False
|
||||
|
||||
and perform only one DMFT iteration. The resulting self energy can be tail fitted by hand::
|
||||
|
||||
for name, sig in S.Sigma_iw:
|
||||
S.Sigma_iw[name].fit_tail(fit_n_moments = 4, fit_min_n = 60, fit_max_n = 140)
|
||||
|
||||
Plot the self energy and adjust the tail fit parameters such that you obtain a
|
||||
proper fit. The :meth:`fit_tail function <pytriqs.gf.local.tools.tail_fit>` is part
|
||||
of the :ref:`TRIQS <triqslibs:welcome>` library.
|
||||
|
||||
For a self energy which is going to zero for :math:`i\omega \rightarrow 0` our suggestion is
|
||||
to start the tail fit (:emphasis:`fit_min_n`) at a Matsubara frequency considerable above the minimum
|
||||
of the self energy and to stop (:emphasis:`fit_max_n`) before the noise fully takes over.
|
||||
If it is difficult to find a reasonable fit in this region you should increase
|
||||
your statistics (number of measurements). Keep in mind that :emphasis:`fit_min_n`
|
||||
and :emphasis:`fit_max_n` also depend on :math:`\beta`.
|
@ -7,13 +7,13 @@ This section explains how to use some tools of the package in order to analyse t
|
||||
|
||||
There are two practical tools for which a self energy on the real axis is not needed, namely:
|
||||
|
||||
* :meth:`dos_wannier_basis <pytriqs.applications.dft.sumk_dft_tools.SumkDFTTools.dos_wannier_basis>` for the density of states of the Wannier orbitals and
|
||||
* :meth:`partial_charges <pytriqs.applications.dft.sumk_dft_tools.SumkDFTTools.partial_charges>` for the partial charges according to the :program:`Wien2k` definition.
|
||||
* :meth:`dos_wannier_basis <dft.sumk_dft_tools.SumkDFTTools.dos_wannier_basis>` for the density of states of the Wannier orbitals and
|
||||
* :meth:`partial_charges <dft.sumk_dft_tools.SumkDFTTools.partial_charges>` for the partial charges according to the :program:`Wien2k` definition.
|
||||
|
||||
However, a real frequency self energy has to be provided by the user for the methods:
|
||||
|
||||
* :meth:`dos_parproj_basis <pytriqs.applications.dft.sumk_dft_tools.SumkDFTTools.dos_parproj_basis>` for the momentum-integrated spectral function including self energy effects and
|
||||
* :meth:`spaghettis <pytriqs.applications.dft.sumk_dft_tools.SumkDFTTools.spaghettis>` for the momentum-resolved spectral function (i.e. ARPES)
|
||||
* :meth:`dos_parproj_basis <dft.sumk_dft_tools.SumkDFTTools.dos_parproj_basis>` for the momentum-integrated spectral function including self energy effects and
|
||||
* :meth:`spaghettis <dft.sumk_dft_tools.SumkDFTTools.spaghettis>` for the momentum-resolved spectral function (i.e. ARPES)
|
||||
|
||||
.. warning::
|
||||
This package does NOT provide an explicit method to do an **analytic continuation** of the
|
||||
@ -24,26 +24,26 @@ However, a real frequency self energy has to be provided by the user for the met
|
||||
Initialisation
|
||||
--------------
|
||||
|
||||
All tools described below are collected in an extension of the :class:`SumkDFT <pytriqs.applications.dft.sumk_dft.SumkDFT>` class and are
|
||||
loaded by importing the module :class:`SumkDFTTools <pytriqs.applications.dft.sumk_dft_tools.SumkDFTTools>`::
|
||||
All tools described below are collected in an extension of the :class:`SumkDFT <dft.sumk_dft.SumkDFT>` class and are
|
||||
loaded by importing the module :class:`SumkDFTTools <dft.sumk_dft_tools.SumkDFTTools>`::
|
||||
|
||||
from pytriqs.applications.dft.sumk_dft_tools import *
|
||||
|
||||
The initialisation of the class is equivalent to that of the :class:`SumkDFT <pytriqs.applications.dft.sumk_dft.SumkDFT>`
|
||||
The initialisation of the class is equivalent to that of the :class:`SumkDFT <dft.sumk_dft.SumkDFT>`
|
||||
class::
|
||||
|
||||
SK = SumkDFTTools(hdf_file = filename + '.h5')
|
||||
|
||||
Note that all routines available in :class:`SumkDFT <pytriqs.applications.dft.sumk_dft.SumkDFT>` are also available here.
|
||||
Note that all routines available in :class:`SumkDFT <dft.sumk_dft.SumkDFT>` are also available here.
|
||||
|
||||
If required, we have to load and initialise the real frequency self energy. Most conveniently,
|
||||
you have your self energy already stored as a real frequency :class:`BlockGf <pytriqs.gf.local.BlockGf>` object
|
||||
If required, we have to load and initialise the real frequency self energy. Most conveniently,
|
||||
you have your self energy already stored as a real frequency :class:`BlockGf <pytriqs.gf.local.BlockGf>` object
|
||||
in a hdf5 file::
|
||||
|
||||
ar = HDFArchive('case.h5', 'a')
|
||||
SigmaReFreq = ar['dmft_output']['Sigma_w']
|
||||
|
||||
You may also have your self energy stored in text files. For this case the :ref:`TRIQS <triqslibs:welcome>` library offers
|
||||
You may also have your self energy stored in text files. For this case the :ref:`TRIQS <triqslibs:welcome>` library offers
|
||||
the function :meth:`read_gf_from_txt`, which is able to load the data from text files of one Greens function block
|
||||
into a real frequency :class:`ReFreqGf <pytriqs.gf.local.ReFreqGf>` object. Loading each block separately and
|
||||
building up a :class:´BlockGf <pytriqs.gf.local.BlockGf>´ is done with::
|
||||
@ -58,18 +58,18 @@ building up a :class:´BlockGf <pytriqs.gf.local.BlockGf>´ is done with::
|
||||
|
||||
where:
|
||||
|
||||
* `block_txtfiles` is a rank 2 square np.array(str) or list[list[str]] holding the file names of one block and
|
||||
* `block_txtfiles` is a rank 2 square np.array(str) or list[list[str]] holding the file names of one block and
|
||||
* `block_name` is the name of the block.
|
||||
|
||||
It is important that each data file has to contain three columns: the real frequency mesh, the real part and the imaginary part
|
||||
of the self energy - exactly in this order! The mesh should be the same for all files read in and non-uniform meshes are not supported.
|
||||
|
||||
Finally, we set the self energy into the `SK` object::
|
||||
|
||||
of the self energy - exactly in this order! The mesh should be the same for all files read in and non-uniform meshes are not supported.
|
||||
|
||||
Finally, we set the self energy into the `SK` object::
|
||||
|
||||
SK.set_Sigma([SigmaReFreq])
|
||||
|
||||
and additionally set the chemical potential and the double counting correction from the DMFT calculation::
|
||||
|
||||
|
||||
chemical_potential, dc_imp, dc_energ = SK.load(['chemical_potential','dc_imp','dc_energ'])
|
||||
SK.set_mu(chemical_potential)
|
||||
SK.set_dc(dc_imp,dc_energ)
|
||||
@ -84,16 +84,16 @@ For plotting the density of states of the Wannier orbitals, you type::
|
||||
|
||||
SK.dos_wannier_basis(broadening=0.03, mesh=[om_min, om_max, n_om], with_Sigma=False, with_dc=False, save_to_file=True)
|
||||
|
||||
which produces plots between the real frequencies `om_min` and `om_max`, using a mesh of `n_om` points. The parameter
|
||||
which produces plots between the real frequencies `om_min` and `om_max`, using a mesh of `n_om` points. The parameter
|
||||
`broadening` defines an additional Lorentzian broadening, and has the default value of `0.01 eV`. To check the Wannier
|
||||
density of states after the projection set `with_Sigma` and `with_dc` to `False`. If `save_to_file` is set to `True`
|
||||
the output is printed into the files
|
||||
|
||||
* `DOS_wannier_(sp).dat`: The total DOS, where `(sp)` stands for `up`, `down`, or combined `ud`. The latter case
|
||||
is relevant for calculations including spin-orbit interaction.
|
||||
* `DOS_wannier_(sp)_proj(i).dat`: The DOS projected to an orbital with index `(i)`. The index `(i)` refers to
|
||||
* `DOS_wannier_(sp)_proj(i).dat`: The DOS projected to an orbital with index `(i)`. The index `(i)` refers to
|
||||
the indices given in ``SK.shells``.
|
||||
* `DOS_wannier_(sp)_proj(i)_(m)_(n).dat`: As above, but printed as orbitally-resolved matrix in indices
|
||||
* `DOS_wannier_(sp)_proj(i)_(m)_(n).dat`: As above, but printed as orbitally-resolved matrix in indices
|
||||
`(m)` and `(n)`. For `d` orbitals, it gives the DOS separately for, e.g., :math:`d_{xy}`, :math:`d_{x^2-y^2}`, and so on,
|
||||
|
||||
otherwise, the output is returned by the function for a further usage in :program:`python`.
|
||||
@ -110,7 +110,7 @@ real frequency self energy for this purpose. The calculation is done by::
|
||||
which calculates the partial charges using the self energy, double counting, and chemical potential as set in the
|
||||
`SK` object. On return, `dm` is a list, where the list items correspond to the density matrices of all shells
|
||||
defined in the list `SK.shells`. This list is constructed by the :program:`Wien2k` converter routines and stored automatically
|
||||
in the hdf5 archive. For the structure of `dm`, see also :meth:`reference manual <pytriqs.applications.dft.sumk_dft_tools.SumkDFTTools.partial_charges>`.
|
||||
in the hdf5 archive. For the structure of `dm`, see also :meth:`reference manual <dft.sumk_dft_tools.SumkDFTTools.partial_charges>`.
|
||||
|
||||
Correlated spectral function (with real frequency self energy)
|
||||
--------------------------------------------------------------
|
||||
@ -129,7 +129,7 @@ Momentum resolved spectral function (with real frequency self energy)
|
||||
|
||||
Another quantity of interest is the momentum-resolved spectral function, which can directly be compared to ARPES
|
||||
experiments. First we have to execute `lapw1`, `lapw2 -almd` and :program:`dmftproj` with the `-band`
|
||||
option and use the :meth:`convert_bands_input <pytriqs.applications.dft.converters.wien2k_converter.Wien2kConverter.convert_bands_input>`
|
||||
option and use the :meth:`convert_bands_input <dft.converters.wien2k_converter.Wien2kConverter.convert_bands_input>`
|
||||
routine, which converts the required files (for a more detailed description see :ref:`conversion`). The spectral function is then calculated by typing::
|
||||
|
||||
SK.spaghettis(broadening=0.01,plot_shift=0.0,plot_range=None,ishell=None,save_to_file='Akw_')
|
||||
|
@ -34,9 +34,9 @@ some files that we need for the Wannier orbital construction.
|
||||
The orbital construction itself is done by the Fortran program
|
||||
:program:`dmftproj`. For an extensive manual to this program see
|
||||
:download:`TutorialDmftproj.pdf <images_scripts/TutorialDmftproj.pdf>`.
|
||||
Here we will only describe only the basic steps.
|
||||
Here we will only describe the basic steps.
|
||||
|
||||
Let us take the example of SrVO3, a commonly used
|
||||
Let us take the compound SrVO3, a commonly used
|
||||
example for DFT+DMFT calculations. The input file for
|
||||
:program:`dmftproj` looks like
|
||||
|
||||
@ -56,9 +56,9 @@ following 3 to 5 lines:
|
||||
harmonics).
|
||||
#. The four numbers refer to *s*, *p*, *d*, and *f* electrons,
|
||||
resp. Putting 0 means doing nothing, putting 1 will calculate
|
||||
**unnormalised** projectors in compliance with the Wien2k
|
||||
**unnormalized** projectors in compliance with the Wien2k
|
||||
definition. The important flag is 2, this means to include these
|
||||
electrons as correlated electrons, and calculate normalised Wannier
|
||||
electrons as correlated electrons, and calculate normalized Wannier
|
||||
functions for them. In the example above, you see that only for the
|
||||
vanadium *d* we set the flag to 2. If you want to do simply a DMFT
|
||||
calculation, then set everything to 0, except one flag 2 for the
|
||||
@ -100,12 +100,12 @@ directory name):
|
||||
respectively. These files are needed for projected
|
||||
density-of-states or spectral-function calculations in
|
||||
post-processing only.
|
||||
* :file:`case.oubwin` needed for the charge desity recalculation in
|
||||
* :file:`case.oubwin` needed for the charge density recalculation in
|
||||
the case of fully self-consistent DFT+DMFT run (see below).
|
||||
|
||||
Now we convert these files into an hdf5 file that can be used for the
|
||||
DMFT calculations. For this purpose we
|
||||
use the python module :class:`Wien2kConverter <pytriqs.applications.dft.converters.wien2k_converter.Wien2kConverter>`. It is initialised as::
|
||||
use the python module :class:`Wien2kConverter <dft.converters.wien2k_converter.Wien2kConverter>`. It is initialized as::
|
||||
|
||||
from pytriqs.applications.dft.converters.wien2k_converter import *
|
||||
Converter = Wien2kConverter(filename = case)
|
||||
@ -119,7 +119,7 @@ an hdf5 archive, named :file:`case.h5`, where all the data is
|
||||
stored. For other parameters of the constructor please visit the
|
||||
:ref:`refconverters` section of the reference manual.
|
||||
|
||||
After initialising the interface module, we can now convert the input
|
||||
After initializing the interface module, we can now convert the input
|
||||
text files to the hdf5 archive by::
|
||||
|
||||
Converter.convert_dft_input()
|
||||
@ -133,21 +133,21 @@ After this step, all the necessary information for the DMFT loop is
|
||||
stored in the hdf5 archive, where the string variable
|
||||
`Converter.hdf_filename` gives the file name of the archive.
|
||||
|
||||
At this point you should use the method :meth:`dos_wannier_basis <pytriqs.applications.dft.sumk_dft_tools.SumkDFTTools.dos_wannier_basis>`
|
||||
contained in the module :class:`SumkDFTTools <pytriqs.applications.dft.sumk_dft_tools.SumkDFTTools>` to check the density of
|
||||
states of the Wannier orbitals (see :ref:`analysis`).
|
||||
At this point you should use the method :meth:`dos_wannier_basis <dft.sumk_dft_tools.SumkDFTTools.dos_wannier_basis>`
|
||||
contained in the module :class:`SumkDFTTools <dft.sumk_dft_tools.SumkDFTTools>` to check the density of
|
||||
states of the Wannier orbitals (see :ref:`analysis`).
|
||||
|
||||
You have now everything for performing a DMFT calculation, and you can
|
||||
proceed with :ref:`singleshot`.
|
||||
proceed with the section on :ref:`single-shot DFT+DMFT calculations <singleshot>`.
|
||||
|
||||
Data for post-processing
|
||||
""""""""""""""""""""""""
|
||||
|
||||
In case you want to do post-processing of your data using the module
|
||||
:class:`SumkDFTTools <pytriqs.applications.dft.sumk_dft_tools.SumkDFTTools>`, some more files
|
||||
:class:`SumkDFTTools <dft.sumk_dft_tools.SumkDFTTools>`, some more files
|
||||
have to be converted to the hdf5 archive. For instance, for
|
||||
calculating the partial density of states or partial charges
|
||||
consistent with the definition of :program:`Wien2k`, you have to invoke::
|
||||
consistent with the definition of :program:`Wien2k`, you have to invoke::
|
||||
|
||||
Converter.convert_parproj_input()
|
||||
|
||||
@ -165,8 +165,8 @@ following. First, one has to do the Wien2k calculation on the given
|
||||
|
||||
Again, maybe with the optional additional extra flags according to
|
||||
Wien2k. Now we use a routine of the converter module allows to read
|
||||
and convert the input for :class:`SumkDFTTools <pytriqs.applications.dft.sumk_dft_tools.SumkDFTTools>`::
|
||||
|
||||
and convert the input for :class:`SumkDFTTools <dft.sumk_dft_tools.SumkDFTTools>`::
|
||||
|
||||
Converter.convert_bands_input()
|
||||
|
||||
After having converted this input, you can further proceed with the
|
||||
@ -255,10 +255,10 @@ A general H(k)
|
||||
--------------
|
||||
|
||||
In addition to the more complicated Wien2k converter,
|
||||
:program:`dft_tools` contains also a light converter. It takes only
|
||||
:program:`DFTTools` contains also a light converter. It takes only
|
||||
one inputfile, and creates the necessary hdf outputfile for
|
||||
the DMFT calculation. The header of this input file has to have the
|
||||
following format:
|
||||
the DMFT calculation. The header of this input file has a defined
|
||||
format, an example is the following:
|
||||
|
||||
.. literalinclude:: images_scripts/case.hk
|
||||
|
||||
@ -266,22 +266,74 @@ The lines of this header define
|
||||
|
||||
#. Number of :math:`\mathbf{k}`-points used in the calculation
|
||||
#. Electron density for setting the chemical potential
|
||||
#. Number of correlated atoms in the unit cell
|
||||
#. The next line contains four numbers: index of the atom, index
|
||||
of the correlated shell, :math:`l` quantum number, dimension
|
||||
of this shell. Repeat this line for each correlated atom.
|
||||
#. Number of total atomic shells in the hamiltonian matrix. In short,
|
||||
this gives the number of lines described in the following. IN the
|
||||
example file give above this number is 2.
|
||||
#. The next line(s) contain four numbers each: index of the atom, index
|
||||
of the equivalent shell, :math:`l` quantum number, dimension
|
||||
of this shell. Repeat this line for each atomic shell, the number
|
||||
of the shells is given in the previous line.
|
||||
|
||||
In the example input file given above, we have two inequivalent
|
||||
atomic shells, one on atom number 1 with a full d-shell (dimension 5),
|
||||
and one on atom number 2 with one p-shell (dimension 3).
|
||||
|
||||
Other examples for these lines are:
|
||||
|
||||
#. Full d-shell in a material with only one correlated atom in the
|
||||
unit cell (e.g. SrVO3). One line is sufficient and the numbers
|
||||
are `1 1 2 5`.
|
||||
#. Full d-shell in a material with two equivalent atoms in the unit
|
||||
cell (e.g. FeSe): You need two lines, one for each equivalent
|
||||
atom. First line is `1 1 2 5`, and the second line is
|
||||
`2 1 2 5`. The only difference is the first number, which tells on
|
||||
which atom the shell is located. The second number is the
|
||||
same in both lines, meaning that both atoms are equivalent.
|
||||
#. t2g orbitals on two non-equivalent atoms in the unit cell: Two
|
||||
lines again. First line is `1 1 2 3`, second line `2 2 2 3`. The
|
||||
difference to the case above is that now also the second number
|
||||
differs. Therefore, the two shells are treated independently in
|
||||
the calculation.
|
||||
#. d-p Hamiltonian in a system with two equivalent atoms each in
|
||||
the unit cell (e.g. FeSe has two Fe and two Se in the unit
|
||||
cell). You need for lines. First line `1 1 2 5`, second
|
||||
line
|
||||
`2 1 2 5`. These two lines specify Fe as in the case above. For the p
|
||||
orbitals you need line three as `3 2 1 3` and line four
|
||||
as `4 2 1 3`. We have 4 atoms, since the first number runs from 1 to 4,
|
||||
but only two inequivalent atoms, since the second number runs
|
||||
only form 1 to 2.
|
||||
|
||||
Note that the total dimension of the hamiltonian matrices that are
|
||||
read in is the sum of all shell dimensions that you specified. For
|
||||
example number 4 given above we have a dimension of 5+5+3+3=16. It is important
|
||||
that the order of the shells that you give here must be the same as
|
||||
the order of the orbitals in the hamiltonian matrix. In the last
|
||||
example case above the code assumes that matrix index 1 to 5
|
||||
belongs to the first d shell, 6 to 10 to the second, 11 to 13 to
|
||||
the first p shell, and 14 to 16 the second p shell.
|
||||
|
||||
#. Number of correlated shells in the hamiltonian matrix, in the same
|
||||
spirit as line 3.
|
||||
|
||||
#. The next line(s) contain six numbers: index of the atom, index
|
||||
of the equivalent shell, :math:`l` quantum number, dimension
|
||||
of the correlated shells, a spin-orbit parameter, and another
|
||||
parameter defining interactions. Note that the latter two
|
||||
parameters are not used at the moment in the code, and only kept
|
||||
for compatibility reasons. In our example file we use only the
|
||||
d-shell as correlated, that is why we have only one line here.
|
||||
|
||||
#. The last line contains several numbers: the number of irreducible
|
||||
representations, and then the dimensions of the irreps. One
|
||||
possibility is as the example above, another one would be 2
|
||||
2 3. Thiw would mean, 2 irreps (eg and t2g), of dimension 2 and 3,
|
||||
resp.
|
||||
2 3. This would mean, 2 irreps (eg and t2g), of dimension 2 and 3,
|
||||
resp.
|
||||
|
||||
After these header lines, the file has to contain the Hamiltonian
|
||||
matrix in orbital space. The standard convention is that you give for
|
||||
each
|
||||
:math:`\mathbf{k}`-point first the matrix of the real part, then the
|
||||
matrix of the imaginary part, and then move on to the next
|
||||
:math:`\mathbf{k}`-point.
|
||||
each :math:`\mathbf{k}`-point first the matrix of the real part, then the
|
||||
matrix of the imaginary part, and then move on to the next :math:`\mathbf{k}`-point.
|
||||
|
||||
The converter itself is used as::
|
||||
|
||||
@ -290,8 +342,7 @@ The converter itself is used as::
|
||||
Converter.convert_dft_input()
|
||||
|
||||
where :file:`hkinputfile` is the name of the input file described
|
||||
above. This produces the hdf file that you need, and you cna proceed
|
||||
with the
|
||||
above. This produces the hdf file that you need for a DMFT calculation.
|
||||
|
||||
For more options of this converter, have a look at the
|
||||
:ref:`refconverters` section of the reference manual.
|
||||
@ -300,24 +351,24 @@ For more options of this converter, have a look at the
|
||||
Wannier90 Converter
|
||||
-------------------
|
||||
|
||||
Using this converter it is possible to convert the output of
|
||||
:program:`Wannier90` (http://wannier.org) calculations of
|
||||
Maximally Localized Wannier Functions (MLWF) and create a HDF5 archive
|
||||
Using this converter it is possible to convert the output of
|
||||
`wannier90 <http://wannier.org>`_
|
||||
Maximally Localized Wannier Functions (MLWF) and create a HDF5 archive
|
||||
suitable for one-shot DMFT calculations with the
|
||||
:class:`SumkDFT <pytriqs.applications.dft.sumk_dft.SumkDFT>` class.
|
||||
:class:`SumkDFT <dft.sumk_dft.SumkDFT>` class.
|
||||
|
||||
The user must supply two files in order to run the Wannier90 Converter:
|
||||
|
||||
#. The file :file:`seedname_hr.dat`, which contains the DFT Hamiltonian
|
||||
in the MLWF basis calculated through :program:`wannier90` with ``hr_plot = true``
|
||||
(please refer to the :program:`wannier90` documentation).
|
||||
#. A file named :file:`seedname.inp`, which contains the required
|
||||
#. A file named :file:`seedname.inp`, which contains the required
|
||||
information about the :math:`\mathbf{k}`-point mesh, the electron density,
|
||||
the correlated shell structure, ... (see below).
|
||||
|
||||
Here and in the following, the keyword ``seedname`` should always be intended
|
||||
as a placeholder for the actual prefix chosen by the user when creating the
|
||||
input for :program:`wannier90`.
|
||||
input for :program:`wannier90`.
|
||||
Once these two files are available, one can use the converter as follows::
|
||||
|
||||
from pytriqs.applications.dft.converters import Wannier90Converter
|
||||
@ -329,8 +380,8 @@ the following format:
|
||||
|
||||
.. literalinclude:: images_scripts/LaVO3_w90.inp
|
||||
|
||||
The example shows the input for the perovskite crystal of LaVO\ :sub:`3`
|
||||
in the room-temperature `Pnma` symmetry. The unit cell contains four
|
||||
The example shows the input for the perovskite crystal of LaVO\ :sub:`3`
|
||||
in the room-temperature `Pnma` symmetry. The unit cell contains four
|
||||
symmetry-equivalent correlated sites (the V atoms) and the total number
|
||||
of electrons per unit cell is 8 (see second line).
|
||||
The first line specifies how to generate the :math:`\mathbf{k}`-point
|
||||
@ -338,18 +389,18 @@ mesh that will be used to obtain :math:`H(\mathbf{k})`
|
||||
by Fourier transforming :math:`H(\mathbf{R})`.
|
||||
Currently implemented options are:
|
||||
|
||||
* :math:`\Gamma`-centered uniform grid with dimensions
|
||||
:math:`n_{k_x} \times n_{k_y} \times n_{k_z}`;
|
||||
* :math:`\Gamma`-centered uniform grid with dimensions
|
||||
:math:`n_{k_x} \times n_{k_y} \times n_{k_z}`;
|
||||
specify ``0`` followed by the three grid dimensions,
|
||||
like in the example above
|
||||
* :math:`\Gamma`-centered uniform grid with dimensions
|
||||
automatically determined by the converter (from the number of
|
||||
automatically determined by the converter (from the number of
|
||||
:math:`\mathbf{R}` vectors found in :file:`seedname_hr.dat`);
|
||||
just specify ``-1``
|
||||
|
||||
Inside :file:`seedname.inp`, it is crucial to correctly specify the
|
||||
Inside :file:`seedname.inp`, it is crucial to correctly specify the
|
||||
correlated shell structure, which depends on the contents of the
|
||||
:program:`wannier90` output :file:`seedname_hr.dat` and on the order
|
||||
:program:`wannier90` output :file:`seedname_hr.dat` and on the order
|
||||
of the MLWFs contained in it.
|
||||
|
||||
The number of MLWFs must be equal to, or greater than the total number
|
||||
@ -360,7 +411,7 @@ additional MLWFs correspond to uncorrelated orbitals (e.g., the O-\ `2p` shells)
|
||||
When reading the hoppings :math:`\langle w_i | H(\mathbf{R}) | w_j \rangle`
|
||||
(where :math:`w_i` is the :math:`i`-th MLWF), the converter also assumes that
|
||||
the first indices correspond to the correlated shells (in our example,
|
||||
the V-t\ :sub:`2g` shells). Therefore, the MLWFs corresponding to the
|
||||
the V-t\ :sub:`2g` shells). Therefore, the MLWFs corresponding to the
|
||||
uncorrelated shells (if present) must be listed **after** those of the
|
||||
correlated shells.
|
||||
With the :program:`wannier90` code, this can be achieved this by listing the
|
||||
@ -372,19 +423,19 @@ In our `Pnma`-LaVO\ :sub:`3` example, for instance, we could use::
|
||||
O:l=1:mr=1,2,3:z=0,0,1:x=-1,1,0
|
||||
End Projections
|
||||
|
||||
where the ``x=-1,1,0`` option indicates that the V--O bonds in the octahedra are
|
||||
where the ``x=-1,1,0`` option indicates that the V--O bonds in the octahedra are
|
||||
rotated by (approximatively) 45 degrees with respect to the axes of the `Pbnm` cell.
|
||||
|
||||
The converter will analyse the matrix elements of the local hamiltonian
|
||||
to find the symmetry matrices `rot_mat` needed for the global-to-local
|
||||
transformation of the basis set for correlated orbitals
|
||||
The converter will analyze the matrix elements of the local Hamiltonian
|
||||
to find the symmetry matrices `rot_mat` needed for the global-to-local
|
||||
transformation of the basis set for correlated orbitals
|
||||
(see section :ref:`hdfstructure`).
|
||||
The matrices are obtained by finding the unitary transformations that diagonalize
|
||||
:math:`\langle w_i | H_I(\mathbf{R}=0,0,0) | w_j \rangle`, where :math:`I` runs
|
||||
over the correlated shells and `i,j` belong to the same shell (more details elsewhere...).
|
||||
If two correlated shells are defined as equivalent in :file:`seedname.inp`,
|
||||
then the corresponding eigenvalues have to match within a threshold of 10\ :sup:`-5`,
|
||||
otherwise the converter will produce an error/warning.
|
||||
otherwise the converter will produce an error/warning.
|
||||
If this happens, please carefully check your data in :file:`seedname_hr.dat`.
|
||||
This method might fail in non-trivial cases (i.e., more than one correlated
|
||||
shell is present) when there are some degenerate eigenvalues:
|
||||
@ -399,10 +450,10 @@ The current implementation of the Wannier90 Converter has some limitations:
|
||||
* No charge self-consistency possible at the moment.
|
||||
* Calculations with spin-orbit (``SO=1``) are not supported.
|
||||
* The spin-polarized case (``SP=1``) is not yet tested.
|
||||
* The post-processing routines in the module
|
||||
:class:`SumkDFTTools <pytriqs.applications.dft.sumk_dft_tools.SumkDFTTools>`
|
||||
were not tested with this converter.
|
||||
* ``proj_mat_all`` are not used, so there are no projectors onto the
|
||||
* The post-processing routines in the module
|
||||
:class:`SumkDFTTools <dft.sumk_dft_tools.SumkDFTTools>`
|
||||
were not tested with this converter.
|
||||
* ``proj_mat_all`` are not used, so there are no projectors onto the
|
||||
uncorrelated orbitals for now.
|
||||
|
||||
|
||||
@ -413,14 +464,14 @@ The interface packages are written such that all the file operations
|
||||
are done only on the master node. In general, the philosophy of the
|
||||
package is that whenever you read in something from the archive
|
||||
yourself, you have to *manually* broadcast it to the nodes. An
|
||||
exception to this rule is when you use routines from :class:`SumkDFT <pytriqs.applications.dft.sumk_dft.SumkDFT>`
|
||||
or :class:`SumkDFTTools <pytriqs.applications.dft.sumk_dft_tools.SumkDFTTools>`, where the broadcasting is done for you.
|
||||
exception to this rule is when you use routines from :class:`SumkDFT <dft.sumk_dft.SumkDFT>`
|
||||
or :class:`SumkDFTTools <dft.sumk_dft_tools.SumkDFTTools>`, where the broadcasting is done for you.
|
||||
|
||||
Interfaces to other packages
|
||||
----------------------------
|
||||
|
||||
Because of the modular structure, it is straight forward to extend the :ref:`TRIQS <triqslibs:welcome>` package
|
||||
in order to work with other band-structure codes. The only necessary requirement is that
|
||||
Because of the modular structure, it is straight forward to extend the :ref:`TRIQS <triqslibs:welcome>` package
|
||||
in order to work with other band-structure codes. The only necessary requirement is that
|
||||
the interface module produces an hdf5 archive, that stores all the data in the specified
|
||||
form. For the details of what data is stored in detail, see the
|
||||
:ref:`hdfstructure` part of the reference manual.
|
||||
|
@ -21,7 +21,7 @@ Wien2k + dmftproj
|
||||
:ref:`conversion`, or the extensive :download:`dmftproj manual<images_scripts/TutorialDmftproj.pdf>`.
|
||||
|
||||
In the following, we discuss how to use the
|
||||
:ref:`TRIQS <triqslibs:welcome>` tools in combination with the :program:`Wien2k` program.
|
||||
:ref:`TRIQS <triqslibs:install>` tools in combination with the :program:`Wien2k` program.
|
||||
|
||||
We can use the DMFT script as introduced in section :ref:`singleshot`,
|
||||
with just a few simple
|
||||
|
@ -5,287 +5,163 @@
|
||||
Single-shot DFT+DMFT
|
||||
====================
|
||||
|
||||
After having set up the hdf5 archive, we can now proceed to our first DFT+DMFT calculation.
|
||||
It consists of initialization steps, and the actual DMFT self-consistency loop,
|
||||
With the code snippets below you can build your own script and target
|
||||
it to your needs. Little examples on :ref:`mixing <mixing>` and on
|
||||
:ref:`restarting from a previous calculation <restartcalc>` at the end of this page
|
||||
should also demonstrate how simple you can modify your own DMFT script. A full working
|
||||
calculation for SrVO3 is discussed in the :ref:`next section <SrVO3>`.
|
||||
|
||||
After having set up the hdf5 archive, we can now do our DFT+DMFT calculation. It consists of
|
||||
initialization steps, and the actual DMFT self-consistency loop, as is
|
||||
discussed below.
|
||||
|
||||
Initialisation of the calculation
|
||||
Initialization of the calculation
|
||||
---------------------------------
|
||||
|
||||
Before doing the calculation, we have to intialize all the objects that we will need. The first thing is the
|
||||
:class:`SumkDFT <pytriqs.applications.dft.sumk_dft.SumkDFT>` class. It contains all basic routines that are necessary to perform a summation in k-space
|
||||
Before doing the actual calculation, we have to initialize all needed objects.
|
||||
The first thing is the :class:`SumkDFT <dft.sumk_dft.SumkDFT>` class.
|
||||
It contains all basic routines that are necessary to perform a summation in k-space
|
||||
to get the local quantities used in DMFT. It is initialized by::
|
||||
|
||||
from pytriqs.applications.dft.sumk_dft import *
|
||||
SK = SumkDFT(hdf_file = filename + '.h5')
|
||||
from pytriqs.applications.dft.sumk_dft import *
|
||||
SK = SumkDFT(hdf_file = filename + '.h5')
|
||||
|
||||
|
||||
Setting up the impurity solver
|
||||
------------------------------
|
||||
|
||||
The next step is to setup an impurity solver. There are different
|
||||
solvers available within the :ref:`TRIQS <triqslibs:welcome>` framework. Below, we will discuss
|
||||
the example of the hybridisation
|
||||
solvers available within the :ref:`TRIQS <triqslibs:welcome>` framework.
|
||||
E.g. for :ref:`SrVO3 <SrVO3>`, we will use the hybridization
|
||||
expansion :ref:`CTHYB solver <triqscthyb:welcome>`. Later on, we will
|
||||
see also the example of the Hubbard-I solver. They all have in common,
|
||||
that they are called by a uniform command::
|
||||
|
||||
S.solve(params)
|
||||
see also the example of the `Hubbard-I solver <https://triqs.ipht.cnrs.fr/1.x/applications/hubbardI/>`_.
|
||||
They all have in common, that they are called by an uniform command::
|
||||
|
||||
where `params` are the solver parameters and depend on the actual
|
||||
solver that is used. Before going into the details of the solver, let
|
||||
us discuss in the next section how to perform the DMFT loop using
|
||||
the methods of :program:`dft_tools`, assuming that we have set up a
|
||||
working solver instance.
|
||||
S.solve(params)
|
||||
|
||||
where :emphasis:`params` are the solver parameters and depend on the actual
|
||||
solver. Setting up the :ref:`CTHYB solver <triqscthyb:welcome>` for SrVO3 is
|
||||
discussed on the :ref:`next page <SrVO3>`. Here, let us now perform the DMFT
|
||||
loop using the methods of :program:`DFTTools`, assuming that we have already
|
||||
set up a working solver instance.
|
||||
|
||||
|
||||
Doing the DMFT loop
|
||||
-------------------
|
||||
|
||||
Having initialized the SumK class and the Solver, we can proceed with the DMFT
|
||||
loop itself. We have to set up the loop over DMFT
|
||||
iterations and the self-consistency condition::
|
||||
Having initialized the :class:`Sumk class <dft.sumk_dft.SumkDFT>`
|
||||
and the solver, we can proceed with the actual DMFT part of the calculation.
|
||||
We set up the loop over DMFT iterations and the self-consistency condition::
|
||||
|
||||
n_loops = 5
|
||||
for iteration_number in range(n_loops) : # start the DMFT loop
|
||||
n_loops = 15
|
||||
for iteration_number in range(n_loops) : # start the DMFT loop
|
||||
SK.set_Sigma([ S.Sigma ]) # Put self energy to the SumK class
|
||||
chemical_potential = SK.calc_mu() # calculate the chemical potential for the given density
|
||||
S.G_iw << SK.extract_G_loc()[0] # extract the local Green function
|
||||
S.G0_iw << inverse(S.Sigma_iw + inverse(S.G_iw)) # finally get G0, the input for the solver
|
||||
|
||||
SK.set_Sigma([ S.Sigma ]) # Put self energy to the SumK class
|
||||
chemical_potential = SK.calc_mu() # calculate the chemical potential for the given density
|
||||
S.G_iw << SK.extract_G_loc()[0] # extract the local Green function
|
||||
S.G0_iw << inverse(S.Sigma_iw + inverse(S.G_iw)) # finally get G0, the input for the Solver
|
||||
S.solve(h_int=h_int, **p) # now solve the impurity problem
|
||||
|
||||
S.solve(h_int=h_int, **p) # now solve the impurity problem
|
||||
dm = S.G_iw.density() # Density matrix of the impurity problem
|
||||
SK.calc_dc(dm, U_interact=U, J_hund=J, orb=0, use_dc_formula=1) # Set the double counting term
|
||||
SK.save(['chemical_potential','dc_imp','dc_energ']) # Save data in the hdf5 archive
|
||||
|
||||
dm = S.G_iw.density() # Density matrix of the impurity problem
|
||||
SK.calc_dc(dm, U_interact=U, J_hund=J, orb=0, use_dc_formula=1) # Set the double counting term
|
||||
SK.save(['chemical_potential','dc_imp','dc_energ']) # Save data in the hdf5 archive
|
||||
|
||||
These basic steps are enough to set up the basic DMFT Loop. For a detailed
|
||||
description of the :class:`SumkDFT <pytriqs.applications.dft.sumk_dft.SumkDFT>` routines, see the reference
|
||||
manual.
|
||||
|
||||
After
|
||||
the self-consistency steps (extracting a new :math:`G^0(i\omega)`),
|
||||
the Anderson impurity problem is solved.
|
||||
|
||||
Different to model calculations, we have to do a few
|
||||
These steps are enough for a basic DMFT Loop.
|
||||
After the self-consistency steps, which lead to a new :math:`G^0(i\omega)`,
|
||||
the impurity solver is called. Different to model calculations, we have to do a few
|
||||
more steps after this, because of the double-counting correction. We first
|
||||
calculate the density of the impurity problem. Then, the routine `calc_dc`
|
||||
calculate the density of the impurity problem. Then, the routine :meth:`calc_dc <dft.sumk_dft.SumkDFT.calc_dc>`
|
||||
takes as parameters this density matrix, the Coulomb interaction, Hund's rule
|
||||
coupling, and the type of double-counting that should be used. Possible values
|
||||
for `use_dc_formula` are:
|
||||
for :emphasis:`use_dc_formula` are:
|
||||
|
||||
* `0`: Full-localised limit
|
||||
* `1`: DC formula as given in K. Held, Adv. Phys. 56, 829 (2007).
|
||||
* `2`: Around-mean-field
|
||||
* `0`: Full-localised limit (FLL)
|
||||
* `1`: DC formula as given in K. Held, Adv. Phys. 56, 829 (2007).
|
||||
* `2`: Around-mean-field (AMF)
|
||||
|
||||
At the end of the calculation, we can save the Greens function and self energy into a file::
|
||||
|
||||
from pytriqs.archive import HDFArchive
|
||||
import pytriqs.utility.mpi as mpi
|
||||
if mpi.is_master_node():
|
||||
ar = HDFArchive("YourDFTDMFTcalculation.h5",'w')
|
||||
ar["G"] = S.G_iw
|
||||
ar["Sigma"] = S.Sigma_iw
|
||||
|
||||
This is it!
|
||||
|
||||
These are the essential steps to do a one-shot DFT+DMFT calculation.
|
||||
For full charge-self consistent calculations, there are some more things
|
||||
to consider, which we will see later on.
|
||||
|
||||
|
||||
A full DFT+DMFT calculation
|
||||
---------------------------
|
||||
|
||||
We will discuss now how to set up a full working calculation,
|
||||
including setting up the CTHYB solver, and specifying some more parameters
|
||||
in order to make the calculation more efficient. Here, we
|
||||
will see a more advanced example, which is also suited for parallel
|
||||
execution. For the convenience of the user, we provide also two
|
||||
working python scripts in this documentation. One for a calculation
|
||||
using Kanamori definitions (:download:`dft_dmft_cthyb.py
|
||||
<images_scripts/dft_dmft_cthyb.py>`) and one with a
|
||||
rotational-invariant Slater interaction Hamiltonian (:download:`dft_dmft_cthyb_slater.py
|
||||
<images_scripts/dft_dmft_cthyb.py>`). The user has to adapt these
|
||||
scripts to his own needs.
|
||||
|
||||
First, we load the necessary modules::
|
||||
|
||||
from pytriqs.applications.dft.sumk_dft import *
|
||||
from pytriqs.gf.local import *
|
||||
from pytriqs.archive import HDFArchive
|
||||
from pytriqs.operators.util import *
|
||||
from pytriqs.applications.impurity_solvers.cthyb import *
|
||||
|
||||
The last two lines load the modules for the construction of the CTHYB
|
||||
solver.
|
||||
|
||||
Then we define some parameters::
|
||||
|
||||
dft_filename='SrVO3'
|
||||
U = 4.0
|
||||
J = 0.65
|
||||
beta = 40
|
||||
loops = 10 # Number of DMFT sc-loops
|
||||
sigma_mix = 0.8 # Mixing factor of Sigma after solution of the AIM
|
||||
dc_type = 1 # DC type: 0 FLL, 1 Held, 2 AMF
|
||||
use_blocks = True # use bloc structure from DFT input
|
||||
prec_mu = 0.0001
|
||||
|
||||
# Solver parameters
|
||||
p = {}
|
||||
p["length_cycle"] = 200
|
||||
p["n_warmup_cycles"] = 2000
|
||||
p["n_cycles"] = 20000
|
||||
|
||||
Most of these parameters are self-explanatory. The first,
|
||||
`dft_filename`, gives the filename of the input files. For more
|
||||
details on the solver parameters, we refer the user to
|
||||
the :ref:`CTHYB solver <triqscthyb:welcome>` documentation.
|
||||
|
||||
We assume that the conversion to the hdf5 archive is already done. We
|
||||
can check now in this archive, if previous runs are present, or if we have to start
|
||||
from scratch::
|
||||
|
||||
previous_runs = 0
|
||||
previous_present = False
|
||||
if mpi.is_master_node():
|
||||
f = HDFArchive(dft_filename+'.h5','a')
|
||||
if 'dmft_output' in f:
|
||||
ar = f['dmft_output']
|
||||
if 'iterations' in ar:
|
||||
previous_present = True
|
||||
previous_runs = ar['iterations']
|
||||
else:
|
||||
f.create_group('dmft_output')
|
||||
del f
|
||||
previous_runs = mpi.bcast(previous_runs)
|
||||
previous_present = mpi.bcast(previous_present)
|
||||
|
||||
|
||||
You can see in this code snippet, that all results of this calculation
|
||||
will be stored in a separate subgroup in the hdf5 file, called
|
||||
`dmft_output`. Removing this subgroup allows you to reset your
|
||||
calculation to the starting point easily.
|
||||
|
||||
Now we can use all this information to initialise the :class:`SumkDFT <pytriqs.applications.dft.sumk_dft.SumkDFT>` class::
|
||||
|
||||
SK = SumkDFT(hdf_file=dft_filename+'.h5',use_dft_blocks=use_blocks)
|
||||
|
||||
The next step is to initialise the :class:`Solver <pytriqs.applications.impurity_solvers.cthyb.Solver>` class. It consist
|
||||
of two steps
|
||||
|
||||
#. Calculating the multi-band interaction matrix, and setting up the
|
||||
interaction Hamiltonian
|
||||
#. Setting up the solver class
|
||||
|
||||
The first step is done using methods of
|
||||
the :ref:`TRIQS <triqslibs:welcome>` library::
|
||||
|
||||
n_orb = SK.corr_shells[0]['dim']
|
||||
l = SK.corr_shells[0]['l']
|
||||
spin_names = ["up","down"]
|
||||
orb_names = [i for i in range(n_orb)]
|
||||
# Use GF structure determined by DFT blocks:
|
||||
gf_struct = SK.gf_struct_solver[0]
|
||||
# Construct U matrix for density-density calculations:
|
||||
Umat, Upmat = U_matrix_kanamori(n_orb=n_orb, U_int=U, J_hund=J)
|
||||
|
||||
We assumed here that we want to use an interaction matrix with
|
||||
Kanamori definitions of :math:`U` and :math:`J`. For
|
||||
other choices (Slater interaction matrix for instance), and other
|
||||
parameters, we refer to the reference manual
|
||||
of the :ref:`TRIQS <triqslibs:welcome>` library.
|
||||
|
||||
Next, we construct the Hamiltonian and the solver::
|
||||
|
||||
h_int = h_int_density(spin_names, orb_names, map_operator_structure=SK.sumk_to_solver[0], U=Umat, Uprime=Upmat)
|
||||
S = Solver(beta=beta, gf_struct=gf_struct)
|
||||
|
||||
As you see, we take only density-density interactions into
|
||||
account. Other choices for the Hamiltonian are
|
||||
|
||||
* h_int_kanamori
|
||||
* h_int_slater
|
||||
|
||||
These two include full rotational invariant interactions. Again,
|
||||
options can be found in the :ref:`TRIQS <triqslibs:welcome>` library
|
||||
reference manual.
|
||||
|
||||
|
||||
If there are previous runs stored in the hdf5 archive, we can now load the self energy
|
||||
of the last iteration::
|
||||
|
||||
if previous_present:
|
||||
from pytriqs.archive import HDFArchive
|
||||
import pytriqs.utility.mpi as mpi
|
||||
if mpi.is_master_node():
|
||||
ar = HDFArchive(dft_filename+'.h5','a')
|
||||
S.Sigma_iw << ar['dmft_output']['Sigma_iw']
|
||||
del ar
|
||||
ar = HDFArchive("YourDFTDMFTcalculation.h5",'w')
|
||||
ar["G"] = S.G_iw
|
||||
ar["Sigma"] = S.Sigma_iw
|
||||
|
||||
These are the essential steps necessary for a one-shot DFT+DMFT calculation.
|
||||
For a detailed description of the :class:`SumkDFT <dft.sumk_dft.SumkDFT>`
|
||||
routines, see the :ref:`reference manual <reference>`. To perform full charge self-consistent calculations, there
|
||||
are some more things to consider, which we will see :ref:`later on <full_charge_selfcons>`.
|
||||
|
||||
.. _restartcalc:
|
||||
|
||||
|
||||
Restarting a calculation
|
||||
------------------------
|
||||
|
||||
Often only a few DMFT iterations are performed first, and thus, it is desirable to
|
||||
carry out further iterations, e.g. to improve on the convergence. With a little modification
|
||||
at the initialization stage (before the DMFT loop) it is possible to detect if previous runs
|
||||
are present, or if the calculation should start from scratch::
|
||||
|
||||
previous_runs = 0
|
||||
previous_present = False
|
||||
if mpi.is_master_node():
|
||||
f = HDFArchive(dft_filename+'.h5','a')
|
||||
if 'dmft_output' in f:
|
||||
ar = f['dmft_output']
|
||||
if 'iterations' in ar:
|
||||
previous_present = True
|
||||
previous_runs = ar['iterations']
|
||||
else:
|
||||
f.create_group('dmft_output')
|
||||
del f
|
||||
previous_runs = mpi.bcast(previous_runs)
|
||||
previous_present = mpi.bcast(previous_present)
|
||||
|
||||
|
||||
You can see from this code snippet, that removing the subgroup :emphasis:`dmft_results` from the
|
||||
hdf file has the effect of reseting the calculation to the starting point. If there are previous
|
||||
runs stored in the hdf5 archive, we can now load the self energy, the chemical potential and
|
||||
double counting values of the last iteration::
|
||||
|
||||
if previous_present:
|
||||
if mpi.is_master_node():
|
||||
ar = HDFArchive(dft_filename+'.h5','a')
|
||||
S.Sigma_iw << ar['dmft_output']['Sigma_iw']
|
||||
del ar
|
||||
|
||||
S.Sigma_iw << mpi.bcast(S.Sigma_iw)
|
||||
chemical_potential,dc_imp,dc_energ = SK.load(['chemical_potential','dc_imp','dc_energ'])
|
||||
S.Sigma_iw << mpi.bcast(S.Sigma_iw)
|
||||
SK.set_mu(chemical_potential)
|
||||
SK.set_dc(dc_imp,dc_energ)
|
||||
SK.set_mu(chemical_potential)
|
||||
SK.set_dc(dc_imp,dc_energ)
|
||||
|
||||
The data is loaded only on the master node, and therefore we broadcast it to the slave nodes.
|
||||
Be careful when storing the :emphasis:`iteration_number` as we also have to add the previous
|
||||
iteration count::
|
||||
|
||||
ar['dmft_output']['iterations'] = iteration_number + previous_runs
|
||||
|
||||
The self-energy is broadcast from the master node to the slave nodes. Also, the
|
||||
last saved chemical potential and double counting values are read in and set.
|
||||
.. _mixing:
|
||||
|
||||
Now we can go to the definition of the self-consistency step. It consists again
|
||||
of the basic steps discussed in the previous section, with some additional
|
||||
refinements::
|
||||
|
||||
for iteration_number in range(1,loops+1):
|
||||
if mpi.is_master_node(): print "Iteration = ", iteration_number
|
||||
|
||||
SK.symm_deg_gf(S.Sigma_iw,orb=0) # symmetrise Sigma
|
||||
SK.set_Sigma([ S.Sigma_iw ]) # put Sigma into the SumK class
|
||||
chemical_potential = SK.calc_mu( precision = prec_mu ) # find the chemical potential for given density
|
||||
S.G_iw << SK.extract_G_loc()[0] # calc the local Green function
|
||||
mpi.report("Total charge of Gloc : %.6f"%S.G_iw.total_density())
|
||||
|
||||
# Init the DC term and the real part of Sigma, if no previous runs found:
|
||||
if (iteration_number==1 and previous_present==False):
|
||||
dm = S.G_iw.density()
|
||||
SK.calc_dc(dm, U_interact = U, J_hund = J, orb = 0, use_dc_formula = dc_type)
|
||||
S.Sigma_iw << SK.dc_imp[0]['up'][0,0]
|
||||
|
||||
# Calculate new G0_iw to input into the solver:
|
||||
S.G0_iw << S.Sigma_iw + inverse(S.G_iw)
|
||||
S.G0_iw << inverse(S.G0_iw)
|
||||
Mixing
|
||||
------
|
||||
|
||||
# Solve the impurity problem:
|
||||
S.solve(h_int=h_int, **p)
|
||||
|
||||
# Solved. Now do post-solution stuff:
|
||||
mpi.report("Total charge of impurity problem : %.6f"%S.G_iw.total_density())
|
||||
|
||||
# Now mix Sigma and G with factor sigma_mix, if wanted:
|
||||
if (iteration_number>1 or previous_present):
|
||||
if mpi.is_master_node():
|
||||
ar = HDFArchive(dft_filename+'.h5','a')
|
||||
mpi.report("Mixing Sigma and G with factor %s"%sigma_mix)
|
||||
S.Sigma_iw << sigma_mix * S.Sigma_iw + (1.0-sigma_mix) * ar['dmft_output']['Sigma_iw']
|
||||
S.G_iw << sigma_mix * S.G_iw + (1.0-sigma_mix) * ar['dmft_output']['G_iw']
|
||||
del ar
|
||||
S.G_iw << mpi.bcast(S.G_iw)
|
||||
S.Sigma_iw << mpi.bcast(S.Sigma_iw)
|
||||
|
||||
# Write the final Sigma and G to the hdf5 archive:
|
||||
if mpi.is_master_node():
|
||||
ar = HDFArchive(dft_filename+'.h5','a')
|
||||
ar['dmft_output']['iterations'] = iteration_number + previous_runs
|
||||
ar['dmft_output']['G_0'] = S.G0_iw
|
||||
ar['dmft_output']['G_tau'] = S.G_tau
|
||||
ar['dmft_output']['G_iw'] = S.G_iw
|
||||
ar['dmft_output']['Sigma_iw'] = S.Sigma_iw
|
||||
del ar
|
||||
In some cases a mixing of two consecutive self energies (or alternatively two hybridization
|
||||
functions) can be necessary in order to ensure convergence::
|
||||
|
||||
# Set the new double counting:
|
||||
dm = S.G_iw.density() # compute the density matrix of the impurity problem
|
||||
SK.calc_dc(dm, U_interact = U, J_hund = J, orb = 0, use_dc_formula = dc_type)
|
||||
mix = 0.8 # mixing factor
|
||||
if (iteration_number>1 or previous_present):
|
||||
if mpi.is_master_node():
|
||||
ar = HDFArchive(dft_filename+'.h5','a')
|
||||
mpi.report("Mixing Sigma and G with factor %s"%mix)
|
||||
S.Sigma_iw << mix * S.Sigma_iw + (1.0-mix) * ar['dmft_output']['Sigma_iw']
|
||||
S.G_iw << mix * S.G_iw + (1.0-mix) * ar['dmft_output']['G_iw']
|
||||
del ar
|
||||
S.G_iw << mpi.bcast(S.G_iw)
|
||||
S.Sigma_iw << mpi.bcast(S.Sigma_iw)
|
||||
|
||||
# Save stuff into the dft_output group of hdf5 archive in case of rerun:
|
||||
SK.save(['chemical_potential','dc_imp','dc_energ'])
|
||||
|
||||
This is all we need for the DFT+DMFT calculation. At the end, all results are stored in the hdf5 output file.
|
||||
In this little piece of code, which should be placed after calling the solver, two consecutive
|
||||
self energies are linearly mixed with the factor :emphasis:`mix`. Of course, it is possible
|
||||
to implement more advanced mixing schemes (e.g. Broyden's methods), however, in most cases
|
||||
simple linear mixing or even no mixing is sufficient for a reasonably fast convergence.
|
||||
|
@ -89,7 +89,7 @@ however there are also some differences. First difference is that we import the
|
||||
|
||||
The Hubbard-I solver is very fast and we do not need to take into account the DFT block structure or use any approximation for the *U*-matrix.
|
||||
We load and convert the :program:`dmftproj` output and initialize the
|
||||
:class:`SumkDFT <pytriqs.applications.dft.sumk_dft.SumkDFT>` class as described in :ref:`conversion` and
|
||||
:class:`SumkDFT <dft.sumk_dft.SumkDFT>` class as described in :ref:`conversion` and
|
||||
:ref:`singleshot` and then set up the Hubbard-I solver ::
|
||||
|
||||
S = Solver(beta = beta, l = l)
|
||||
@ -206,7 +206,7 @@ symmetries::
|
||||
Converter.convert_parpoj_input()
|
||||
|
||||
To get access to analysing tools we initialize the
|
||||
:class:`SumkDFTTools <pytriqs.applications.dft.sumk_dft_tools.SumkDFTTools>` class ::
|
||||
:class:`SumkDFTTools <dft.sumk_dft_tools.SumkDFTTools>` class ::
|
||||
|
||||
SK = SumkDFTTools(hdf_file=dft_filename+'.h5', use_dft_blocks=False)
|
||||
|
||||
|
BIN
doc/guide/images_scripts/SrVO3_Sigma_iw_it1.png
Normal file
BIN
doc/guide/images_scripts/SrVO3_Sigma_iw_it1.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 46 KiB |
@ -1,5 +1,8 @@
|
||||
64 ! number of k-points
|
||||
1.0 ! Electron density
|
||||
1 ! number of correlated atoms
|
||||
1 1 2 5 ! iatom, isort, l, dimension
|
||||
1 5 ! # of ireps, dimension of irep
|
||||
64 ! number of k-points
|
||||
1.0 ! Electron density
|
||||
2 ! number of total atomic shells
|
||||
1 1 2 5 ! iatom, isort, l, dimension
|
||||
2 2 1 3 ! iatom, isort, l, dimension
|
||||
1 ! number of correlated shells
|
||||
1 1 2 5 0 0 ! iatom, isort, l, dimension, SO, irep
|
||||
1 5 ! # of ireps, dimension of irep
|
||||
|
@ -6,10 +6,10 @@ from pytriqs.gf.local import *
|
||||
from pytriqs.applications.dft.sumk_dft import *
|
||||
|
||||
dft_filename='SrVO3'
|
||||
U = U.0
|
||||
U = 4.0
|
||||
J = 0.65
|
||||
beta = 40
|
||||
loops = 10 # Number of DMFT sc-loops
|
||||
loops = 15 # Number of DMFT sc-loops
|
||||
sigma_mix = 1.0 # Mixing factor of Sigma after solution of the AIM
|
||||
delta_mix = 1.0 # Mixing factor of Delta as input for the AIM
|
||||
dc_type = 1 # DC type: 0 FLL, 1 Held, 2 AMF
|
||||
@ -20,9 +20,14 @@ h_field = 0.0
|
||||
# Solver parameters
|
||||
p = {}
|
||||
p["max_time"] = -1
|
||||
p["length_cycle"] = 50
|
||||
p["n_warmup_cycles"] = 50
|
||||
p["n_cycles"] = 5000
|
||||
p["random_seed"] = 123 * mpi.rank + 567
|
||||
p["length_cycle"] = 200
|
||||
p["n_warmup_cycles"] = 100000
|
||||
p["n_cycles"] = 1000000
|
||||
p["perfrom_tail_fit"] = True
|
||||
p["fit_max_moments"] = 4
|
||||
p["fit_min_n"] = 30
|
||||
p["fit_max_n"] = 60
|
||||
|
||||
# If conversion step was not done, we could do it here. Uncomment the lines it you want to do this.
|
||||
#from pytriqs.applications.dft.converters.wien2k_converter import *
|
||||
@ -141,6 +146,5 @@ for iteration_number in range(1,loops+1):
|
||||
dm = S.G_iw.density() # compute the density matrix of the impurity problem
|
||||
SK.calc_dc(dm, U_interact = U, J_hund = J, orb = 0, use_dc_formula = dc_type)
|
||||
|
||||
# Save stuff into the dft_output group of hdf5 archive in case of rerun:
|
||||
# Save stuff into the user_data group of hdf5 archive in case of rerun:
|
||||
SK.save(['chemical_potential','dc_imp','dc_energ'])
|
||||
|
||||
|
@ -6,7 +6,7 @@ from pytriqs.gf.local import *
|
||||
from pytriqs.applications.dft.sumk_dft import *
|
||||
from pytriqs.applications.dft.converters.wien2k_converter import *
|
||||
|
||||
dft_filename='Gd_fcc'
|
||||
dft_filename='SrVO3'
|
||||
U = 9.6
|
||||
J = 0.8
|
||||
beta = 40
|
||||
@ -21,9 +21,14 @@ h_field = 0.0
|
||||
# Solver parameters
|
||||
p = {}
|
||||
p["max_time"] = -1
|
||||
p["length_cycle"] = 50
|
||||
p["n_warmup_cycles"] = 50
|
||||
p["n_cycles"] = 5000
|
||||
p["random_seed"] = 123 * mpi.rank + 567
|
||||
p["length_cycle"] = 200
|
||||
p["n_warmup_cycles"] = 100000
|
||||
p["n_cycles"] = 1000000
|
||||
p["perfrom_tail_fit"] = True
|
||||
p["fit_max_moments"] = 4
|
||||
p["fit_min_n"] = 30
|
||||
p["fit_max_n"] = 60
|
||||
|
||||
# If conversion step was not done, we could do it here. Uncomment the lines it you want to do this.
|
||||
#from pytriqs.applications.dft.converters.wien2k_converter import *
|
||||
@ -144,5 +149,3 @@ for iteration_number in range(1,loops+1):
|
||||
|
||||
# Save stuff into the dft_output group of hdf5 archive in case of rerun:
|
||||
SK.save(['chemical_potential','dc_imp','dc_energ'])
|
||||
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
.. _Transport:
|
||||
|
||||
Transport calculations test
|
||||
======================
|
||||
Transport calculations
|
||||
============================
|
||||
|
||||
Formalism
|
||||
---------
|
||||
@ -44,13 +44,13 @@ real-frequency self energy by doing an analytic continuation.
|
||||
it is crucial to perform the analytic continuation in such a way that the obtained real frequency self energy
|
||||
is accurate around the Fermi energy as low energy features strongly influence the final results!
|
||||
|
||||
Besides the self energy the Wien2k files read by the transport converter (:meth:`convert_transport_input <pytriqs.applications.dft.converters.wien2k_converter.Wien2kConverter.convert_transport_input>`) are:
|
||||
Besides the self energy the Wien2k files read by the transport converter (:meth:`convert_transport_input <dft.converters.wien2k_converter.Wien2kConverter.convert_transport_input>`) are:
|
||||
* :file:`.struct`: The lattice constants specified in the struct file are used to calculate the unit cell volume.
|
||||
* :file:`.outputs`: In this file the k-point symmetries are given.
|
||||
* :file:`.oubwin`: Contains the indices of the bands within the projected subspace (written by :program:`dmftproj`) for each k-point.
|
||||
* :file:`.pmat`: This file is the output of the Wien2k optics package and contains the velocity (momentum) matrix elements between all bands in the desired energy
|
||||
window for each k-point. How to use the optics package is described below.
|
||||
* :file:`.h5`: The hdf5 archive has to be present and should contain the dft_input subgroup. Otherwise :meth:`convert_dft_input <pytriqs.applications.dft.converters.wien2k_converter.Wien2kConverter.convert_dft_input>` needs to be called before :meth:`convert_transport_input <pytriqs.applications.dft.converters.wien2k_converter.Wien2kConverter.convert_transport_input>`.
|
||||
* :file:`.h5`: The hdf5 archive has to be present and should contain the dft_input subgroup. Otherwise :meth:`convert_dft_input <dft.converters.wien2k_converter.Wien2kConverter.convert_dft_input>` needs to be called before :meth:`convert_transport_input <dft.converters.wien2k_converter.Wien2kConverter.convert_transport_input>`.
|
||||
|
||||
|
||||
Wien2k optics package
|
||||
@ -84,7 +84,7 @@ First we have to read the Wien2k files and store the relevant information in the
|
||||
|
||||
SK = SumkDFTTools(hdf_file='case.h5', use_dft_blocks=True)
|
||||
|
||||
The converter :meth:`convert_transport_input <pytriqs.applications.dft.converters.wien2k_converter.Wien2kConverter.convert_transport_input>`
|
||||
The converter :meth:`convert_transport_input <dft.converters.wien2k_converter.Wien2kConverter.convert_transport_input>`
|
||||
reads the required data of the Wien2k output and stores it in the `dft_transp_input` subgroup of your hdf file.
|
||||
Additionally we need to read and set the self energy, the chemical potential and the double counting::
|
||||
|
||||
@ -104,7 +104,7 @@ Here the transport distribution is calculated in :math:`xx` direction for the fr
|
||||
To use the previously obtained self energy we set with_Sigma to True and the broadening to :math:`0.0`.
|
||||
As we also want to calculate the Seebeck coefficient we have to include :math:`\Omega=0.0` in the mesh.
|
||||
Note that the current version of the code repines the :math:`\Omega` values to the closest values on the self energy mesh.
|
||||
For complete description of the input parameters see the :meth:`transport_distribution reference <pytriqs.applications.dft.sumk_dft_tools.SumkDFTTools.transport_distribution>`.
|
||||
For complete description of the input parameters see the :meth:`transport_distribution reference <dft.sumk_dft_tools.SumkDFTTools.transport_distribution>`.
|
||||
|
||||
The resulting transport distribution is not automatically saved, but this can be easily achieved with::
|
||||
|
||||
|
@ -1,11 +1,11 @@
|
||||
.. index:: DFT Tools
|
||||
.. index:: DFTTools
|
||||
|
||||
.. module:: pytriqs.applications.dft
|
||||
|
||||
.. _dfttools:
|
||||
.. _dft:
|
||||
|
||||
DFT Tools
|
||||
=========
|
||||
DFTTools
|
||||
========
|
||||
|
||||
This :ref:`TRIQS-based <triqslibs:welcome>`-based application is aimed
|
||||
at ab-initio calculations for
|
||||
|
22
doc/reference/block_structure.rst
Normal file
22
doc/reference/block_structure.rst
Normal file
@ -0,0 +1,22 @@
|
||||
Block Structure
|
||||
===============
|
||||
|
||||
The `BlockStructure` class allows to change and manipulate
|
||||
Green's functions structures and mappings from sumk to solver.
|
||||
|
||||
The block structure can also be written to and read from HDF files.
|
||||
|
||||
.. warning::
|
||||
|
||||
Do not write the individual elements of this class to a HDF file,
|
||||
as they belong together and changing one without the other can
|
||||
result in unexpected results. Always write the BlockStructure
|
||||
object as a whole.
|
||||
|
||||
Writing the sumk_to_solver and solver_to_sumk elements
|
||||
individually is not implemented.
|
||||
|
||||
.. autoclass:: dft.block_structure.BlockStructure
|
||||
:members:
|
||||
:show-inheritance:
|
||||
|
@ -17,7 +17,7 @@ H(k) Converter
|
||||
:special-members:
|
||||
|
||||
Wannier90 Converter
|
||||
--------------
|
||||
-------------------
|
||||
.. autoclass:: dft.converters.wannier90_converter.Wannier90Converter
|
||||
:members:
|
||||
:special-members:
|
||||
|
@ -2,7 +2,7 @@ SumK DFT
|
||||
========
|
||||
|
||||
|
||||
.. autoclass:: sumk_dft.SumkDFT
|
||||
.. autoclass:: dft.sumk_dft.SumkDFT
|
||||
:members:
|
||||
:special-members:
|
||||
:show-inheritance:
|
||||
|
@ -2,7 +2,7 @@ SumK DFT Tools
|
||||
==============
|
||||
|
||||
|
||||
.. autoclass:: sumk_dft_tools.SumkDFTTools
|
||||
.. autoclass:: dft.sumk_dft_tools.SumkDFTTools
|
||||
:members:
|
||||
:special-members:
|
||||
:show-inheritance:
|
||||
|
@ -1,6 +1,6 @@
|
||||
Symmetry
|
||||
========
|
||||
|
||||
.. autoclass:: Symmetry
|
||||
.. autoclass:: dft.Symmetry
|
||||
:members:
|
||||
:special-members:
|
||||
|
@ -1,6 +1,6 @@
|
||||
TransBasis
|
||||
==========
|
||||
|
||||
.. autoclass:: trans_basis.TransBasis
|
||||
.. autoclass:: dft.trans_basis.TransBasis
|
||||
:members:
|
||||
:special-members:
|
||||
|
@ -8,4 +8,9 @@ configure_file(${CMAKE_SOURCE_DIR}/cmake/sitecustomize.py ${CMAKE_CURRENT_BINARY
|
||||
# make a local pytriqs copy
|
||||
triqs_prepare_local_pytriqs(${python_destination})
|
||||
|
||||
# VASP converter
|
||||
add_subdirectory(converters/plovasp)
|
||||
|
||||
# add version file
|
||||
configure_file(version.py.in version.py)
|
||||
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/version.py DESTINATION ${TRIQS_PYTHON_LIB_DEST_ROOT}/${python_destination})
|
||||
|
@ -1,5 +1,5 @@
|
||||
|
||||
################################################################################
|
||||
##########################################################################
|
||||
#
|
||||
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
#
|
||||
@ -18,11 +18,13 @@
|
||||
# You should have received a copy of the GNU General Public License along with
|
||||
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
################################################################################
|
||||
##########################################################################
|
||||
|
||||
from sumk_dft import SumkDFT
|
||||
from symmetry import Symmetry
|
||||
from block_structure import BlockStructure
|
||||
from sumk_dft_tools import SumkDFTTools
|
||||
from converters import *
|
||||
|
||||
__all__=['SumkDFT','Symmetry','SumkDFTTools','Wien2kConverter','HkConverter']
|
||||
__all__ = ['SumkDFT', 'Symmetry', 'SumkDFTTools',
|
||||
'Wien2kConverter', 'HkConverter','BlockStructure']
|
||||
|
442
python/block_structure.py
Normal file
442
python/block_structure.py
Normal file
@ -0,0 +1,442 @@
|
||||
import copy
|
||||
import numpy as np
|
||||
from pytriqs.gf.local import GfImFreq, BlockGf
|
||||
from ast import literal_eval
|
||||
from warnings import warn
|
||||
|
||||
class BlockStructure(object):
|
||||
""" Contains information about the Green function structure.
|
||||
|
||||
This class contains information about the structure of the solver
|
||||
and sumk Green functions and the mapping between them.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
gf_struct_sumk : list of list of tuple
|
||||
gf_struct_sumk[ish][idx] = (block_name,list of indices in block)
|
||||
|
||||
for correlated shell ish; idx is just a counter in the list
|
||||
gf_struct_solver : list of dict
|
||||
gf_struct_solver[ish][block] = list of indices in that block
|
||||
|
||||
for *inequivalent* correlated shell ish
|
||||
solver_to_sumk : list of dict
|
||||
solver_to_sumk[ish][(from_block,from_idx)] = (to_block,to_idx)
|
||||
|
||||
maps from the solver block and index to the sumk block and index
|
||||
for *inequivalent* correlated shell ish
|
||||
sumk_to_solver : list of dict
|
||||
sumk_to_solver[ish][(from_block,from_idx)] = (to_block,to_idx)
|
||||
|
||||
maps from the sumk block and index to the solver block and index
|
||||
for *inequivalent* correlated shell ish
|
||||
solver_to_sumk_block : list of dict
|
||||
solver_to_sumk_block[ish][from_block] = to_block
|
||||
|
||||
maps from the solver block to the sumk block
|
||||
for *inequivalent* correlated shell ish
|
||||
"""
|
||||
def __init__(self,gf_struct_sumk=None,
|
||||
gf_struct_solver=None,
|
||||
solver_to_sumk=None,
|
||||
sumk_to_solver=None,
|
||||
solver_to_sumk_block=None):
|
||||
self.gf_struct_sumk = gf_struct_sumk
|
||||
self.gf_struct_solver = gf_struct_solver
|
||||
self.solver_to_sumk = solver_to_sumk
|
||||
self.sumk_to_solver = sumk_to_solver
|
||||
self.solver_to_sumk_block = solver_to_sumk_block
|
||||
|
||||
@classmethod
|
||||
def full_structure(cls,gf_struct,corr_to_inequiv):
|
||||
""" Construct structure that maps to itself.
|
||||
|
||||
This has the same structure for sumk and solver, and the
|
||||
mapping solver_to_sumk and sumk_to_solver is one-to-one.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
gf_struct : list of dict
|
||||
gf_struct[ish][block] = list of indices in that block
|
||||
|
||||
for (inequivalent) correlated shell ish
|
||||
corr_to_inequiv : list
|
||||
gives the mapping from correlated shell csh to inequivalent
|
||||
correlated shell icsh, so that corr_to_inequiv[csh]=icsh
|
||||
e.g. SumkDFT.corr_to_inequiv
|
||||
|
||||
if None, each inequivalent correlated shell is supposed to
|
||||
be correspond to just one correlated shell with the same
|
||||
index; there is not default, None has to be set explicitly!
|
||||
"""
|
||||
|
||||
solver_to_sumk = []
|
||||
s2sblock = []
|
||||
gs_sumk = []
|
||||
for ish in range(len(gf_struct)):
|
||||
so2su = {}
|
||||
so2sublock = {}
|
||||
gss = []
|
||||
for block in gf_struct[ish]:
|
||||
so2sublock[block]=block
|
||||
for ind in gf_struct[ish][block]:
|
||||
so2su[(block,ind)]=(block,ind)
|
||||
gss.append((block,gf_struct[ish][block]))
|
||||
solver_to_sumk.append(so2su)
|
||||
s2sblock.append(so2sublock)
|
||||
gs_sumk.append(gss)
|
||||
|
||||
# gf_struct_sumk is not given for each inequivalent correlated
|
||||
# shell, but for every correlated shell!
|
||||
if corr_to_inequiv is not None:
|
||||
gs_sumk_all = [None]*len(corr_to_inequiv)
|
||||
for i in range(len(corr_to_inequiv)):
|
||||
gs_sumk_all[i] = gs_sumk[corr_to_inequiv[i]]
|
||||
else:
|
||||
gs_sumk_all = gs_sumk
|
||||
|
||||
return cls(gf_struct_solver=copy.deepcopy(gf_struct),
|
||||
gf_struct_sumk = gs_sumk_all,
|
||||
solver_to_sumk = copy.deepcopy(solver_to_sumk),
|
||||
sumk_to_solver = solver_to_sumk,
|
||||
solver_to_sumk_block = s2sblock)
|
||||
|
||||
def pick_gf_struct_solver(self,new_gf_struct):
|
||||
""" Pick selected orbitals within blocks.
|
||||
|
||||
This throws away parts of the Green's function that (for some
|
||||
reason - be sure that you know what you're doing) shouldn't be
|
||||
included in the calculation.
|
||||
|
||||
To drop an entire block, just don't include it.
|
||||
To drop a certain index within a block, just don't include it.
|
||||
|
||||
If it was before:
|
||||
|
||||
[{'up':[0,1],'down':[0,1],'left':[0,1]}]
|
||||
|
||||
to choose the 0th index of the up block and the 1st index of
|
||||
the down block and drop the left block, the new_gf_struct would
|
||||
have to be
|
||||
|
||||
[{'up':[0],'down':[1]}]
|
||||
|
||||
Note that the indices will be renamed to be a 0-based
|
||||
sequence of integers, i.e. the new structure will actually
|
||||
be [{'up':[0],'down':[0]}].
|
||||
|
||||
For dropped indices, sumk_to_solver will map to (None,None).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
new_gf_struct : list of dict
|
||||
formatted the same as gf_struct_solver:
|
||||
|
||||
new_gf_struct[ish][block]=list of indices in that block.
|
||||
"""
|
||||
|
||||
for ish in range(len(self.gf_struct_solver)):
|
||||
gf_struct = new_gf_struct[ish]
|
||||
|
||||
# create new solver_to_sumk
|
||||
so2su={}
|
||||
so2su_block = {}
|
||||
for blk,idxs in gf_struct.items():
|
||||
for i in range(len(idxs)):
|
||||
so2su[(blk,i)]=self.solver_to_sumk[ish][(blk,idxs[i])]
|
||||
so2su_block[blk]=so2su[(blk,i)][0]
|
||||
self.solver_to_sumk[ish] = so2su
|
||||
self.solver_to_sumk_block[ish] = so2su_block
|
||||
# create new sumk_to_solver
|
||||
for k,v in self.sumk_to_solver[ish].items():
|
||||
blk,ind=v
|
||||
if blk in gf_struct and ind in gf_struct[blk]:
|
||||
new_ind = gf_struct[blk].index(ind)
|
||||
self.sumk_to_solver[ish][k]=(blk,new_ind)
|
||||
else:
|
||||
self.sumk_to_solver[ish][k]=(None,None)
|
||||
# reindexing gf_struct so that it starts with 0
|
||||
for k in gf_struct:
|
||||
gf_struct[k]=range(len(gf_struct[k]))
|
||||
self.gf_struct_solver[ish]=gf_struct
|
||||
|
||||
def pick_gf_struct_sumk(self,new_gf_struct):
|
||||
""" Pick selected orbitals within blocks.
|
||||
|
||||
This throws away parts of the Green's function that (for some
|
||||
reason - be sure that you know what you're doing) shouldn't be
|
||||
included in the calculation.
|
||||
|
||||
To drop an entire block, just don't include it.
|
||||
To drop a certain index within a block, just don't include it.
|
||||
|
||||
If it was before:
|
||||
|
||||
[{'up':[0,1],'down':[0,1],'left':[0,1]}]
|
||||
|
||||
to choose the 0th index of the up block and the 1st index of
|
||||
the down block and drop the left block, the new_gf_struct would
|
||||
have to be
|
||||
|
||||
[{'up':[0],'down':[1]}]
|
||||
|
||||
Note that the indices will be renamed to be a 0-based
|
||||
sequence of integers.
|
||||
|
||||
For dropped indices, sumk_to_solver will map to (None,None).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
new_gf_struct : list of dict
|
||||
formatted the same as gf_struct_solver:
|
||||
|
||||
new_gf_struct[ish][block]=list of indices in that block.
|
||||
|
||||
However, the indices are not according to the solver Gf
|
||||
but the sumk Gf.
|
||||
"""
|
||||
|
||||
|
||||
gfs = []
|
||||
# construct gfs, which is the equivalent of new_gf_struct
|
||||
# but according to the solver Gf, by using the sumk_to_solver
|
||||
# mapping
|
||||
for ish in range(len(new_gf_struct)):
|
||||
gfs.append({})
|
||||
for block in new_gf_struct[ish].keys():
|
||||
for ind in new_gf_struct[ish][block]:
|
||||
ind_sol = self.sumk_to_solver[ish][(block,ind)]
|
||||
if not ind_sol[0] in gfs[ish]:
|
||||
gfs[ish][ind_sol[0]]=[]
|
||||
gfs[ish][ind_sol[0]].append(ind_sol[1])
|
||||
self.pick_gf_struct_solver(gfs)
|
||||
|
||||
|
||||
def map_gf_struct_solver(self,mapping):
|
||||
""" Map the Green function structure from one struct to another.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mapping : list of dict
|
||||
the dict consists of elements
|
||||
(from_block,from_index) : (to_block,to_index)
|
||||
that maps from one structure to the other
|
||||
"""
|
||||
|
||||
for ish in range(len(mapping)):
|
||||
gf_struct = {}
|
||||
so2su = {}
|
||||
su2so = {}
|
||||
so2su_block = {}
|
||||
for frm,to in mapping[ish].iteritems():
|
||||
if not to[0] in gf_struct:
|
||||
gf_struct[to[0]]=[]
|
||||
gf_struct[to[0]].append(to[1])
|
||||
|
||||
so2su[to]=self.solver_to_sumk[ish][frm]
|
||||
su2so[self.solver_to_sumk[ish][frm]]=to
|
||||
if to[0] in so2su_block:
|
||||
if so2su_block[to[0]] != \
|
||||
self.solver_to_sumk_block[ish][frm[0]]:
|
||||
warn("solver block '{}' maps to more than one sumk block: '{}', '{}'".format(
|
||||
to[0],so2su_block[to[0]],self.solver_to_sumk_block[ish][frm[0]]))
|
||||
else:
|
||||
so2su_block[to[0]]=\
|
||||
self.solver_to_sumk_block[ish][frm[0]]
|
||||
for k in self.sumk_to_solver[ish].keys():
|
||||
if not k in su2so:
|
||||
su2so[k] = (None,None)
|
||||
self.gf_struct_solver[ish]=gf_struct
|
||||
self.solver_to_sumk[ish]=so2su
|
||||
self.sumk_to_solver[ish]=su2so
|
||||
self.solver_to_sumk_block[ish]=so2su_block
|
||||
|
||||
def create_gf(self,ish=0,gf_function=GfImFreq,**kwargs):
|
||||
""" Create a zero BlockGf having the gf_struct_solver structure.
|
||||
|
||||
When using GfImFreq as gf_function, typically you have to
|
||||
supply beta as keyword argument.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ish : int
|
||||
shell index
|
||||
gf_function : constructor
|
||||
function used to construct the Gf objects constituting the
|
||||
individual blocks; default: GfImFreq
|
||||
**kwargs :
|
||||
options passed on to the Gf constructor for the individual
|
||||
blocks
|
||||
"""
|
||||
|
||||
names = self.gf_struct_solver[ish].keys()
|
||||
blocks=[]
|
||||
for n in names:
|
||||
G = gf_function(indices=self.gf_struct_solver[ish][n],**kwargs)
|
||||
blocks.append(G)
|
||||
G = BlockGf(name_list = names, block_list = blocks)
|
||||
return G
|
||||
|
||||
|
||||
def convert_gf(self,G,G_struct,ish=0,show_warnings=True,**kwargs):
|
||||
""" Convert BlockGf from its structure to this structure.
|
||||
|
||||
.. warning::
|
||||
|
||||
Elements that are zero in the new structure due to
|
||||
the new block structure will be just ignored, thus
|
||||
approximated to zero.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
G : BlockGf
|
||||
the Gf that should be converted
|
||||
G_struct : GfStructure
|
||||
the structure ofthat G
|
||||
ish : int
|
||||
shell index
|
||||
show_warnings : bool
|
||||
whether to show warnings when elements of the Green's
|
||||
function get thrown away
|
||||
**kwargs :
|
||||
options passed to the constructor for the new Gf
|
||||
"""
|
||||
G_new = self.create_gf(ish=ish,**kwargs)
|
||||
for block in G_struct.gf_struct_solver[ish].keys():
|
||||
for i1 in G_struct.gf_struct_solver[ish][block]:
|
||||
for i2 in G_struct.gf_struct_solver[ish][block]:
|
||||
i1_sumk = G_struct.solver_to_sumk[ish][(block,i1)]
|
||||
i2_sumk = G_struct.solver_to_sumk[ish][(block,i2)]
|
||||
i1_sol = self.sumk_to_solver[ish][i1_sumk]
|
||||
i2_sol = self.sumk_to_solver[ish][i2_sumk]
|
||||
if i1_sol[0] is None or i2_sol[0] is None:
|
||||
if show_warnings:
|
||||
warn(('Element {},{} of block {} of G is not present '+
|
||||
'in the new structure').format(i1,i2,block))
|
||||
continue
|
||||
if i1_sol[0]!=i2_sol[0]:
|
||||
if show_warnings:
|
||||
warn(('Element {},{} of block {} of G is approximated '+
|
||||
'to zero to match the new structure.').format(
|
||||
i1,i2,block))
|
||||
continue
|
||||
G_new[i1_sol[0]][i1_sol[1],i2_sol[1]] = \
|
||||
G[block][i1,i2]
|
||||
return G_new
|
||||
|
||||
def approximate_as_diagonal(self):
|
||||
""" Create a structure for a GF with zero off-diagonal elements.
|
||||
|
||||
.. warning::
|
||||
|
||||
In general, this will throw away non-zero elements of the
|
||||
Green's function. Be sure to verify whether this approximation
|
||||
is justified.
|
||||
"""
|
||||
|
||||
self.gf_struct_solver=[]
|
||||
self.solver_to_sumk=[]
|
||||
self.solver_to_sumk_block=[]
|
||||
for ish in range(len(self.sumk_to_solver)):
|
||||
self.gf_struct_solver.append({})
|
||||
self.solver_to_sumk.append({})
|
||||
self.solver_to_sumk_block.append({})
|
||||
for frm,to in self.sumk_to_solver[ish].iteritems():
|
||||
if to[0] is not None:
|
||||
self.gf_struct_solver[ish][frm[0]+'_'+str(frm[1])]=[0]
|
||||
self.sumk_to_solver[ish][frm]=(frm[0]+'_'+str(frm[1]),0)
|
||||
self.solver_to_sumk[ish][(frm[0]+'_'+str(frm[1]),0)]=frm
|
||||
self.solver_to_sumk_block[ish][frm[0]+'_'+str(frm[1])]=frm[0]
|
||||
|
||||
def __eq__(self,other):
|
||||
def compare(one,two):
|
||||
if type(one)!=type(two):
|
||||
return False
|
||||
if one is None and two is None:
|
||||
return True
|
||||
if isinstance(one,list) or isinstance(one,tuple):
|
||||
if len(one) != len(two):
|
||||
return False
|
||||
for x,y in zip(one,two):
|
||||
if not compare(x,y):
|
||||
return False
|
||||
return True
|
||||
elif isinstance(one,int):
|
||||
return one==two
|
||||
elif isinstance(one,str):
|
||||
return one==two
|
||||
elif isinstance(one,dict):
|
||||
if set(one.keys()) != set(two.keys()):
|
||||
return False
|
||||
for k in set(one.keys()).intersection(two.keys()):
|
||||
if not compare(one[k],two[k]):
|
||||
return False
|
||||
return True
|
||||
warn('Cannot compare {}'.format(type(one)))
|
||||
return False
|
||||
|
||||
for prop in [ "gf_struct_sumk", "gf_struct_solver",
|
||||
"solver_to_sumk", "sumk_to_solver", "solver_to_sumk_block"]:
|
||||
if not compare(getattr(self,prop),getattr(other,prop)):
|
||||
return False
|
||||
return True
|
||||
|
||||
def copy(self):
|
||||
return copy.deepcopy(self)
|
||||
|
||||
def __reduce_to_dict__(self):
|
||||
""" Reduce to dict for HDF5 export."""
|
||||
|
||||
ret = {}
|
||||
for element in [ "gf_struct_sumk", "gf_struct_solver",
|
||||
"solver_to_sumk_block"]:
|
||||
ret[element] = getattr(self,element)
|
||||
|
||||
def construct_mapping(mapping):
|
||||
d = []
|
||||
for ish in range(len(mapping)):
|
||||
d.append({})
|
||||
for k,v in mapping[ish].iteritems():
|
||||
d[ish][repr(k)] = repr(v)
|
||||
return d
|
||||
|
||||
ret['solver_to_sumk']=construct_mapping(self.solver_to_sumk)
|
||||
ret['sumk_to_solver']=construct_mapping(self.sumk_to_solver)
|
||||
return ret
|
||||
|
||||
@classmethod
|
||||
def __factory_from_dict__(cls,name,D) :
|
||||
""" Create from dict for HDF5 import."""
|
||||
|
||||
def reconstruct_mapping(mapping):
|
||||
d = []
|
||||
for ish in range(len(mapping)):
|
||||
d.append({})
|
||||
for k,v in mapping[ish].iteritems():
|
||||
# literal_eval is a saje alternative to eval
|
||||
d[ish][literal_eval(k)] = literal_eval(v)
|
||||
return d
|
||||
|
||||
D['solver_to_sumk']=reconstruct_mapping(D['solver_to_sumk'])
|
||||
D['sumk_to_solver']=reconstruct_mapping(D['sumk_to_solver'])
|
||||
return cls(**D)
|
||||
|
||||
def __str__(self):
|
||||
s=''
|
||||
s+= "gf_struct_sumk "+str( self.gf_struct_sumk)+'\n'
|
||||
s+= "gf_struct_solver "+str(self.gf_struct_solver)+'\n'
|
||||
s+= "solver_to_sumk_block "+str(self.solver_to_sumk_block)+'\n'
|
||||
for el in ['solver_to_sumk','sumk_to_solver']:
|
||||
s+=el+'\n'
|
||||
element=getattr(self,el)
|
||||
for ish in range(len(element)):
|
||||
s+=' shell '+str(ish)+'\n'
|
||||
def keyfun(el):
|
||||
return '{}_{:05d}'.format(el[0],el[1])
|
||||
keys = sorted(element[ish].keys(),key=keyfun)
|
||||
for k in keys:
|
||||
s+=' '+str(k)+str(element[ish][k])+'\n'
|
||||
return s
|
||||
|
||||
from pytriqs.archive.hdf_archive_schemes import register_class
|
||||
register_class(BlockStructure)
|
@ -3,8 +3,8 @@ import sys
|
||||
import subprocess
|
||||
|
||||
if len(sys.argv) < 2:
|
||||
print "Usage: python clear_h5_output.py archive"
|
||||
sys.exit()
|
||||
print "Usage: python clear_h5_output.py archive"
|
||||
sys.exit()
|
||||
|
||||
print """
|
||||
This script is to remove any SumkDFT generated output from the h5 archive
|
||||
@ -13,13 +13,14 @@ and to restore it to the original post-converter state.
|
||||
|
||||
filename = sys.argv[1]
|
||||
A = h5py.File(filename)
|
||||
for group in ['dmft_output','user_data']:
|
||||
if group in A: del(A[group])
|
||||
for group in ['dmft_output', 'user_data']:
|
||||
if group in A:
|
||||
del(A[group])
|
||||
A.close()
|
||||
|
||||
# Repack to reclaim disk space
|
||||
retcode = subprocess.call(["h5repack","-i%s"%filename, "-otemphgfrt.h5"])
|
||||
retcode = subprocess.call(["h5repack", "-i%s" % filename, "-otemphgfrt.h5"])
|
||||
if retcode != 0:
|
||||
print "h5repack failed!"
|
||||
else:
|
||||
subprocess.call(["mv","-f","temphgfrt.h5","%s"%filename])
|
||||
subprocess.call(["mv", "-f", "temphgfrt.h5", "%s" % filename])
|
||||
|
@ -1,5 +1,5 @@
|
||||
|
||||
################################################################################
|
||||
##########################################################################
|
||||
#
|
||||
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
#
|
||||
@ -18,7 +18,7 @@
|
||||
# You should have received a copy of the GNU General Public License along with
|
||||
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
################################################################################
|
||||
##########################################################################
|
||||
|
||||
from wien2k_converter import Wien2kConverter
|
||||
from hk_converter import HkConverter
|
||||
@ -27,4 +27,3 @@ from wannier90_converter import Wannier90Converter
|
||||
|
||||
__all__ =['Wien2kConverter','HkConverter','Wannier90Converter','VaspConverter']
|
||||
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
|
||||
################################################################################
|
||||
##########################################################################
|
||||
#
|
||||
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
#
|
||||
@ -18,13 +18,17 @@
|
||||
# You should have received a copy of the GNU General Public License along with
|
||||
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
################################################################################
|
||||
##########################################################################
|
||||
from pytriqs.cmake_info import hdf5_command_path
|
||||
import pytriqs.utility.mpi as mpi
|
||||
|
||||
|
||||
class ConverterTools:
|
||||
|
||||
def read_fortran_file(self,filename,to_replace):
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def read_fortran_file(self, filename, to_replace):
|
||||
"""
|
||||
Returns a generator that yields all numbers in the Fortran file as float, with possible replacements.
|
||||
|
||||
@ -34,7 +38,7 @@ class ConverterTools:
|
||||
Name of Fortran-produced file.
|
||||
to_replace : dict of str:str
|
||||
Dictionary defining old_char:new_char.
|
||||
|
||||
|
||||
Yields
|
||||
------
|
||||
string
|
||||
@ -43,11 +47,13 @@ class ConverterTools:
|
||||
"""
|
||||
import os.path
|
||||
import string
|
||||
if not(os.path.exists(filename)) : raise IOError, "File %s does not exist."%filename
|
||||
for line in open(filename,'r') :
|
||||
for old,new in to_replace.iteritems(): line = line.replace(old,new)
|
||||
for x in line.split(): yield string.atof(x)
|
||||
|
||||
if not(os.path.exists(filename)):
|
||||
raise IOError, "File %s does not exist." % filename
|
||||
for line in open(filename, 'r'):
|
||||
for old, new in to_replace.iteritems():
|
||||
line = line.replace(old, new)
|
||||
for x in line.split():
|
||||
yield string.atof(x)
|
||||
|
||||
def repack(self):
|
||||
"""
|
||||
@ -62,17 +68,18 @@ class ConverterTools:
|
||||
|
||||
import subprocess
|
||||
|
||||
if not (mpi.is_master_node()): return
|
||||
mpi.report("Repacking the file %s"%self.hdf_file)
|
||||
if not (mpi.is_master_node()):
|
||||
return
|
||||
mpi.report("Repacking the file %s" % self.hdf_file)
|
||||
|
||||
retcode = subprocess.call([hdf5_command_path+"/h5repack","-i%s"%self.hdf_file,"-otemphgfrt.h5"])
|
||||
retcode = subprocess.call(
|
||||
[hdf5_command_path + "/h5repack", "-i%s" % self.hdf_file, "-otemphgfrt.h5"])
|
||||
if retcode != 0:
|
||||
mpi.report("h5repack failed!")
|
||||
else:
|
||||
subprocess.call(["mv","-f","temphgfrt.h5","%s"%self.hdf_file])
|
||||
|
||||
subprocess.call(["mv", "-f", "temphgfrt.h5", "%s" % self.hdf_file])
|
||||
|
||||
def det_shell_equivalence(self,corr_shells):
|
||||
def det_shell_equivalence(self, corr_shells):
|
||||
"""
|
||||
Determine the equivalence of correlated shells.
|
||||
|
||||
@ -80,7 +87,7 @@ class ConverterTools:
|
||||
----------
|
||||
corr_shells : list of dicts
|
||||
See documentation of necessary hdf5 elements.
|
||||
|
||||
|
||||
Returns
|
||||
-------
|
||||
n_inequiv_shells : integer
|
||||
@ -102,19 +109,19 @@ class ConverterTools:
|
||||
n_inequiv_shells = 1
|
||||
|
||||
if len(corr_shells) > 1:
|
||||
inequiv_sort = [ corr_shells[0]['sort'] ]
|
||||
inequiv_l = [ corr_shells[0]['l'] ]
|
||||
for i in range(len(corr_shells)-1):
|
||||
inequiv_sort = [corr_shells[0]['sort']]
|
||||
inequiv_l = [corr_shells[0]['l']]
|
||||
for i in range(len(corr_shells) - 1):
|
||||
is_equiv = False
|
||||
for j in range(n_inequiv_shells):
|
||||
if (inequiv_sort[j]==corr_shells[i+1]['sort']) and (inequiv_l[j]==corr_shells[i+1]['l']):
|
||||
if (inequiv_sort[j] == corr_shells[i + 1]['sort']) and (inequiv_l[j] == corr_shells[i + 1]['l']):
|
||||
is_equiv = True
|
||||
corr_to_inequiv[i+1] = j
|
||||
if is_equiv==False:
|
||||
corr_to_inequiv[i+1] = n_inequiv_shells
|
||||
corr_to_inequiv[i + 1] = j
|
||||
if is_equiv == False:
|
||||
corr_to_inequiv[i + 1] = n_inequiv_shells
|
||||
n_inequiv_shells += 1
|
||||
inequiv_sort.append( corr_shells[i+1]['sort'] )
|
||||
inequiv_l.append( corr_shells[i+1]['l'] )
|
||||
inequiv_to_corr.append( i+1 )
|
||||
inequiv_sort.append(corr_shells[i + 1]['sort'])
|
||||
inequiv_l.append(corr_shells[i + 1]['l'])
|
||||
inequiv_to_corr.append(i + 1)
|
||||
|
||||
return n_inequiv_shells, corr_to_inequiv, inequiv_to_corr
|
||||
|
@ -1,5 +1,5 @@
|
||||
|
||||
################################################################################
|
||||
##########################################################################
|
||||
#
|
||||
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
#
|
||||
@ -18,7 +18,7 @@
|
||||
# You should have received a copy of the GNU General Public License along with
|
||||
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
################################################################################
|
||||
##########################################################################
|
||||
|
||||
from types import *
|
||||
import numpy
|
||||
@ -27,12 +27,13 @@ import pytriqs.utility.mpi as mpi
|
||||
from math import sqrt
|
||||
from converter_tools import *
|
||||
|
||||
|
||||
class HkConverter(ConverterTools):
|
||||
"""
|
||||
Conversion from general H(k) file to an hdf5 file that can be used as input for the SumKDFT class.
|
||||
"""
|
||||
|
||||
def __init__(self, filename, hdf_filename = None, dft_subgrp = 'dft_input', symmcorr_subgrp = 'dft_symmcorr_input', repacking = False):
|
||||
def __init__(self, filename, hdf_filename=None, dft_subgrp='dft_input', symmcorr_subgrp='dft_symmcorr_input', repacking=False):
|
||||
"""
|
||||
Initialise the class.
|
||||
|
||||
@ -49,24 +50,25 @@ class HkConverter(ConverterTools):
|
||||
The group is actually empty; it is just included for compatibility.
|
||||
repacking : boolean, optional
|
||||
Does the hdf5 archive need to be repacked to save space?
|
||||
|
||||
|
||||
"""
|
||||
|
||||
assert type(filename)==StringType,"HkConverter: filename must be a filename."
|
||||
if hdf_filename is None: hdf_filename = filename+'.h5'
|
||||
assert type(
|
||||
filename) == StringType, "HkConverter: filename must be a filename."
|
||||
if hdf_filename is None:
|
||||
hdf_filename = filename + '.h5'
|
||||
self.hdf_file = hdf_filename
|
||||
self.dft_file = filename
|
||||
self.dft_subgrp = dft_subgrp
|
||||
self.symmcorr_subgrp = symmcorr_subgrp
|
||||
self.fortran_to_replace = {'D':'E', '(':' ', ')':' ', ',':' '}
|
||||
self.fortran_to_replace = {'D': 'E', '(': ' ', ')': ' ', ',': ' '}
|
||||
|
||||
# Checks if h5 file is there and repacks it if wanted:
|
||||
import os.path
|
||||
if (os.path.exists(self.hdf_file) and repacking):
|
||||
ConverterTools.repack(self)
|
||||
|
||||
|
||||
def convert_dft_input(self, first_real_part_matrix = True, only_upper_triangle = False, weights_in_file = False):
|
||||
def convert_dft_input(self, first_real_part_matrix=True, only_upper_triangle=False, weights_in_file=False):
|
||||
"""
|
||||
Reads the appropriate files and stores the data for the dft_subgrp in the hdf5 archive.
|
||||
|
||||
@ -80,71 +82,97 @@ class HkConverter(ConverterTools):
|
||||
Are the k-point weights to be read in?
|
||||
|
||||
"""
|
||||
|
||||
# Read and write only on the master node
|
||||
if not (mpi.is_master_node()): return
|
||||
mpi.report("Reading input from %s..."%self.dft_file)
|
||||
|
||||
# R is a generator : each R.Next() will return the next number in the file
|
||||
R = ConverterTools.read_fortran_file(self,self.dft_file,self.fortran_to_replace)
|
||||
# Read and write only on the master node
|
||||
if not (mpi.is_master_node()):
|
||||
return
|
||||
mpi.report("Reading input from %s..." % self.dft_file)
|
||||
|
||||
# R is a generator : each R.Next() will return the next number in the
|
||||
# file
|
||||
R = ConverterTools.read_fortran_file(
|
||||
self, self.dft_file, self.fortran_to_replace)
|
||||
try:
|
||||
energy_unit = 1.0 # the energy conversion factor is 1.0, we assume eV in files
|
||||
n_k = int(R.next()) # read the number of k points
|
||||
k_dep_projection = 0
|
||||
# the energy conversion factor is 1.0, we assume eV in files
|
||||
energy_unit = 1.0
|
||||
# read the number of k points
|
||||
n_k = int(R.next())
|
||||
k_dep_projection = 0
|
||||
SP = 0 # no spin-polarision
|
||||
SO = 0 # no spin-orbit
|
||||
charge_below = 0.0 # total charge below energy window is set to 0
|
||||
density_required = R.next() # density required, for setting the chemical potential
|
||||
SO = 0 # no spin-orbit
|
||||
# total charge below energy window is set to 0
|
||||
charge_below = 0.0
|
||||
# density required, for setting the chemical potential
|
||||
density_required = R.next()
|
||||
symm_op = 0 # No symmetry groups for the k-sum
|
||||
|
||||
# the information on the non-correlated shells is needed for defining dimension of matrices:
|
||||
n_shells = int(R.next()) # number of shells considered in the Wanniers
|
||||
# corresponds to index R in formulas
|
||||
# the information on the non-correlated shells is needed for
|
||||
# defining dimension of matrices:
|
||||
# number of shells considered in the Wanniers
|
||||
n_shells = int(R.next())
|
||||
# corresponds to index R in formulas
|
||||
# now read the information about the shells (atom, sort, l, dim):
|
||||
shell_entries = ['atom', 'sort', 'l', 'dim']
|
||||
shells = [ {name: int(val) for name, val in zip(shell_entries, R)} for ish in range(n_shells) ]
|
||||
shells = [{name: int(val) for name, val in zip(
|
||||
shell_entries, R)} for ish in range(n_shells)]
|
||||
|
||||
n_corr_shells = int(R.next()) # number of corr. shells (e.g. Fe d, Ce f) in the unit cell,
|
||||
# corresponds to index R in formulas
|
||||
# now read the information about the shells (atom, sort, l, dim, SO flag, irep):
|
||||
corr_shell_entries = ['atom', 'sort', 'l', 'dim', 'SO', 'irep']
|
||||
corr_shells = [ {name: int(val) for name, val in zip(corr_shell_entries, R)} for icrsh in range(n_corr_shells) ]
|
||||
# number of corr. shells (e.g. Fe d, Ce f) in the unit cell,
|
||||
n_corr_shells = int(R.next())
|
||||
# corresponds to index R in formulas
|
||||
# now read the information about the shells (atom, sort, l, dim, SO
|
||||
# flag, irep):
|
||||
corr_shell_entries = ['atom', 'sort', 'l', 'dim','SO','irep']
|
||||
corr_shells = [{name: int(val) for name, val in zip(
|
||||
corr_shell_entries, R)} for icrsh in range(n_corr_shells)]
|
||||
|
||||
# determine the number of inequivalent correlated shells and maps, needed for further reading
|
||||
[n_inequiv_shells, corr_to_inequiv, inequiv_to_corr] = ConverterTools.det_shell_equivalence(self,corr_shells)
|
||||
# determine the number of inequivalent correlated shells and maps,
|
||||
# needed for further reading
|
||||
[n_inequiv_shells, corr_to_inequiv,
|
||||
inequiv_to_corr] = ConverterTools.det_shell_equivalence(self, corr_shells)
|
||||
|
||||
use_rotations = 0
|
||||
rot_mat = [numpy.identity(corr_shells[icrsh]['dim'],numpy.complex_) for icrsh in range(n_corr_shells)]
|
||||
rot_mat = [numpy.identity(
|
||||
corr_shells[icrsh]['dim'], numpy.complex_) for icrsh in range(n_corr_shells)]
|
||||
rot_mat_time_inv = [0 for i in range(n_corr_shells)]
|
||||
|
||||
|
||||
# Representative representations are read from file
|
||||
n_reps = [1 for i in range(n_inequiv_shells)]
|
||||
dim_reps = [0 for i in range(n_inequiv_shells)]
|
||||
T = []
|
||||
for ish in range(n_inequiv_shells):
|
||||
n_reps[ish] = int(R.next()) # number of representatives ("subsets"), e.g. t2g and eg
|
||||
dim_reps[ish] = [int(R.next()) for i in range(n_reps[ish])] # dimensions of the subsets
|
||||
|
||||
# number of representatives ("subsets"), e.g. t2g and eg
|
||||
n_reps[ish] = int(R.next())
|
||||
dim_reps[ish] = [int(R.next()) for i in range(
|
||||
n_reps[ish])] # dimensions of the subsets
|
||||
|
||||
# The transformation matrix:
|
||||
# is of dimension 2l+1, it is taken to be standard d (as in Wien2k)
|
||||
ll = 2*corr_shells[inequiv_to_corr[ish]]['l']+1
|
||||
# is of dimension 2l+1, it is taken to be standard d (as in
|
||||
# Wien2k)
|
||||
ll = 2 * corr_shells[inequiv_to_corr[ish]]['l'] + 1
|
||||
lmax = ll * (corr_shells[inequiv_to_corr[ish]]['SO'] + 1)
|
||||
T.append(numpy.zeros([lmax,lmax],numpy.complex_))
|
||||
|
||||
T.append(numpy.zeros([lmax, lmax], numpy.complex_))
|
||||
|
||||
T[ish] = numpy.array([[0.0, 0.0, 1.0, 0.0, 0.0],
|
||||
[1.0/sqrt(2.0), 0.0, 0.0, 0.0, 1.0/sqrt(2.0)],
|
||||
[-1.0/sqrt(2.0), 0.0, 0.0, 0.0, 1.0/sqrt(2.0)],
|
||||
[0.0, 1.0/sqrt(2.0), 0.0, -1.0/sqrt(2.0), 0.0],
|
||||
[0.0, 1.0/sqrt(2.0), 0.0, 1.0/sqrt(2.0), 0.0]])
|
||||
[1.0 / sqrt(2.0), 0.0, 0.0,
|
||||
0.0, 1.0 / sqrt(2.0)],
|
||||
[-1.0 / sqrt(2.0), 0.0, 0.0,
|
||||
0.0, 1.0 / sqrt(2.0)],
|
||||
[0.0, 1.0 /
|
||||
sqrt(2.0), 0.0, -1.0 / sqrt(2.0), 0.0],
|
||||
[0.0, 1.0 / sqrt(2.0), 0.0, 1.0 / sqrt(2.0), 0.0]])
|
||||
|
||||
# Spin blocks to be read:
|
||||
n_spin_blocs = SP + 1 - SO # number of spins to read for Norbs and Ham, NOT Projectors
|
||||
|
||||
# define the number of n_orbitals for all k points: it is the number of total bands and independent of k!
|
||||
n_orbitals = numpy.ones([n_k,n_spin_blocs],numpy.int) * sum([ sh['dim'] for sh in shells ])
|
||||
# number of spins to read for Norbs and Ham, NOT Projectors
|
||||
n_spin_blocs = SP + 1 - SO
|
||||
|
||||
# define the number of n_orbitals for all k points: it is the
|
||||
# number of total bands and independent of k!
|
||||
n_orbitals = numpy.ones(
|
||||
[n_k, n_spin_blocs], numpy.int) * sum([sh['dim'] for sh in shells])
|
||||
|
||||
# Initialise the projectors:
|
||||
proj_mat = numpy.zeros([n_k,n_spin_blocs,n_corr_shells,max([crsh['dim'] for crsh in corr_shells]),max(n_orbitals)],numpy.complex_)
|
||||
proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max(
|
||||
[crsh['dim'] for crsh in corr_shells]), max(n_orbitals)], numpy.complex_)
|
||||
|
||||
# Read the projectors from the file:
|
||||
for ik in range(n_k):
|
||||
@ -155,76 +183,90 @@ class HkConverter(ConverterTools):
|
||||
offset = 0
|
||||
n_orb = 0
|
||||
for ish in range(n_shells):
|
||||
if (n_orb==0):
|
||||
if (shells[ish]['atom']==corr_shells[icrsh]['atom']) and (shells[ish]['sort']==corr_shells[icrsh]['sort']):
|
||||
if (n_orb == 0):
|
||||
if (shells[ish]['atom'] == corr_shells[icrsh]['atom']) and (shells[ish]['sort'] == corr_shells[icrsh]['sort']):
|
||||
n_orb = corr_shells[icrsh]['dim']
|
||||
else:
|
||||
offset += shells[ish]['dim']
|
||||
|
||||
proj_mat[ik,isp,icrsh,0:n_orb,offset:offset+n_orb] = numpy.identity(n_orb)
|
||||
|
||||
proj_mat[ik, isp, icrsh, 0:n_orb,
|
||||
offset:offset + n_orb] = numpy.identity(n_orb)
|
||||
|
||||
# now define the arrays for weights and hopping ...
|
||||
bz_weights = numpy.ones([n_k],numpy.float_)/ float(n_k) # w(k_index), default normalisation
|
||||
hopping = numpy.zeros([n_k,n_spin_blocs,max(n_orbitals),max(n_orbitals)],numpy.complex_)
|
||||
# w(k_index), default normalisation
|
||||
bz_weights = numpy.ones([n_k], numpy.float_) / float(n_k)
|
||||
hopping = numpy.zeros([n_k, n_spin_blocs, max(
|
||||
n_orbitals), max(n_orbitals)], numpy.complex_)
|
||||
|
||||
if (weights_in_file):
|
||||
# weights in the file
|
||||
for ik in range(n_k) : bz_weights[ik] = R.next()
|
||||
|
||||
for ik in range(n_k):
|
||||
bz_weights[ik] = R.next()
|
||||
|
||||
# if the sum over spins is in the weights, take it out again!!
|
||||
sm = sum(bz_weights)
|
||||
bz_weights[:] /= sm
|
||||
bz_weights[:] /= sm
|
||||
|
||||
# Grab the H
|
||||
for isp in range(n_spin_blocs):
|
||||
for ik in range(n_k) :
|
||||
n_orb = n_orbitals[ik,isp]
|
||||
for ik in range(n_k):
|
||||
n_orb = n_orbitals[ik, isp]
|
||||
|
||||
# first read all real components for given k, then read
|
||||
# imaginary parts
|
||||
if (first_real_part_matrix):
|
||||
|
||||
if (first_real_part_matrix): # first read all real components for given k, then read imaginary parts
|
||||
|
||||
for i in range(n_orb):
|
||||
if (only_upper_triangle):
|
||||
istart = i
|
||||
else:
|
||||
istart = 0
|
||||
for j in range(istart,n_orb):
|
||||
hopping[ik,isp,i,j] = R.next()
|
||||
|
||||
for j in range(istart, n_orb):
|
||||
hopping[ik, isp, i, j] = R.next()
|
||||
|
||||
for i in range(n_orb):
|
||||
if (only_upper_triangle):
|
||||
istart = i
|
||||
else:
|
||||
istart = 0
|
||||
for j in range(istart,n_orb):
|
||||
hopping[ik,isp,i,j] += R.next() * 1j
|
||||
if ((only_upper_triangle)and(i!=j)): hopping[ik,isp,j,i] = hopping[ik,isp,i,j].conjugate()
|
||||
|
||||
else: # read (real,im) tuple
|
||||
|
||||
for j in range(istart, n_orb):
|
||||
hopping[ik, isp, i, j] += R.next() * 1j
|
||||
if ((only_upper_triangle)and(i != j)):
|
||||
hopping[ik, isp, j, i] = hopping[
|
||||
ik, isp, i, j].conjugate()
|
||||
|
||||
else: # read (real,im) tuple
|
||||
|
||||
for i in range(n_orb):
|
||||
if (only_upper_triangle):
|
||||
istart = i
|
||||
else:
|
||||
istart = 0
|
||||
for j in range(istart,n_orb):
|
||||
hopping[ik,isp,i,j] = R.next()
|
||||
hopping[ik,isp,i,j] += R.next() * 1j
|
||||
|
||||
if ((only_upper_triangle)and(i!=j)): hopping[ik,isp,j,i] = hopping[ik,isp,i,j].conjugate()
|
||||
for j in range(istart, n_orb):
|
||||
hopping[ik, isp, i, j] = R.next()
|
||||
hopping[ik, isp, i, j] += R.next() * 1j
|
||||
|
||||
if ((only_upper_triangle)and(i != j)):
|
||||
hopping[ik, isp, j, i] = hopping[
|
||||
ik, isp, i, j].conjugate()
|
||||
# keep some things that we need for reading parproj:
|
||||
things_to_set = ['n_shells','shells','n_corr_shells','corr_shells','n_spin_blocs','n_orbitals','n_k','SO','SP','energy_unit']
|
||||
for it in things_to_set: setattr(self,it,locals()[it])
|
||||
except StopIteration : # a more explicit error if the file is corrupted.
|
||||
things_to_set = ['n_shells', 'shells', 'n_corr_shells', 'corr_shells',
|
||||
'n_spin_blocs', 'n_orbitals', 'n_k', 'SO', 'SP', 'energy_unit']
|
||||
for it in things_to_set:
|
||||
setattr(self, it, locals()[it])
|
||||
except StopIteration: # a more explicit error if the file is corrupted.
|
||||
raise "HK Converter : reading file dft_file failed!"
|
||||
|
||||
R.close()
|
||||
|
||||
# Save to the HDF5:
|
||||
ar = HDFArchive(self.hdf_file,'a')
|
||||
if not (self.dft_subgrp in ar): ar.create_group(self.dft_subgrp)
|
||||
things_to_save = ['energy_unit','n_k','k_dep_projection','SP','SO','charge_below','density_required',
|
||||
'symm_op','n_shells','shells','n_corr_shells','corr_shells','use_rotations','rot_mat',
|
||||
'rot_mat_time_inv','n_reps','dim_reps','T','n_orbitals','proj_mat','bz_weights','hopping',
|
||||
ar = HDFArchive(self.hdf_file, 'a')
|
||||
if not (self.dft_subgrp in ar):
|
||||
ar.create_group(self.dft_subgrp)
|
||||
things_to_save = ['energy_unit', 'n_k', 'k_dep_projection', 'SP', 'SO', 'charge_below', 'density_required',
|
||||
'symm_op', 'n_shells', 'shells', 'n_corr_shells', 'corr_shells', 'use_rotations', 'rot_mat',
|
||||
'rot_mat_time_inv', 'n_reps', 'dim_reps', 'T', 'n_orbitals', 'proj_mat', 'bz_weights', 'hopping',
|
||||
'n_inequiv_shells', 'corr_to_inequiv', 'inequiv_to_corr']
|
||||
for it in things_to_save: ar[self.dft_subgrp][it] = locals()[it]
|
||||
for it in things_to_save:
|
||||
ar[self.dft_subgrp][it] = locals()[it]
|
||||
del ar
|
||||
|
@ -91,7 +91,8 @@ class Wannier90Converter(ConverterTools):
|
||||
self.dft_subgrp = dft_subgrp
|
||||
self.symmcorr_subgrp = symmcorr_subgrp
|
||||
self.fortran_to_replace = {'D': 'E'}
|
||||
# threshold below which matrix elements from wannier90 should be considered equal
|
||||
# threshold below which matrix elements from wannier90 should be
|
||||
# considered equal
|
||||
self._w90zero = 2.e-6
|
||||
|
||||
# Checks if h5 file is there and repacks it if wanted:
|
||||
@ -114,12 +115,14 @@ class Wannier90Converter(ConverterTools):
|
||||
return
|
||||
mpi.report("Reading input from %s..." % self.inp_file)
|
||||
|
||||
# R is a generator : each R.Next() will return the next number in the file
|
||||
# R is a generator : each R.Next() will return the next number in the
|
||||
# file
|
||||
R = ConverterTools.read_fortran_file(
|
||||
self, self.inp_file, self.fortran_to_replace)
|
||||
shell_entries = ['atom', 'sort', 'l', 'dim']
|
||||
corr_shell_entries = ['atom', 'sort', 'l', 'dim', 'SO', 'irep']
|
||||
# First, let's read the input file with the parameters needed for the conversion
|
||||
# First, let's read the input file with the parameters needed for the
|
||||
# conversion
|
||||
try:
|
||||
# read k - point mesh generation option
|
||||
kmesh_mode = int(R.next())
|
||||
@ -135,7 +138,8 @@ class Wannier90Converter(ConverterTools):
|
||||
# and the data will be copied from corr_shells into shells (see below)
|
||||
# number of corr. shells (e.g. Fe d, Ce f) in the unit cell,
|
||||
n_corr_shells = int(R.next())
|
||||
# now read the information about the correlated shells (atom, sort, l, dim, SO flag, irep):
|
||||
# now read the information about the correlated shells (atom, sort,
|
||||
# l, dim, SO flag, irep):
|
||||
corr_shells = [{name: int(val) for name, val in zip(
|
||||
corr_shell_entries, R)} for icrsh in range(n_corr_shells)]
|
||||
except StopIteration: # a more explicit error if the file is corrupted.
|
||||
@ -147,7 +151,7 @@ class Wannier90Converter(ConverterTools):
|
||||
# Set or derive some quantities
|
||||
# Wannier90 does not use symmetries to reduce the k-points
|
||||
# the following might change in future versions
|
||||
symm_op = 0
|
||||
symm_op = 0
|
||||
# copy corr_shells into shells (see above)
|
||||
n_shells = n_corr_shells
|
||||
shells = []
|
||||
@ -166,7 +170,8 @@ class Wannier90Converter(ConverterTools):
|
||||
mpi.report(
|
||||
"Total number of WFs expected in the correlated shells: %d" % dim_corr_shells)
|
||||
|
||||
# determine the number of inequivalent correlated shells and maps, needed for further processing
|
||||
# determine the number of inequivalent correlated shells and maps,
|
||||
# needed for further processing
|
||||
n_inequiv_shells, corr_to_inequiv, inequiv_to_corr = ConverterTools.det_shell_equivalence(
|
||||
self, corr_shells)
|
||||
mpi.report("Number of inequivalent shells: %d" % n_inequiv_shells)
|
||||
@ -176,7 +181,8 @@ class Wannier90Converter(ConverterTools):
|
||||
mpi.report("Mapping: " + format(shells_map))
|
||||
|
||||
# build the k-point mesh, if its size was given on input (kmesh_mode >= 0),
|
||||
# otherwise it is built according to the data in the hr file (see below)
|
||||
# otherwise it is built according to the data in the hr file (see
|
||||
# below)
|
||||
if kmesh_mode >= 0:
|
||||
n_k, k_mesh, bz_weights = self.kmesh_build(nki, kmesh_mode)
|
||||
self.n_k = n_k
|
||||
@ -197,7 +203,8 @@ class Wannier90Converter(ConverterTools):
|
||||
# TODO: generalise to SP=1 (only partially done)
|
||||
rot_mat_time_inv = [0 for i in range(n_corr_shells)]
|
||||
|
||||
# Second, let's read the file containing the Hamiltonian in WF basis produced by Wannier90
|
||||
# Second, let's read the file containing the Hamiltonian in WF basis
|
||||
# produced by Wannier90
|
||||
for isp in range(n_spin):
|
||||
# begin loop on isp
|
||||
|
||||
@ -212,20 +219,24 @@ class Wannier90Converter(ConverterTools):
|
||||
mpi.report(
|
||||
"The Hamiltonian in MLWF basis is extracted from %s ..." % hr_file)
|
||||
nr, rvec, rdeg, nw, hamr = self.read_wannier90hr(hr_file)
|
||||
# number of R vectors, their indices, their degeneracy, number of WFs, H(R)
|
||||
# number of R vectors, their indices, their degeneracy, number of
|
||||
# WFs, H(R)
|
||||
mpi.report("... done: %d R vectors, %d WFs found" % (nr, nw))
|
||||
|
||||
if isp == 0:
|
||||
# set or check some quantities that must be the same for both spins
|
||||
# set or check some quantities that must be the same for both
|
||||
# spins
|
||||
self.nrpt = nr
|
||||
|
||||
# k-point grid: (if not defined before)
|
||||
if kmesh_mode == -1:
|
||||
# the size of the k-point mesh is determined from the largest R vector
|
||||
# the size of the k-point mesh is determined from the
|
||||
# largest R vector
|
||||
nki = [2 * rvec[:, idir].max() + 1 for idir in range(3)]
|
||||
# it will be the same as in the win only when nki is odd, because of the
|
||||
# wannier90 convention: if we have nki k-points along the i-th direction,
|
||||
# then we should get 2*(nki/2)+nki%2 R points along that direction
|
||||
# then we should get 2*(nki/2)+nki%2 R points along that
|
||||
# direction
|
||||
n_k, k_mesh, bz_weights = self.kmesh_build(nki)
|
||||
self.n_k = n_k
|
||||
self.k_mesh = k_mesh
|
||||
@ -237,33 +248,41 @@ class Wannier90Converter(ConverterTools):
|
||||
self.nwfs = nw
|
||||
# check that the total number of WFs makes sense
|
||||
if self.nwfs < dim_corr_shells:
|
||||
mpi.report("ERROR: number of WFs in the file smaller than number of correlated orbitals!")
|
||||
mpi.report(
|
||||
"ERROR: number of WFs in the file smaller than number of correlated orbitals!")
|
||||
elif self.nwfs > dim_corr_shells:
|
||||
# NOTE: correlated shells must appear before uncorrelated ones inside the file
|
||||
# NOTE: correlated shells must appear before uncorrelated
|
||||
# ones inside the file
|
||||
mpi.report("Number of WFs larger than correlated orbitals:\n" +
|
||||
"WFs from %d to %d treated as uncorrelated" % (dim_corr_shells + 1, self.nwfs))
|
||||
else:
|
||||
mpi.report("Number of WFs equal to number of correlated orbitals")
|
||||
mpi.report(
|
||||
"Number of WFs equal to number of correlated orbitals")
|
||||
|
||||
# we assume spin up and spin down always have same total number of WFs
|
||||
# we assume spin up and spin down always have same total number
|
||||
# of WFs
|
||||
n_orbitals = numpy.ones(
|
||||
[self.n_k, n_spin], numpy.int) * self.nwfs
|
||||
|
||||
else:
|
||||
# consistency check between the _up and _down file contents
|
||||
if nr != self.nrpt:
|
||||
mpi.report("Different number of R vectors for spin-up/spin-down!")
|
||||
mpi.report(
|
||||
"Different number of R vectors for spin-up/spin-down!")
|
||||
if nw != self.nwfs:
|
||||
mpi.report("Different number of WFs for spin-up/spin-down!")
|
||||
mpi.report(
|
||||
"Different number of WFs for spin-up/spin-down!")
|
||||
|
||||
hamr_full.append(hamr)
|
||||
# FIXME: when do we actually need deepcopy()?
|
||||
# hamr_full.append(deepcopy(hamr))
|
||||
|
||||
for ir in range(nr):
|
||||
# checks if the Hamiltonian is real (it should, if wannierisation worked fine)
|
||||
# checks if the Hamiltonian is real (it should, if
|
||||
# wannierisation worked fine)
|
||||
if numpy.abs((hamr[ir].imag.max()).max()) > self._w90zero:
|
||||
mpi.report("H(R) has large complex components at R %d" % ir)
|
||||
mpi.report(
|
||||
"H(R) has large complex components at R %d" % ir)
|
||||
# copy the R=0 block corresponding to the correlated shells
|
||||
# into another variable (needed later for finding rot_mat)
|
||||
if rvec[ir, 0] == 0 and rvec[ir, 1] == 0 and rvec[ir, 2] == 0:
|
||||
@ -273,17 +292,22 @@ class Wannier90Converter(ConverterTools):
|
||||
if not numpy.allclose(ham_corr0.transpose().conjugate(), ham_corr0, atol=self._w90zero, rtol=1.e-9):
|
||||
raise ValueError("H(R=0) matrix is not Hermitian!")
|
||||
|
||||
# find rot_mat symmetries by diagonalising the on-site Hamiltonian of the first spin
|
||||
# find rot_mat symmetries by diagonalising the on-site Hamiltonian
|
||||
# of the first spin
|
||||
if isp == 0:
|
||||
use_rotations, rot_mat = self.find_rot_mat(n_corr_shells, corr_shells, shells_map, ham_corr0)
|
||||
use_rotations, rot_mat = self.find_rot_mat(
|
||||
n_corr_shells, corr_shells, shells_map, ham_corr0)
|
||||
else:
|
||||
# consistency check
|
||||
use_rotations_, rot_mat_ = self.find_rot_mat(n_corr_shells, corr_shells, shells_map, ham_corr0)
|
||||
use_rotations_, rot_mat_ = self.find_rot_mat(
|
||||
n_corr_shells, corr_shells, shells_map, ham_corr0)
|
||||
if (use_rotations and not use_rotations_):
|
||||
mpi.report("Rotations cannot be used for spin component n. %d" % isp)
|
||||
mpi.report(
|
||||
"Rotations cannot be used for spin component n. %d" % isp)
|
||||
for icrsh in range(n_corr_shells):
|
||||
if not numpy.allclose(rot_mat_[icrsh], rot_mat[icrsh], atol=self._w90zero, rtol=1.e-15):
|
||||
mpi.report("Rotations for spin component n. %d do not match!" % isp)
|
||||
mpi.report(
|
||||
"Rotations for spin component n. %d do not match!" % isp)
|
||||
# end loop on isp
|
||||
|
||||
mpi.report("The k-point grid has dimensions: %d, %d, %d" % tuple(nki))
|
||||
@ -292,11 +316,14 @@ class Wannier90Converter(ConverterTools):
|
||||
bz_weights = 0.5 * bz_weights
|
||||
|
||||
# Third, compute the hoppings in reciprocal space
|
||||
hopping = numpy.zeros([self.n_k, n_spin, numpy.max(n_orbitals), numpy.max(n_orbitals)], numpy.complex_)
|
||||
hopping = numpy.zeros([self.n_k, n_spin, numpy.max(
|
||||
n_orbitals), numpy.max(n_orbitals)], numpy.complex_)
|
||||
for isp in range(n_spin):
|
||||
# make Fourier transform H(R) -> H(k) : it can be done one spin at a time
|
||||
# make Fourier transform H(R) -> H(k) : it can be done one spin at
|
||||
# a time
|
||||
hamk = self.fourier_ham(self.nwfs, hamr_full[isp])
|
||||
# copy the H(k) in the right place of hoppings... is there a better way to do this??
|
||||
# copy the H(k) in the right place of hoppings... is there a better
|
||||
# way to do this??
|
||||
for ik in range(self.n_k):
|
||||
#hopping[ik,isp,:,:] = deepcopy(hamk[ik][:,:])*energy_unit
|
||||
hopping[ik, isp, :, :] = hamk[ik][:, :] * energy_unit
|
||||
@ -309,7 +336,8 @@ class Wannier90Converter(ConverterTools):
|
||||
# Projectors simply consist in identity matrix blocks selecting those MLWFs that
|
||||
# correspond to the specific correlated shell indexed by icrsh.
|
||||
# NOTE: we assume that the correlated orbitals appear at the beginning of the H(R)
|
||||
# file and that the ordering of MLWFs matches the corr_shell info from the input.
|
||||
# file and that the ordering of MLWFs matches the corr_shell info from
|
||||
# the input.
|
||||
for icrsh in range(n_corr_shells):
|
||||
norb = corr_shells[icrsh]['dim']
|
||||
proj_mat[:, :, icrsh, 0:norb, iorb:iorb +
|
||||
@ -320,7 +348,8 @@ class Wannier90Converter(ConverterTools):
|
||||
ar = HDFArchive(self.hdf_file, 'a')
|
||||
if not (self.dft_subgrp in ar):
|
||||
ar.create_group(self.dft_subgrp)
|
||||
# The subgroup containing the data. If it does not exist, it is created. If it exists, the data is overwritten!
|
||||
# The subgroup containing the data. If it does not exist, it is
|
||||
# created. If it exists, the data is overwritten!
|
||||
things_to_save = ['energy_unit', 'n_k', 'k_dep_projection', 'SP', 'SO', 'charge_below', 'density_required',
|
||||
'symm_op', 'n_shells', 'shells', 'n_corr_shells', 'corr_shells', 'use_rotations', 'rot_mat',
|
||||
'rot_mat_time_inv', 'n_reps', 'dim_reps', 'T', 'n_orbitals', 'proj_mat', 'bz_weights', 'hopping',
|
||||
@ -373,7 +402,8 @@ class Wannier90Converter(ConverterTools):
|
||||
except ValueError:
|
||||
mpi.report("Could not read number of WFs or R vectors")
|
||||
|
||||
# allocate arrays to save the R vector indexes and degeneracies and the Hamiltonian
|
||||
# allocate arrays to save the R vector indexes and degeneracies and the
|
||||
# Hamiltonian
|
||||
rvec_idx = numpy.zeros((nrpt, 3), dtype=int)
|
||||
rvec_deg = numpy.zeros(nrpt, dtype=int)
|
||||
h_of_r = [numpy.zeros((num_wf, num_wf), dtype=numpy.complex_)
|
||||
@ -383,7 +413,8 @@ class Wannier90Converter(ConverterTools):
|
||||
currpos = 2
|
||||
try:
|
||||
ir = 0
|
||||
# read the degeneracy of the R vectors (needed for the Fourier transform)
|
||||
# read the degeneracy of the R vectors (needed for the Fourier
|
||||
# transform)
|
||||
while ir < nrpt:
|
||||
currpos += 1
|
||||
for x in hr_data[currpos].split():
|
||||
@ -540,7 +571,8 @@ class Wannier90Converter(ConverterTools):
|
||||
kmesh = numpy.zeros((nkpt, 3), dtype=float)
|
||||
ii = 0
|
||||
for ix, iy, iz in product(range(msize[0]), range(msize[1]), range(msize[2])):
|
||||
kmesh[ii, :] = [float(ix) / msize[0], float(iy) / msize[1], float(iz) / msize[2]]
|
||||
kmesh[ii, :] = [float(ix) / msize[0], float(iy) /
|
||||
msize[1], float(iz) / msize[2]]
|
||||
ii += 1
|
||||
# weight is equal for all k-points because wannier90 uses uniform grid on whole BZ
|
||||
# (normalization is always 1 and takes into account spin degeneracy)
|
||||
@ -568,11 +600,13 @@ class Wannier90Converter(ConverterTools):
|
||||
"""
|
||||
|
||||
twopi = 2 * numpy.pi
|
||||
h_of_k = [numpy.zeros((norb, norb), dtype=numpy.complex_) for ik in range(self.n_k)]
|
||||
h_of_k = [numpy.zeros((norb, norb), dtype=numpy.complex_)
|
||||
for ik in range(self.n_k)]
|
||||
ridx = numpy.array(range(self.nrpt))
|
||||
for ik, ir in product(range(self.n_k), ridx):
|
||||
rdotk = twopi * numpy.dot(self.k_mesh[ik], self.rvec[ir])
|
||||
factor = (math.cos(rdotk) + 1j * math.sin(rdotk)) / float(self.rdeg[ir])
|
||||
factor = (math.cos(rdotk) + 1j * math.sin(rdotk)) / \
|
||||
float(self.rdeg[ir])
|
||||
h_of_k[ik][:, :] += factor * h_of_r[ir][:, :]
|
||||
|
||||
return h_of_k
|
||||
|
@ -1,5 +1,5 @@
|
||||
|
||||
################################################################################
|
||||
##########################################################################
|
||||
#
|
||||
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
#
|
||||
@ -18,7 +18,7 @@
|
||||
# You should have received a copy of the GNU General Public License along with
|
||||
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
################################################################################
|
||||
##########################################################################
|
||||
|
||||
from types import *
|
||||
import numpy
|
||||
@ -26,16 +26,17 @@ from pytriqs.archive import *
|
||||
from converter_tools import *
|
||||
import os.path
|
||||
|
||||
|
||||
class Wien2kConverter(ConverterTools):
|
||||
"""
|
||||
Conversion from Wien2k output to an hdf5 file that can be used as input for the SumkDFT class.
|
||||
"""
|
||||
|
||||
def __init__(self, filename, hdf_filename = None,
|
||||
dft_subgrp = 'dft_input', symmcorr_subgrp = 'dft_symmcorr_input',
|
||||
parproj_subgrp='dft_parproj_input', symmpar_subgrp='dft_symmpar_input',
|
||||
bands_subgrp = 'dft_bands_input', misc_subgrp = 'dft_misc_input',
|
||||
transp_subgrp = 'dft_transp_input', repacking = False):
|
||||
def __init__(self, filename, hdf_filename=None,
|
||||
dft_subgrp='dft_input', symmcorr_subgrp='dft_symmcorr_input',
|
||||
parproj_subgrp='dft_parproj_input', symmpar_subgrp='dft_symmpar_input',
|
||||
bands_subgrp='dft_bands_input', misc_subgrp='dft_misc_input',
|
||||
transp_subgrp='dft_transp_input', repacking=False):
|
||||
"""
|
||||
Initialise the class.
|
||||
|
||||
@ -61,21 +62,23 @@ class Wien2kConverter(ConverterTools):
|
||||
Name of subgroup storing transport data.
|
||||
repacking : boolean, optional
|
||||
Does the hdf5 archive need to be repacked to save space?
|
||||
|
||||
|
||||
"""
|
||||
|
||||
assert type(filename)==StringType, "Wien2kConverter: Please provide the DFT files' base name as a string."
|
||||
if hdf_filename is None: hdf_filename = filename+'.h5'
|
||||
assert type(
|
||||
filename) == StringType, "Wien2kConverter: Please provide the DFT files' base name as a string."
|
||||
if hdf_filename is None:
|
||||
hdf_filename = filename + '.h5'
|
||||
self.hdf_file = hdf_filename
|
||||
self.dft_file = filename+'.ctqmcout'
|
||||
self.symmcorr_file = filename+'.symqmc'
|
||||
self.parproj_file = filename+'.parproj'
|
||||
self.symmpar_file = filename+'.sympar'
|
||||
self.band_file = filename+'.outband'
|
||||
self.bandwin_file = filename+'.oubwin'
|
||||
self.struct_file = filename+'.struct'
|
||||
self.outputs_file = filename+'.outputs'
|
||||
self.pmat_file = filename+'.pmat'
|
||||
self.dft_file = filename + '.ctqmcout'
|
||||
self.symmcorr_file = filename + '.symqmc'
|
||||
self.parproj_file = filename + '.parproj'
|
||||
self.symmpar_file = filename + '.sympar'
|
||||
self.band_file = filename + '.outband'
|
||||
self.bandwin_file = filename + '.oubwin'
|
||||
self.struct_file = filename + '.struct'
|
||||
self.outputs_file = filename + '.outputs'
|
||||
self.pmat_file = filename + '.pmat'
|
||||
self.dft_subgrp = dft_subgrp
|
||||
self.symmcorr_subgrp = symmcorr_subgrp
|
||||
self.parproj_subgrp = parproj_subgrp
|
||||
@ -83,13 +86,12 @@ class Wien2kConverter(ConverterTools):
|
||||
self.bands_subgrp = bands_subgrp
|
||||
self.misc_subgrp = misc_subgrp
|
||||
self.transp_subgrp = transp_subgrp
|
||||
self.fortran_to_replace = {'D':'E'}
|
||||
self.fortran_to_replace = {'D': 'E'}
|
||||
|
||||
# Checks if h5 file is there and repacks it if wanted:
|
||||
if (os.path.exists(self.hdf_file) and repacking):
|
||||
ConverterTools.repack(self)
|
||||
|
||||
|
||||
def convert_dft_input(self):
|
||||
"""
|
||||
Reads the appropriate files and stores the data for the
|
||||
@ -101,149 +103,180 @@ class Wien2kConverter(ConverterTools):
|
||||
in the hdf5 archive.
|
||||
|
||||
"""
|
||||
|
||||
# Read and write only on the master node
|
||||
if not (mpi.is_master_node()): return
|
||||
mpi.report("Reading input from %s..."%self.dft_file)
|
||||
|
||||
# R is a generator : each R.Next() will return the next number in the file
|
||||
R = ConverterTools.read_fortran_file(self,self.dft_file,self.fortran_to_replace)
|
||||
# Read and write only on the master node
|
||||
if not (mpi.is_master_node()):
|
||||
return
|
||||
mpi.report("Reading input from %s..." % self.dft_file)
|
||||
|
||||
# R is a generator : each R.Next() will return the next number in the
|
||||
# file
|
||||
R = ConverterTools.read_fortran_file(
|
||||
self, self.dft_file, self.fortran_to_replace)
|
||||
try:
|
||||
energy_unit = R.next() # read the energy convertion factor
|
||||
n_k = int(R.next()) # read the number of k points
|
||||
k_dep_projection = 1
|
||||
SP = int(R.next()) # flag for spin-polarised calculation
|
||||
SO = int(R.next()) # flag for spin-orbit calculation
|
||||
# read the number of k points
|
||||
n_k = int(R.next())
|
||||
k_dep_projection = 1
|
||||
# flag for spin-polarised calculation
|
||||
SP = int(R.next())
|
||||
# flag for spin-orbit calculation
|
||||
SO = int(R.next())
|
||||
charge_below = R.next() # total charge below energy window
|
||||
density_required = R.next() # total density required, for setting the chemical potential
|
||||
# total density required, for setting the chemical potential
|
||||
density_required = R.next()
|
||||
symm_op = 1 # Use symmetry groups for the k-sum
|
||||
|
||||
# the information on the non-correlated shells is not important here, maybe skip:
|
||||
n_shells = int(R.next()) # number of shells (e.g. Fe d, As p, O p) in the unit cell,
|
||||
# corresponds to index R in formulas
|
||||
# the information on the non-correlated shells is not important
|
||||
# here, maybe skip:
|
||||
# number of shells (e.g. Fe d, As p, O p) in the unit cell,
|
||||
n_shells = int(R.next())
|
||||
# corresponds to index R in formulas
|
||||
# now read the information about the shells (atom, sort, l, dim):
|
||||
shell_entries = ['atom', 'sort', 'l', 'dim']
|
||||
shells = [ {name: int(val) for name, val in zip(shell_entries, R)} for ish in range(n_shells) ]
|
||||
shells = [{name: int(val) for name, val in zip(
|
||||
shell_entries, R)} for ish in range(n_shells)]
|
||||
|
||||
n_corr_shells = int(R.next()) # number of corr. shells (e.g. Fe d, Ce f) in the unit cell,
|
||||
# corresponds to index R in formulas
|
||||
# now read the information about the shells (atom, sort, l, dim, SO flag, irep):
|
||||
# number of corr. shells (e.g. Fe d, Ce f) in the unit cell,
|
||||
n_corr_shells = int(R.next())
|
||||
# corresponds to index R in formulas
|
||||
# now read the information about the shells (atom, sort, l, dim, SO
|
||||
# flag, irep):
|
||||
corr_shell_entries = ['atom', 'sort', 'l', 'dim', 'SO', 'irep']
|
||||
corr_shells = [ {name: int(val) for name, val in zip(corr_shell_entries, R)} for icrsh in range(n_corr_shells) ]
|
||||
corr_shells = [{name: int(val) for name, val in zip(
|
||||
corr_shell_entries, R)} for icrsh in range(n_corr_shells)]
|
||||
|
||||
# determine the number of inequivalent correlated shells and maps, needed for further reading
|
||||
n_inequiv_shells, corr_to_inequiv, inequiv_to_corr = ConverterTools.det_shell_equivalence(self,corr_shells)
|
||||
# determine the number of inequivalent correlated shells and maps,
|
||||
# needed for further reading
|
||||
n_inequiv_shells, corr_to_inequiv, inequiv_to_corr = ConverterTools.det_shell_equivalence(
|
||||
self, corr_shells)
|
||||
|
||||
use_rotations = 1
|
||||
rot_mat = [numpy.identity(corr_shells[icrsh]['dim'],numpy.complex_) for icrsh in range(n_corr_shells)]
|
||||
|
||||
rot_mat = [numpy.identity(
|
||||
corr_shells[icrsh]['dim'], numpy.complex_) for icrsh in range(n_corr_shells)]
|
||||
|
||||
# read the matrices
|
||||
rot_mat_time_inv = [0 for i in range(n_corr_shells)]
|
||||
|
||||
for icrsh in range(n_corr_shells):
|
||||
for i in range(corr_shells[icrsh]['dim']): # read real part:
|
||||
for j in range(corr_shells[icrsh]['dim']):
|
||||
rot_mat[icrsh][i,j] = R.next()
|
||||
for i in range(corr_shells[icrsh]['dim']): # read imaginary part:
|
||||
rot_mat[icrsh][i, j] = R.next()
|
||||
# read imaginary part:
|
||||
for i in range(corr_shells[icrsh]['dim']):
|
||||
for j in range(corr_shells[icrsh]['dim']):
|
||||
rot_mat[icrsh][i,j] += 1j * R.next()
|
||||
rot_mat[icrsh][i, j] += 1j * R.next()
|
||||
|
||||
if (SP==1): # read time inversion flag:
|
||||
if (SP == 1): # read time inversion flag:
|
||||
rot_mat_time_inv[icrsh] = int(R.next())
|
||||
|
||||
|
||||
# Read here the info for the transformation of the basis:
|
||||
n_reps = [1 for i in range(n_inequiv_shells)]
|
||||
dim_reps = [0 for i in range(n_inequiv_shells)]
|
||||
T = []
|
||||
for ish in range(n_inequiv_shells):
|
||||
n_reps[ish] = int(R.next()) # number of representatives ("subsets"), e.g. t2g and eg
|
||||
dim_reps[ish] = [int(R.next()) for i in range(n_reps[ish])] # dimensions of the subsets
|
||||
|
||||
# number of representatives ("subsets"), e.g. t2g and eg
|
||||
n_reps[ish] = int(R.next())
|
||||
dim_reps[ish] = [int(R.next()) for i in range(
|
||||
n_reps[ish])] # dimensions of the subsets
|
||||
|
||||
# The transformation matrix:
|
||||
# is of dimension 2l+1 without SO, and 2*(2l+1) with SO!
|
||||
ll = 2*corr_shells[inequiv_to_corr[ish]]['l']+1
|
||||
ll = 2 * corr_shells[inequiv_to_corr[ish]]['l'] + 1
|
||||
lmax = ll * (corr_shells[inequiv_to_corr[ish]]['SO'] + 1)
|
||||
T.append(numpy.zeros([lmax,lmax],numpy.complex_))
|
||||
|
||||
T.append(numpy.zeros([lmax, lmax], numpy.complex_))
|
||||
|
||||
# now read it from file:
|
||||
for i in range(lmax):
|
||||
for j in range(lmax):
|
||||
T[ish][i,j] = R.next()
|
||||
T[ish][i, j] = R.next()
|
||||
for i in range(lmax):
|
||||
for j in range(lmax):
|
||||
T[ish][i,j] += 1j * R.next()
|
||||
|
||||
T[ish][i, j] += 1j * R.next()
|
||||
|
||||
# Spin blocks to be read:
|
||||
n_spin_blocs = SP + 1 - SO
|
||||
|
||||
n_spin_blocs = SP + 1 - SO
|
||||
|
||||
# read the list of n_orbitals for all k points
|
||||
n_orbitals = numpy.zeros([n_k,n_spin_blocs],numpy.int)
|
||||
n_orbitals = numpy.zeros([n_k, n_spin_blocs], numpy.int)
|
||||
for isp in range(n_spin_blocs):
|
||||
for ik in range(n_k):
|
||||
n_orbitals[ik,isp] = int(R.next())
|
||||
|
||||
n_orbitals[ik, isp] = int(R.next())
|
||||
|
||||
# Initialise the projectors:
|
||||
proj_mat = numpy.zeros([n_k,n_spin_blocs,n_corr_shells,max([crsh['dim'] for crsh in corr_shells]),numpy.max(n_orbitals)],numpy.complex_)
|
||||
proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max(
|
||||
[crsh['dim'] for crsh in corr_shells]), numpy.max(n_orbitals)], numpy.complex_)
|
||||
|
||||
# Read the projectors from the file:
|
||||
for ik in range(n_k):
|
||||
for icrsh in range(n_corr_shells):
|
||||
n_orb = corr_shells[icrsh]['dim']
|
||||
# first Real part for BOTH spins, due to conventions in dmftproj:
|
||||
# first Real part for BOTH spins, due to conventions in
|
||||
# dmftproj:
|
||||
for isp in range(n_spin_blocs):
|
||||
for i in range(n_orb):
|
||||
for j in range(n_orbitals[ik][isp]):
|
||||
proj_mat[ik,isp,icrsh,i,j] = R.next()
|
||||
proj_mat[ik, isp, icrsh, i, j] = R.next()
|
||||
# now Imag part:
|
||||
for isp in range(n_spin_blocs):
|
||||
for i in range(n_orb):
|
||||
for j in range(n_orbitals[ik][isp]):
|
||||
proj_mat[ik,isp,icrsh,i,j] += 1j * R.next()
|
||||
|
||||
proj_mat[ik, isp, icrsh, i, j] += 1j * R.next()
|
||||
|
||||
# now define the arrays for weights and hopping ...
|
||||
bz_weights = numpy.ones([n_k],numpy.float_)/ float(n_k) # w(k_index), default normalisation
|
||||
hopping = numpy.zeros([n_k,n_spin_blocs,numpy.max(n_orbitals),numpy.max(n_orbitals)],numpy.complex_)
|
||||
# w(k_index), default normalisation
|
||||
bz_weights = numpy.ones([n_k], numpy.float_) / float(n_k)
|
||||
hopping = numpy.zeros([n_k, n_spin_blocs, numpy.max(
|
||||
n_orbitals), numpy.max(n_orbitals)], numpy.complex_)
|
||||
|
||||
# weights in the file
|
||||
for ik in range(n_k) : bz_weights[ik] = R.next()
|
||||
|
||||
for ik in range(n_k):
|
||||
bz_weights[ik] = R.next()
|
||||
|
||||
# if the sum over spins is in the weights, take it out again!!
|
||||
sm = sum(bz_weights)
|
||||
bz_weights[:] /= sm
|
||||
bz_weights[:] /= sm
|
||||
|
||||
# Grab the H
|
||||
# we use now the convention of a DIAGONAL Hamiltonian -- convention for Wien2K.
|
||||
# we use now the convention of a DIAGONAL Hamiltonian -- convention
|
||||
# for Wien2K.
|
||||
for isp in range(n_spin_blocs):
|
||||
for ik in range(n_k) :
|
||||
n_orb = n_orbitals[ik,isp]
|
||||
for ik in range(n_k):
|
||||
n_orb = n_orbitals[ik, isp]
|
||||
for i in range(n_orb):
|
||||
hopping[ik,isp,i,i] = R.next() * energy_unit
|
||||
|
||||
hopping[ik, isp, i, i] = R.next() * energy_unit
|
||||
|
||||
# keep some things that we need for reading parproj:
|
||||
things_to_set = ['n_shells','shells','n_corr_shells','corr_shells','n_spin_blocs','n_orbitals','n_k','SO','SP','energy_unit']
|
||||
for it in things_to_set: setattr(self,it,locals()[it])
|
||||
except StopIteration : # a more explicit error if the file is corrupted.
|
||||
raise "Wien2k_converter : reading file %s failed!"%self.dft_file
|
||||
things_to_set = ['n_shells', 'shells', 'n_corr_shells', 'corr_shells',
|
||||
'n_spin_blocs', 'n_orbitals', 'n_k', 'SO', 'SP', 'energy_unit']
|
||||
for it in things_to_set:
|
||||
setattr(self, it, locals()[it])
|
||||
except StopIteration: # a more explicit error if the file is corrupted.
|
||||
raise "Wien2k_converter : reading file %s failed!" % self.dft_file
|
||||
|
||||
R.close()
|
||||
# Reading done!
|
||||
|
||||
|
||||
# Save it to the HDF:
|
||||
ar = HDFArchive(self.hdf_file,'a')
|
||||
if not (self.dft_subgrp in ar): ar.create_group(self.dft_subgrp)
|
||||
# The subgroup containing the data. If it does not exist, it is created. If it exists, the data is overwritten!
|
||||
things_to_save = ['energy_unit','n_k','k_dep_projection','SP','SO','charge_below','density_required',
|
||||
'symm_op','n_shells','shells','n_corr_shells','corr_shells','use_rotations','rot_mat',
|
||||
'rot_mat_time_inv','n_reps','dim_reps','T','n_orbitals','proj_mat','bz_weights','hopping',
|
||||
ar = HDFArchive(self.hdf_file, 'a')
|
||||
if not (self.dft_subgrp in ar):
|
||||
ar.create_group(self.dft_subgrp)
|
||||
# The subgroup containing the data. If it does not exist, it is
|
||||
# created. If it exists, the data is overwritten!
|
||||
things_to_save = ['energy_unit', 'n_k', 'k_dep_projection', 'SP', 'SO', 'charge_below', 'density_required',
|
||||
'symm_op', 'n_shells', 'shells', 'n_corr_shells', 'corr_shells', 'use_rotations', 'rot_mat',
|
||||
'rot_mat_time_inv', 'n_reps', 'dim_reps', 'T', 'n_orbitals', 'proj_mat', 'bz_weights', 'hopping',
|
||||
'n_inequiv_shells', 'corr_to_inequiv', 'inequiv_to_corr']
|
||||
for it in things_to_save: ar[self.dft_subgrp][it] = locals()[it]
|
||||
for it in things_to_save:
|
||||
ar[self.dft_subgrp][it] = locals()[it]
|
||||
del ar
|
||||
|
||||
# Symmetries are used, so now convert symmetry information for *correlated* orbitals:
|
||||
self.convert_symmetry_input(orbits=self.corr_shells,symm_file=self.symmcorr_file,symm_subgrp=self.symmcorr_subgrp,SO=self.SO,SP=self.SP)
|
||||
# Symmetries are used, so now convert symmetry information for
|
||||
# *correlated* orbitals:
|
||||
self.convert_symmetry_input(orbits=self.corr_shells, symm_file=self.symmcorr_file,
|
||||
symm_subgrp=self.symmcorr_subgrp, SO=self.SO, SP=self.SP)
|
||||
self.convert_misc_input()
|
||||
|
||||
|
||||
def convert_parproj_input(self):
|
||||
"""
|
||||
Reads the appropriate files and stores the data for the
|
||||
@ -255,31 +288,37 @@ class Wien2kConverter(ConverterTools):
|
||||
|
||||
"""
|
||||
|
||||
if not (mpi.is_master_node()): return
|
||||
if not (mpi.is_master_node()):
|
||||
return
|
||||
|
||||
# get needed data from hdf file
|
||||
ar = HDFArchive(self.hdf_file,'a')
|
||||
things_to_read = ['SP','SO','n_shells','n_k','n_orbitals','shells']
|
||||
ar = HDFArchive(self.hdf_file, 'a')
|
||||
things_to_read = ['SP', 'SO', 'n_shells',
|
||||
'n_k', 'n_orbitals', 'shells']
|
||||
|
||||
for it in things_to_read:
|
||||
if not hasattr(self,it): setattr(self,it,ar[self.dft_subgrp][it])
|
||||
if not hasattr(self, it):
|
||||
setattr(self, it, ar[self.dft_subgrp][it])
|
||||
self.n_spin_blocs = self.SP + 1 - self.SO
|
||||
del ar
|
||||
|
||||
mpi.report("Reading input from %s..."%self.parproj_file)
|
||||
mpi.report("Reading input from %s..." % self.parproj_file)
|
||||
|
||||
dens_mat_below = [ [numpy.zeros([self.shells[ish]['dim'],self.shells[ish]['dim']],numpy.complex_) for ish in range(self.n_shells)]
|
||||
for isp in range(self.n_spin_blocs) ]
|
||||
dens_mat_below = [[numpy.zeros([self.shells[ish]['dim'], self.shells[ish]['dim']], numpy.complex_) for ish in range(self.n_shells)]
|
||||
for isp in range(self.n_spin_blocs)]
|
||||
|
||||
R = ConverterTools.read_fortran_file(self,self.parproj_file,self.fortran_to_replace)
|
||||
R = ConverterTools.read_fortran_file(
|
||||
self, self.parproj_file, self.fortran_to_replace)
|
||||
|
||||
n_parproj = [int(R.next()) for i in range(self.n_shells)]
|
||||
n_parproj = numpy.array(n_parproj)
|
||||
|
||||
|
||||
# Initialise P, here a double list of matrices:
|
||||
proj_mat_all = numpy.zeros([self.n_k,self.n_spin_blocs,self.n_shells,max(n_parproj),max([sh['dim'] for sh in self.shells]),max(self.n_orbitals)],numpy.complex_)
|
||||
|
||||
rot_mat_all = [numpy.identity(self.shells[ish]['dim'],numpy.complex_) for ish in range(self.n_shells)]
|
||||
proj_mat_all = numpy.zeros([self.n_k, self.n_spin_blocs, self.n_shells, max(
|
||||
n_parproj), max([sh['dim'] for sh in self.shells]), max(self.n_orbitals)], numpy.complex_)
|
||||
|
||||
rot_mat_all = [numpy.identity(
|
||||
self.shells[ish]['dim'], numpy.complex_) for ish in range(self.n_shells)]
|
||||
rot_mat_all_time_inv = [0 for i in range(self.n_shells)]
|
||||
|
||||
for ish in range(self.n_shells):
|
||||
@ -288,35 +327,40 @@ class Wien2kConverter(ConverterTools):
|
||||
for ir in range(n_parproj[ish]):
|
||||
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for i in range(self.shells[ish]['dim']): # read real part:
|
||||
# read real part:
|
||||
for i in range(self.shells[ish]['dim']):
|
||||
for j in range(self.n_orbitals[ik][isp]):
|
||||
proj_mat_all[ik,isp,ish,ir,i,j] = R.next()
|
||||
|
||||
proj_mat_all[ik, isp, ish, ir, i, j] = R.next()
|
||||
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for i in range(self.shells[ish]['dim']): # read imaginary part:
|
||||
# read imaginary part:
|
||||
for i in range(self.shells[ish]['dim']):
|
||||
for j in range(self.n_orbitals[ik][isp]):
|
||||
proj_mat_all[ik,isp,ish,ir,i,j] += 1j * R.next()
|
||||
|
||||
|
||||
# now read the Density Matrix for this orbital below the energy window:
|
||||
proj_mat_all[ik, isp, ish,
|
||||
ir, i, j] += 1j * R.next()
|
||||
|
||||
# now read the Density Matrix for this orbital below the energy
|
||||
# window:
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for i in range(self.shells[ish]['dim']): # read real part:
|
||||
for j in range(self.shells[ish]['dim']):
|
||||
dens_mat_below[isp][ish][i,j] = R.next()
|
||||
dens_mat_below[isp][ish][i, j] = R.next()
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for i in range(self.shells[ish]['dim']): # read imaginary part:
|
||||
# read imaginary part:
|
||||
for i in range(self.shells[ish]['dim']):
|
||||
for j in range(self.shells[ish]['dim']):
|
||||
dens_mat_below[isp][ish][i,j] += 1j * R.next()
|
||||
if (self.SP==0): dens_mat_below[isp][ish] /= 2.0
|
||||
dens_mat_below[isp][ish][i, j] += 1j * R.next()
|
||||
if (self.SP == 0):
|
||||
dens_mat_below[isp][ish] /= 2.0
|
||||
|
||||
# Global -> local rotation matrix for this shell:
|
||||
for i in range(self.shells[ish]['dim']): # read real part:
|
||||
for j in range(self.shells[ish]['dim']):
|
||||
rot_mat_all[ish][i,j] = R.next()
|
||||
rot_mat_all[ish][i, j] = R.next()
|
||||
for i in range(self.shells[ish]['dim']): # read imaginary part:
|
||||
for j in range(self.shells[ish]['dim']):
|
||||
rot_mat_all[ish][i,j] += 1j * R.next()
|
||||
|
||||
rot_mat_all[ish][i, j] += 1j * R.next()
|
||||
|
||||
if (self.SP):
|
||||
rot_mat_all_time_inv[ish] = int(R.next())
|
||||
|
||||
@ -324,16 +368,21 @@ class Wien2kConverter(ConverterTools):
|
||||
# Reading done!
|
||||
|
||||
# Save it to the HDF:
|
||||
ar = HDFArchive(self.hdf_file,'a')
|
||||
if not (self.parproj_subgrp in ar): ar.create_group(self.parproj_subgrp)
|
||||
# The subgroup containing the data. If it does not exist, it is created. If it exists, the data is overwritten!
|
||||
things_to_save = ['dens_mat_below','n_parproj','proj_mat_all','rot_mat_all','rot_mat_all_time_inv']
|
||||
for it in things_to_save: ar[self.parproj_subgrp][it] = locals()[it]
|
||||
ar = HDFArchive(self.hdf_file, 'a')
|
||||
if not (self.parproj_subgrp in ar):
|
||||
ar.create_group(self.parproj_subgrp)
|
||||
# The subgroup containing the data. If it does not exist, it is
|
||||
# created. If it exists, the data is overwritten!
|
||||
things_to_save = ['dens_mat_below', 'n_parproj',
|
||||
'proj_mat_all', 'rot_mat_all', 'rot_mat_all_time_inv']
|
||||
for it in things_to_save:
|
||||
ar[self.parproj_subgrp][it] = locals()[it]
|
||||
del ar
|
||||
|
||||
# Symmetries are used, so now convert symmetry information for *all* orbitals:
|
||||
self.convert_symmetry_input(orbits=self.shells,symm_file=self.symmpar_file,symm_subgrp=self.symmpar_subgrp,SO=self.SO,SP=self.SP)
|
||||
|
||||
# Symmetries are used, so now convert symmetry information for *all*
|
||||
# orbitals:
|
||||
self.convert_symmetry_input(orbits=self.shells, symm_file=self.symmpar_file,
|
||||
symm_subgrp=self.symmpar_subgrp, SO=self.SO, SP=self.SP)
|
||||
|
||||
def convert_bands_input(self):
|
||||
"""
|
||||
@ -341,117 +390,134 @@ class Wien2kConverter(ConverterTools):
|
||||
|
||||
"""
|
||||
|
||||
if not (mpi.is_master_node()): return
|
||||
if not (mpi.is_master_node()):
|
||||
return
|
||||
|
||||
try:
|
||||
# get needed data from hdf file
|
||||
ar = HDFArchive(self.hdf_file,'a')
|
||||
things_to_read = ['SP','SO','n_corr_shells','n_shells','corr_shells','shells','energy_unit']
|
||||
ar = HDFArchive(self.hdf_file, 'a')
|
||||
things_to_read = ['SP', 'SO', 'n_corr_shells',
|
||||
'n_shells', 'corr_shells', 'shells', 'energy_unit']
|
||||
|
||||
for it in things_to_read:
|
||||
if not hasattr(self,it): setattr(self,it,ar[self.dft_subgrp][it])
|
||||
if not hasattr(self, it):
|
||||
setattr(self, it, ar[self.dft_subgrp][it])
|
||||
self.n_spin_blocs = self.SP + 1 - self.SO
|
||||
del ar
|
||||
|
||||
mpi.report("Reading input from %s..."%self.band_file)
|
||||
R = ConverterTools.read_fortran_file(self,self.band_file,self.fortran_to_replace)
|
||||
mpi.report("Reading input from %s..." % self.band_file)
|
||||
R = ConverterTools.read_fortran_file(
|
||||
self, self.band_file, self.fortran_to_replace)
|
||||
n_k = int(R.next())
|
||||
|
||||
# read the list of n_orbitals for all k points
|
||||
n_orbitals = numpy.zeros([n_k,self.n_spin_blocs],numpy.int)
|
||||
n_orbitals = numpy.zeros([n_k, self.n_spin_blocs], numpy.int)
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for ik in range(n_k):
|
||||
n_orbitals[ik,isp] = int(R.next())
|
||||
n_orbitals[ik, isp] = int(R.next())
|
||||
|
||||
# Initialise the projectors:
|
||||
proj_mat = numpy.zeros([n_k,self.n_spin_blocs,self.n_corr_shells,max([crsh['dim'] for crsh in self.corr_shells]),numpy.max(n_orbitals)],numpy.complex_)
|
||||
proj_mat = numpy.zeros([n_k, self.n_spin_blocs, self.n_corr_shells, max(
|
||||
[crsh['dim'] for crsh in self.corr_shells]), numpy.max(n_orbitals)], numpy.complex_)
|
||||
|
||||
# Read the projectors from the file:
|
||||
for ik in range(n_k):
|
||||
for icrsh in range(self.n_corr_shells):
|
||||
n_orb = self.corr_shells[icrsh]['dim']
|
||||
# first Real part for BOTH spins, due to conventions in dmftproj:
|
||||
# first Real part for BOTH spins, due to conventions in
|
||||
# dmftproj:
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for i in range(n_orb):
|
||||
for j in range(n_orbitals[ik,isp]):
|
||||
proj_mat[ik,isp,icrsh,i,j] = R.next()
|
||||
for j in range(n_orbitals[ik, isp]):
|
||||
proj_mat[ik, isp, icrsh, i, j] = R.next()
|
||||
# now Imag part:
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for i in range(n_orb):
|
||||
for j in range(n_orbitals[ik,isp]):
|
||||
proj_mat[ik,isp,icrsh,i,j] += 1j * R.next()
|
||||
for j in range(n_orbitals[ik, isp]):
|
||||
proj_mat[ik, isp, icrsh, i, j] += 1j * R.next()
|
||||
|
||||
hopping = numpy.zeros([n_k, self.n_spin_blocs, numpy.max(
|
||||
n_orbitals), numpy.max(n_orbitals)], numpy.complex_)
|
||||
|
||||
hopping = numpy.zeros([n_k,self.n_spin_blocs,numpy.max(n_orbitals),numpy.max(n_orbitals)],numpy.complex_)
|
||||
|
||||
# Grab the H
|
||||
# we use now the convention of a DIAGONAL Hamiltonian!!!!
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for ik in range(n_k) :
|
||||
n_orb = n_orbitals[ik,isp]
|
||||
for ik in range(n_k):
|
||||
n_orb = n_orbitals[ik, isp]
|
||||
for i in range(n_orb):
|
||||
hopping[ik,isp,i,i] = R.next() * self.energy_unit
|
||||
hopping[ik, isp, i, i] = R.next() * self.energy_unit
|
||||
|
||||
# now read the partial projectors:
|
||||
n_parproj = [int(R.next()) for i in range(self.n_shells)]
|
||||
n_parproj = numpy.array(n_parproj)
|
||||
|
||||
|
||||
# Initialise P, here a double list of matrices:
|
||||
proj_mat_all = numpy.zeros([n_k,self.n_spin_blocs,self.n_shells,max(n_parproj),max([sh['dim'] for sh in self.shells]),numpy.max(n_orbitals)],numpy.complex_)
|
||||
proj_mat_all = numpy.zeros([n_k, self.n_spin_blocs, self.n_shells, max(n_parproj), max(
|
||||
[sh['dim'] for sh in self.shells]), numpy.max(n_orbitals)], numpy.complex_)
|
||||
|
||||
for ish in range(self.n_shells):
|
||||
for ik in range(n_k):
|
||||
for ir in range(n_parproj[ish]):
|
||||
for isp in range(self.n_spin_blocs):
|
||||
|
||||
for i in range(self.shells[ish]['dim']): # read real part:
|
||||
for j in range(n_orbitals[ik,isp]):
|
||||
proj_mat_all[ik,isp,ish,ir,i,j] = R.next()
|
||||
|
||||
for i in range(self.shells[ish]['dim']): # read imaginary part:
|
||||
for j in range(n_orbitals[ik,isp]):
|
||||
proj_mat_all[ik,isp,ish,ir,i,j] += 1j * R.next()
|
||||
|
||||
# read real part:
|
||||
for i in range(self.shells[ish]['dim']):
|
||||
for j in range(n_orbitals[ik, isp]):
|
||||
proj_mat_all[ik, isp, ish,
|
||||
ir, i, j] = R.next()
|
||||
|
||||
# read imaginary part:
|
||||
for i in range(self.shells[ish]['dim']):
|
||||
for j in range(n_orbitals[ik, isp]):
|
||||
proj_mat_all[ik, isp, ish,
|
||||
ir, i, j] += 1j * R.next()
|
||||
|
||||
R.close()
|
||||
|
||||
except KeyError:
|
||||
raise "convert_bands_input : Needed data not found in hdf file. Consider calling convert_dft_input first!"
|
||||
except StopIteration : # a more explicit error if the file is corrupted.
|
||||
except StopIteration: # a more explicit error if the file is corrupted.
|
||||
raise "Wien2k_converter : reading file band_file failed!"
|
||||
|
||||
# Reading done!
|
||||
|
||||
# Save it to the HDF:
|
||||
ar = HDFArchive(self.hdf_file,'a')
|
||||
if not (self.bands_subgrp in ar): ar.create_group(self.bands_subgrp)
|
||||
# The subgroup containing the data. If it does not exist, it is created. If it exists, the data is overwritten!
|
||||
things_to_save = ['n_k','n_orbitals','proj_mat','hopping','n_parproj','proj_mat_all']
|
||||
for it in things_to_save: ar[self.bands_subgrp][it] = locals()[it]
|
||||
ar = HDFArchive(self.hdf_file, 'a')
|
||||
if not (self.bands_subgrp in ar):
|
||||
ar.create_group(self.bands_subgrp)
|
||||
# The subgroup containing the data. If it does not exist, it is
|
||||
# created. If it exists, the data is overwritten!
|
||||
things_to_save = ['n_k', 'n_orbitals', 'proj_mat',
|
||||
'hopping', 'n_parproj', 'proj_mat_all']
|
||||
for it in things_to_save:
|
||||
ar[self.bands_subgrp][it] = locals()[it]
|
||||
del ar
|
||||
|
||||
|
||||
def convert_misc_input(self):
|
||||
"""
|
||||
Reads additional information on:
|
||||
|
||||
|
||||
- the band window from :file:`case.oubwin`,
|
||||
- lattice parameters from :file:`case.struct`,
|
||||
- symmetries from :file:`case.outputs`,
|
||||
|
||||
|
||||
if those Wien2k files are present and stores the data in the hdf5 archive.
|
||||
This function is automatically called by :meth:`convert_dft_input <pytriqs.applications.dft.converters.wien2k_converter.Wien2kConverter.convert_dft_input>`.
|
||||
|
||||
"""
|
||||
|
||||
if not (mpi.is_master_node()): return
|
||||
|
||||
if not (mpi.is_master_node()):
|
||||
return
|
||||
|
||||
# Check if SP, SO and n_k are already in h5
|
||||
ar = HDFArchive(self.hdf_file, 'r')
|
||||
if not (self.dft_subgrp in ar): raise IOError, "convert_misc_input: No %s subgroup in hdf file found! Call convert_dft_input first." %self.dft_subgrp
|
||||
if not (self.dft_subgrp in ar):
|
||||
raise IOError, "convert_misc_input: No %s subgroup in hdf file found! Call convert_dft_input first." % self.dft_subgrp
|
||||
SP = ar[self.dft_subgrp]['SP']
|
||||
SO = ar[self.dft_subgrp]['SO']
|
||||
n_k = ar[self.dft_subgrp]['n_k']
|
||||
del ar
|
||||
|
||||
|
||||
things_to_save = []
|
||||
|
||||
# Read relevant data from .oubwin/up/dn files
|
||||
@ -459,32 +525,35 @@ class Wien2kConverter(ConverterTools):
|
||||
# band_window: Contains the index of the lowest and highest band within the
|
||||
# projected subspace (used by dmftproj) for each k-point.
|
||||
|
||||
if (SP == 0 or SO == 1):
|
||||
if (SP == 0 or SO == 1):
|
||||
files = [self.bandwin_file]
|
||||
elif SP == 1:
|
||||
files = [self.bandwin_file+'up', self.bandwin_file+'dn']
|
||||
else: # SO and SP can't both be 1
|
||||
files = [self.bandwin_file + 'up', self.bandwin_file + 'dn']
|
||||
else: # SO and SP can't both be 1
|
||||
assert 0, "convert_misc_input: Reading oubwin error! Check SP and SO!"
|
||||
|
||||
band_window = [None for isp in range(SP + 1 - SO)]
|
||||
for isp, f in enumerate(files):
|
||||
if os.path.exists(f):
|
||||
mpi.report("Reading input from %s..."%f)
|
||||
R = ConverterTools.read_fortran_file(self, f, self.fortran_to_replace)
|
||||
mpi.report("Reading input from %s..." % f)
|
||||
R = ConverterTools.read_fortran_file(
|
||||
self, f, self.fortran_to_replace)
|
||||
n_k_oubwin = int(R.next())
|
||||
if (n_k_oubwin != n_k):
|
||||
mpi.report("convert_misc_input : WARNING : n_k in case.oubwin is different from n_k in case.klist")
|
||||
assert int(R.next()) == SO, "convert_misc_input: SO is inconsistent in oubwin file!"
|
||||
mpi.report(
|
||||
"convert_misc_input : WARNING : n_k in case.oubwin is different from n_k in case.klist")
|
||||
assert int(
|
||||
R.next()) == SO, "convert_misc_input: SO is inconsistent in oubwin file!"
|
||||
|
||||
band_window[isp] = numpy.zeros((n_k_oubwin, 2), dtype=int)
|
||||
band_window[isp] = numpy.zeros((n_k_oubwin, 2), dtype=int)
|
||||
for ik in xrange(n_k_oubwin):
|
||||
R.next()
|
||||
band_window[isp][ik,0] = R.next() # lowest band
|
||||
band_window[isp][ik,1] = R.next() # highest band
|
||||
band_window[isp][ik, 0] = R.next() # lowest band
|
||||
band_window[isp][ik, 1] = R.next() # highest band
|
||||
R.next()
|
||||
things_to_save.append('band_window')
|
||||
|
||||
R.close() # Reading done!
|
||||
R.close() # Reading done!
|
||||
|
||||
# Read relevant data from .struct file
|
||||
######################################
|
||||
@ -493,39 +562,44 @@ class Wien2kConverter(ConverterTools):
|
||||
# lattice_angles: unit cell angles in rad
|
||||
|
||||
if (os.path.exists(self.struct_file)):
|
||||
mpi.report("Reading input from %s..."%self.struct_file)
|
||||
|
||||
mpi.report("Reading input from %s..." % self.struct_file)
|
||||
|
||||
with open(self.struct_file) as R:
|
||||
try:
|
||||
R.readline()
|
||||
lattice_type = R.readline().split()[0]
|
||||
R.readline()
|
||||
temp = R.readline()
|
||||
lattice_constants = numpy.array([float(temp[0+10*i:10+10*i].strip()) for i in range(3)])
|
||||
lattice_angles = numpy.array([float(temp[30+10*i:40+10*i].strip()) for i in range(3)]) * numpy.pi / 180.0
|
||||
things_to_save.extend(['lattice_type', 'lattice_constants', 'lattice_angles'])
|
||||
lattice_constants = numpy.array(
|
||||
[float(temp[0 + 10 * i:10 + 10 * i].strip()) for i in range(3)])
|
||||
lattice_angles = numpy.array(
|
||||
[float(temp[30 + 10 * i:40 + 10 * i].strip()) for i in range(3)]) * numpy.pi / 180.0
|
||||
things_to_save.extend(
|
||||
['lattice_type', 'lattice_constants', 'lattice_angles'])
|
||||
except IOError:
|
||||
raise "convert_misc_input: reading file %s failed" %self.struct_file
|
||||
raise "convert_misc_input: reading file %s failed" % self.struct_file
|
||||
|
||||
# Read relevant data from .outputs file
|
||||
#######################################
|
||||
# rot_symmetries: matrix representation of all (space group) symmetry operations
|
||||
|
||||
# rot_symmetries: matrix representation of all (space group) symmetry
|
||||
# operations
|
||||
|
||||
if (os.path.exists(self.outputs_file)):
|
||||
mpi.report("Reading input from %s..."%self.outputs_file)
|
||||
|
||||
mpi.report("Reading input from %s..." % self.outputs_file)
|
||||
|
||||
rot_symmetries = []
|
||||
with open(self.outputs_file) as R:
|
||||
try:
|
||||
while 1:
|
||||
temp = R.readline().strip(' ').split()
|
||||
if (temp[0] =='PGBSYM:'):
|
||||
if (temp[0] == 'PGBSYM:'):
|
||||
n_symmetries = int(temp[-1])
|
||||
break
|
||||
for i in range(n_symmetries):
|
||||
while 1:
|
||||
if (R.readline().strip().split()[0] == 'Symmetry'): break
|
||||
sym_i = numpy.zeros((3, 3), dtype = float)
|
||||
if (R.readline().strip().split()[0] == 'Symmetry'):
|
||||
break
|
||||
sym_i = numpy.zeros((3, 3), dtype=float)
|
||||
for ir in range(3):
|
||||
temp = R.readline().strip().split()
|
||||
for ic in range(3):
|
||||
@ -535,30 +609,33 @@ class Wien2kConverter(ConverterTools):
|
||||
things_to_save.extend(['n_symmetries', 'rot_symmetries'])
|
||||
things_to_save.append('rot_symmetries')
|
||||
except IOError:
|
||||
raise "convert_misc_input: reading file %s failed" %self.outputs_file
|
||||
raise "convert_misc_input: reading file %s failed" % self.outputs_file
|
||||
|
||||
# Save it to the HDF:
|
||||
ar = HDFArchive(self.hdf_file,'a')
|
||||
if not (self.misc_subgrp in ar): ar.create_group(self.misc_subgrp)
|
||||
for it in things_to_save: ar[self.misc_subgrp][it] = locals()[it]
|
||||
ar = HDFArchive(self.hdf_file, 'a')
|
||||
if not (self.misc_subgrp in ar):
|
||||
ar.create_group(self.misc_subgrp)
|
||||
for it in things_to_save:
|
||||
ar[self.misc_subgrp][it] = locals()[it]
|
||||
del ar
|
||||
|
||||
|
||||
def convert_transport_input(self):
|
||||
"""
|
||||
Reads the necessary information for transport calculations on:
|
||||
|
||||
|
||||
- the optical band window and the velocity matrix elements from :file:`case.pmat`
|
||||
|
||||
and stores the data in the hdf5 archive.
|
||||
|
||||
|
||||
"""
|
||||
|
||||
if not (mpi.is_master_node()): return
|
||||
|
||||
|
||||
if not (mpi.is_master_node()):
|
||||
return
|
||||
|
||||
# Check if SP, SO and n_k are already in h5
|
||||
ar = HDFArchive(self.hdf_file, 'r')
|
||||
if not (self.dft_subgrp in ar): raise IOError, "convert_transport_input: No %s subgroup in hdf file found! Call convert_dft_input first." %self.dft_subgrp
|
||||
if not (self.dft_subgrp in ar):
|
||||
raise IOError, "convert_transport_input: No %s subgroup in hdf file found! Call convert_dft_input first." % self.dft_subgrp
|
||||
SP = ar[self.dft_subgrp]['SP']
|
||||
SO = ar[self.dft_subgrp]['SO']
|
||||
n_k = ar[self.dft_subgrp]['n_k']
|
||||
@ -571,20 +648,22 @@ class Wien2kConverter(ConverterTools):
|
||||
# velocities_k: velocity (momentum) matrix elements between all bands in band_window_optics
|
||||
# and each k-point.
|
||||
|
||||
if (SP == 0 or SO == 1):
|
||||
if (SP == 0 or SO == 1):
|
||||
files = [self.pmat_file]
|
||||
elif SP == 1:
|
||||
files = [self.pmat_file+'up', self.pmat_file+'dn']
|
||||
else: # SO and SP can't both be 1
|
||||
files = [self.pmat_file + 'up', self.pmat_file + 'dn']
|
||||
else: # SO and SP can't both be 1
|
||||
assert 0, "convert_transport_input: Reading velocity file error! Check SP and SO!"
|
||||
|
||||
velocities_k = [[] for f in files]
|
||||
band_window_optics = []
|
||||
for isp, f in enumerate(files):
|
||||
if not os.path.exists(f) : raise IOError, "convert_transport_input: File %s does not exist" %f
|
||||
mpi.report("Reading input from %s..."%f)
|
||||
if not os.path.exists(f):
|
||||
raise IOError, "convert_transport_input: File %s does not exist" % f
|
||||
mpi.report("Reading input from %s..." % f)
|
||||
|
||||
R = ConverterTools.read_fortran_file(self, f, {'D':'E','(':'',')':'',',':' '})
|
||||
R = ConverterTools.read_fortran_file(
|
||||
self, f, {'D': 'E', '(': '', ')': '', ',': ' '})
|
||||
band_window_optics_isp = []
|
||||
for ik in xrange(n_k):
|
||||
R.next()
|
||||
@ -592,26 +671,34 @@ class Wien2kConverter(ConverterTools):
|
||||
nu2 = int(R.next())
|
||||
band_window_optics_isp.append((nu1, nu2))
|
||||
n_bands = nu2 - nu1 + 1
|
||||
for _ in range(4): R.next()
|
||||
for _ in range(4):
|
||||
R.next()
|
||||
if n_bands <= 0:
|
||||
velocity_xyz = numpy.zeros((1, 1, 3), dtype = complex)
|
||||
velocity_xyz = numpy.zeros((1, 1, 3), dtype=complex)
|
||||
else:
|
||||
velocity_xyz = numpy.zeros((n_bands, n_bands, 3), dtype = complex)
|
||||
velocity_xyz = numpy.zeros(
|
||||
(n_bands, n_bands, 3), dtype=complex)
|
||||
for nu_i in range(n_bands):
|
||||
for nu_j in range(nu_i, n_bands):
|
||||
for i in range(3):
|
||||
velocity_xyz[nu_i][nu_j][i] = R.next() + R.next()*1j
|
||||
if (nu_i != nu_j): velocity_xyz[nu_j][nu_i][i] = velocity_xyz[nu_i][nu_j][i].conjugate()
|
||||
velocity_xyz[nu_i][nu_j][
|
||||
i] = R.next() + R.next() * 1j
|
||||
if (nu_i != nu_j):
|
||||
velocity_xyz[nu_j][nu_i][i] = velocity_xyz[
|
||||
nu_i][nu_j][i].conjugate()
|
||||
velocities_k[isp].append(velocity_xyz)
|
||||
band_window_optics.append(numpy.array(band_window_optics_isp))
|
||||
R.close() # Reading done!
|
||||
R.close() # Reading done!
|
||||
|
||||
# Put data to HDF5 file
|
||||
ar = HDFArchive(self.hdf_file, 'a')
|
||||
if not (self.transp_subgrp in ar): ar.create_group(self.transp_subgrp)
|
||||
# The subgroup containing the data. If it does not exist, it is created. If it exists, the data is overwritten!!!
|
||||
if not (self.transp_subgrp in ar):
|
||||
ar.create_group(self.transp_subgrp)
|
||||
# The subgroup containing the data. If it does not exist, it is
|
||||
# created. If it exists, the data is overwritten!!!
|
||||
things_to_save = ['band_window_optics', 'velocities_k']
|
||||
for it in things_to_save: ar[self.transp_subgrp][it] = locals()[it]
|
||||
for it in things_to_save:
|
||||
ar[self.transp_subgrp][it] = locals()[it]
|
||||
del ar
|
||||
|
||||
def convert_symmetry_input(self, orbits, symm_file, symm_subgrp, SO, SP):
|
||||
@ -635,59 +722,70 @@ class Wien2kConverter(ConverterTools):
|
||||
|
||||
"""
|
||||
|
||||
if not (mpi.is_master_node()): return
|
||||
mpi.report("Reading input from %s..."%symm_file)
|
||||
if not (mpi.is_master_node()):
|
||||
return
|
||||
mpi.report("Reading input from %s..." % symm_file)
|
||||
|
||||
n_orbits = len(orbits)
|
||||
|
||||
R = ConverterTools.read_fortran_file(self,symm_file,self.fortran_to_replace)
|
||||
R = ConverterTools.read_fortran_file(
|
||||
self, symm_file, self.fortran_to_replace)
|
||||
|
||||
try:
|
||||
n_symm = int(R.next()) # Number of symmetry operations
|
||||
n_atoms = int(R.next()) # number of atoms involved
|
||||
perm = [ [int(R.next()) for i in range(n_atoms)] for j in range(n_symm) ] # list of permutations of the atoms
|
||||
if SP:
|
||||
time_inv = [ int(R.next()) for j in range(n_symm) ] # time inversion for SO coupling
|
||||
perm = [[int(R.next()) for i in range(n_atoms)]
|
||||
for j in range(n_symm)] # list of permutations of the atoms
|
||||
if SP:
|
||||
# time inversion for SO coupling
|
||||
time_inv = [int(R.next()) for j in range(n_symm)]
|
||||
else:
|
||||
time_inv = [ 0 for j in range(n_symm) ]
|
||||
time_inv = [0 for j in range(n_symm)]
|
||||
|
||||
# Now read matrices:
|
||||
mat = []
|
||||
mat = []
|
||||
for i_symm in range(n_symm):
|
||||
|
||||
mat.append( [ numpy.zeros([orbits[orb]['dim'], orbits[orb]['dim']],numpy.complex_) for orb in range(n_orbits) ] )
|
||||
|
||||
mat.append([numpy.zeros([orbits[orb]['dim'], orbits[orb][
|
||||
'dim']], numpy.complex_) for orb in range(n_orbits)])
|
||||
for orb in range(n_orbits):
|
||||
for i in range(orbits[orb]['dim']):
|
||||
for j in range(orbits[orb]['dim']):
|
||||
mat[i_symm][orb][i,j] = R.next() # real part
|
||||
# real part
|
||||
mat[i_symm][orb][i, j] = R.next()
|
||||
for i in range(orbits[orb]['dim']):
|
||||
for j in range(orbits[orb]['dim']):
|
||||
mat[i_symm][orb][i,j] += 1j * R.next() # imaginary part
|
||||
mat[i_symm][orb][i, j] += 1j * \
|
||||
R.next() # imaginary part
|
||||
|
||||
mat_tinv = [numpy.identity(orbits[orb]['dim'],numpy.complex_)
|
||||
mat_tinv = [numpy.identity(orbits[orb]['dim'], numpy.complex_)
|
||||
for orb in range(n_orbits)]
|
||||
|
||||
if ((SO==0) and (SP==0)):
|
||||
# here we need an additional time inversion operation, so read it:
|
||||
if ((SO == 0) and (SP == 0)):
|
||||
# here we need an additional time inversion operation, so read
|
||||
# it:
|
||||
for orb in range(n_orbits):
|
||||
for i in range(orbits[orb]['dim']):
|
||||
for j in range(orbits[orb]['dim']):
|
||||
mat_tinv[orb][i,j] = R.next() # real part
|
||||
# real part
|
||||
mat_tinv[orb][i, j] = R.next()
|
||||
for i in range(orbits[orb]['dim']):
|
||||
for j in range(orbits[orb]['dim']):
|
||||
mat_tinv[orb][i,j] += 1j * R.next() # imaginary part
|
||||
|
||||
mat_tinv[orb][i, j] += 1j * \
|
||||
R.next() # imaginary part
|
||||
|
||||
|
||||
except StopIteration : # a more explicit error if the file is corrupted.
|
||||
except StopIteration: # a more explicit error if the file is corrupted.
|
||||
raise "Wien2k_converter : reading file symm_file failed!"
|
||||
|
||||
|
||||
R.close()
|
||||
# Reading done!
|
||||
|
||||
# Save it to the HDF:
|
||||
ar = HDFArchive(self.hdf_file,'a')
|
||||
if not (symm_subgrp in ar): ar.create_group(symm_subgrp)
|
||||
things_to_save = ['n_symm','n_atoms','perm','orbits','SO','SP','time_inv','mat','mat_tinv']
|
||||
for it in things_to_save: ar[symm_subgrp][it] = locals()[it]
|
||||
ar = HDFArchive(self.hdf_file, 'a')
|
||||
if not (symm_subgrp in ar):
|
||||
ar.create_group(symm_subgrp)
|
||||
things_to_save = ['n_symm', 'n_atoms', 'perm',
|
||||
'orbits', 'SO', 'SP', 'time_inv', 'mat', 'mat_tinv']
|
||||
for it in things_to_save:
|
||||
ar[symm_subgrp][it] = locals()[it]
|
||||
del ar
|
||||
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -1,5 +1,5 @@
|
||||
|
||||
################################################################################
|
||||
##########################################################################
|
||||
#
|
||||
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
#
|
||||
@ -18,14 +18,16 @@
|
||||
# You should have received a copy of the GNU General Public License along with
|
||||
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
################################################################################
|
||||
##########################################################################
|
||||
|
||||
import copy,numpy
|
||||
import copy
|
||||
import numpy
|
||||
from types import *
|
||||
from pytriqs.gf.local import *
|
||||
from pytriqs.archive import *
|
||||
import pytriqs.utility.mpi as mpi
|
||||
|
||||
|
||||
class Symmetry:
|
||||
"""
|
||||
This class provides the routines for applying symmetry operations for the k sums.
|
||||
@ -33,10 +35,10 @@ class Symmetry:
|
||||
rotational matrices for each symmetry operation.
|
||||
"""
|
||||
|
||||
def __init__(self, hdf_file, subgroup = None):
|
||||
def __init__(self, hdf_file, subgroup=None):
|
||||
"""
|
||||
Initialises the class.
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
hdf_file : string
|
||||
@ -46,69 +48,80 @@ class Symmetry:
|
||||
the data is stored at the root of the hdf5 archive.
|
||||
"""
|
||||
|
||||
assert type(hdf_file) == StringType, "Symmetry: hdf_file must be a filename."
|
||||
assert type(
|
||||
hdf_file) == StringType, "Symmetry: hdf_file must be a filename."
|
||||
self.hdf_file = hdf_file
|
||||
things_to_read = ['n_symm','n_atoms','perm','orbits','SO','SP','time_inv','mat','mat_tinv']
|
||||
for it in things_to_read: setattr(self,it,0)
|
||||
things_to_read = ['n_symm', 'n_atoms', 'perm',
|
||||
'orbits', 'SO', 'SP', 'time_inv', 'mat', 'mat_tinv']
|
||||
for it in things_to_read:
|
||||
setattr(self, it, 0)
|
||||
|
||||
if mpi.is_master_node():
|
||||
#Read the stuff on master:
|
||||
ar = HDFArchive(hdf_file,'r')
|
||||
# Read the stuff on master:
|
||||
ar = HDFArchive(hdf_file, 'r')
|
||||
if subgroup is None:
|
||||
ar2 = ar
|
||||
else:
|
||||
ar2 = ar[subgroup]
|
||||
|
||||
for it in things_to_read: setattr(self,it,ar2[it])
|
||||
for it in things_to_read:
|
||||
setattr(self, it, ar2[it])
|
||||
del ar2
|
||||
del ar
|
||||
|
||||
# Broadcasting
|
||||
for it in things_to_read: setattr(self,it,mpi.bcast(getattr(self,it)))
|
||||
for it in things_to_read:
|
||||
setattr(self, it, mpi.bcast(getattr(self, it)))
|
||||
|
||||
# now define the mapping of orbitals:
|
||||
# self.orb_map[iorb] = jorb gives the permutation of the orbitals as given in the list, when the
|
||||
# permutation of the atoms is done:
|
||||
self.n_orbits = len(self.orbits)
|
||||
self.orb_map = [ [0 for iorb in range(self.n_orbits)] for i_symm in range(self.n_symm) ]
|
||||
self.orb_map = [[0 for iorb in range(
|
||||
self.n_orbits)] for i_symm in range(self.n_symm)]
|
||||
for i_symm in range(self.n_symm):
|
||||
for iorb in range(self.n_orbits):
|
||||
srch = copy.deepcopy(self.orbits[iorb])
|
||||
srch['atom'] = self.perm[i_symm][self.orbits[iorb]['atom']-1]
|
||||
srch['atom'] = self.perm[i_symm][self.orbits[iorb]['atom'] - 1]
|
||||
self.orb_map[i_symm][iorb] = self.orbits.index(srch)
|
||||
|
||||
|
||||
def symmetrize(self,obj):
|
||||
def symmetrize(self, obj):
|
||||
"""
|
||||
Symmetrizes a given object.
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
obj : list
|
||||
object to symmetrize. It has to be given as list, where its length is determined by the number
|
||||
of equivalent members of the object. Two types of objects are supported:
|
||||
|
||||
|
||||
- BlockGf : list of Green's functions,
|
||||
- Matrices : The format is taken from density matrices as obtained from Green's functions (DictType).
|
||||
|
||||
|
||||
Returns
|
||||
-------
|
||||
symm_obj : list
|
||||
Symmetrized object, of the same type as input object.
|
||||
"""
|
||||
|
||||
assert isinstance(obj,list), "symmetrize: obj has to be a list of objects."
|
||||
assert len(obj) == self.n_orbits, "symmetrize: obj has to be a list of the same length as defined in the init."
|
||||
assert isinstance(
|
||||
obj, list), "symmetrize: obj has to be a list of objects."
|
||||
assert len(
|
||||
obj) == self.n_orbits, "symmetrize: obj has to be a list of the same length as defined in the init."
|
||||
|
||||
if isinstance(obj[0],BlockGf):
|
||||
symm_obj = [ obj[i].copy() for i in range(len(obj)) ] # here the result is stored, it is a BlockGf!
|
||||
for iorb in range(self.n_orbits): symm_obj[iorb].zero() # set to zero
|
||||
if isinstance(obj[0], BlockGf):
|
||||
# here the result is stored, it is a BlockGf!
|
||||
symm_obj = [obj[i].copy() for i in range(len(obj))]
|
||||
for iorb in range(self.n_orbits):
|
||||
symm_obj[iorb].zero() # set to zero
|
||||
else:
|
||||
# if not a BlockGf, we assume it is a matrix (density matrix), has to be complex since self.mat is complex!
|
||||
symm_obj = [ copy.deepcopy(obj[i]) for i in range(len(obj)) ]
|
||||
# if not a BlockGf, we assume it is a matrix (density matrix), has
|
||||
# to be complex since self.mat is complex!
|
||||
symm_obj = [copy.deepcopy(obj[i]) for i in range(len(obj))]
|
||||
for iorb in range(self.n_orbits):
|
||||
if type(symm_obj[iorb]) == DictType:
|
||||
for ii in symm_obj[iorb]: symm_obj[iorb][ii] *= 0.0
|
||||
for ii in symm_obj[iorb]:
|
||||
symm_obj[iorb][ii] *= 0.0
|
||||
else:
|
||||
symm_obj[iorb] *= 0.0
|
||||
|
||||
@ -118,12 +131,15 @@ class Symmetry:
|
||||
dim = self.orbits[iorb]['dim']
|
||||
jorb = self.orb_map[i_symm][iorb]
|
||||
|
||||
if isinstance(obj[0],BlockGf):
|
||||
if isinstance(obj[0], BlockGf):
|
||||
|
||||
tmp = obj[iorb].copy()
|
||||
if self.time_inv[i_symm]: tmp << tmp.transpose()
|
||||
for bname,gf in tmp: tmp[bname].from_L_G_R(self.mat[i_symm][iorb],tmp[bname],self.mat[i_symm][iorb].conjugate().transpose())
|
||||
tmp *= 1.0/self.n_symm
|
||||
if self.time_inv[i_symm]:
|
||||
tmp << tmp.transpose()
|
||||
for bname, gf in tmp:
|
||||
tmp[bname].from_L_G_R(self.mat[i_symm][iorb], tmp[bname], self.mat[
|
||||
i_symm][iorb].conjugate().transpose())
|
||||
tmp *= 1.0 / self.n_symm
|
||||
symm_obj[jorb] += tmp
|
||||
|
||||
else:
|
||||
@ -131,17 +147,17 @@ class Symmetry:
|
||||
if type(obj[iorb]) == DictType:
|
||||
for ii in obj[iorb]:
|
||||
if self.time_inv[i_symm] == 0:
|
||||
symm_obj[jorb][ii] += numpy.dot(numpy.dot(self.mat[i_symm][iorb],obj[iorb][ii]),
|
||||
symm_obj[jorb][ii] += numpy.dot(numpy.dot(self.mat[i_symm][iorb], obj[iorb][ii]),
|
||||
self.mat[i_symm][iorb].conjugate().transpose()) / self.n_symm
|
||||
else:
|
||||
symm_obj[jorb][ii] += numpy.dot(numpy.dot(self.mat[i_symm][iorb],obj[iorb][ii].conjugate()),
|
||||
symm_obj[jorb][ii] += numpy.dot(numpy.dot(self.mat[i_symm][iorb], obj[iorb][ii].conjugate()),
|
||||
self.mat[i_symm][iorb].conjugate().transpose()) / self.n_symm
|
||||
else:
|
||||
if self.time_inv[i_symm] == 0:
|
||||
symm_obj[jorb] += numpy.dot(numpy.dot(self.mat[i_symm][iorb],obj[iorb]),
|
||||
symm_obj[jorb] += numpy.dot(numpy.dot(self.mat[i_symm][iorb], obj[iorb]),
|
||||
self.mat[i_symm][iorb].conjugate().transpose()) / self.n_symm
|
||||
else:
|
||||
symm_obj[jorb] += numpy.dot(numpy.dot(self.mat[i_symm][iorb],obj[iorb].conjugate()),
|
||||
symm_obj[jorb] += numpy.dot(numpy.dot(self.mat[i_symm][iorb], obj[iorb].conjugate()),
|
||||
self.mat[i_symm][iorb].conjugate().transpose()) / self.n_symm
|
||||
|
||||
# Markus: This does not what it is supposed to do, check how this should work (keep for now)
|
||||
|
@ -6,6 +6,7 @@ import pytriqs.utility.mpi as mpi
|
||||
import numpy
|
||||
import copy
|
||||
|
||||
|
||||
class TransBasis:
|
||||
"""
|
||||
Computates rotations into a new basis, using the condition that a given property is diagonal in the new basis.
|
||||
@ -14,19 +15,19 @@ class TransBasis:
|
||||
def __init__(self, SK=None, hdf_datafile=None):
|
||||
"""
|
||||
Initialization of the class. There are two ways to do so:
|
||||
|
||||
|
||||
- existing SumkLDA class : when you have an existing SumkLDA instance
|
||||
- from hdf5 archive : when you want to use data from hdf5 archive
|
||||
|
||||
|
||||
Giving the class instance overrides giving the string for the hdf5 archive.
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
SK : class SumkLDA, optional
|
||||
Existing instance of SumkLDA class.
|
||||
hdf5_datafile : string, optional
|
||||
Name of hdf5 archive to be used.
|
||||
|
||||
|
||||
"""
|
||||
|
||||
if SK is None:
|
||||
@ -35,68 +36,70 @@ class TransBasis:
|
||||
mpi.report("trans_basis: give SK instance or HDF filename!")
|
||||
return 0
|
||||
|
||||
Converter = Wien2kConverter(filename=hdf_datafile,repacking=False)
|
||||
Converter = Wien2kConverter(filename=hdf_datafile, repacking=False)
|
||||
Converter.convert_dft_input()
|
||||
del Converter
|
||||
|
||||
self.SK = SumkDFT(hdf_file=hdf_datafile+'.h5',use_dft_blocks=False)
|
||||
self.SK = SumkDFT(hdf_file=hdf_datafile +
|
||||
'.h5', use_dft_blocks=False)
|
||||
else:
|
||||
self.SK = SK
|
||||
|
||||
self.T = copy.deepcopy(self.SK.T[0])
|
||||
self.w = numpy.identity(SK.corr_shells[0]['dim'])
|
||||
|
||||
|
||||
def calculate_diagonalisation_matrix(self, prop_to_be_diagonal = 'eal'):
|
||||
def calculate_diagonalisation_matrix(self, prop_to_be_diagonal='eal'):
|
||||
"""
|
||||
Calculates the diagonalisation matrix w, and stores it as member of the class.
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
prop_to_be_diagonal : string, optional
|
||||
Defines the property to be diagonalized.
|
||||
|
||||
|
||||
- 'eal' : local hamiltonian (i.e. crystal field)
|
||||
- 'dm' : local density matrix
|
||||
|
||||
|
||||
Returns
|
||||
-------
|
||||
wsqr : double
|
||||
Measure for the degree of rotation done by the diagonalisation. wsqr=1 means no rotation.
|
||||
|
||||
|
||||
"""
|
||||
|
||||
if prop_to_be_diagonal == 'eal':
|
||||
prop = self.SK.eff_atomic_levels()[0]
|
||||
elif prop_to_be_diagonal == 'dm':
|
||||
prop = self.SK.density_matrix(method = 'using_point_integration')[0]
|
||||
prop = self.SK.density_matrix(method='using_point_integration')[0]
|
||||
else:
|
||||
mpi.report("trans_basis: not a valid quantitiy to be diagonal. Choices are 'eal' or 'dm'.")
|
||||
mpi.report(
|
||||
"trans_basis: not a valid quantitiy to be diagonal. Choices are 'eal' or 'dm'.")
|
||||
return 0
|
||||
|
||||
if self.SK.SO == 0:
|
||||
self.eig,self.w = numpy.linalg.eigh(prop['up'])
|
||||
self.eig, self.w = numpy.linalg.eigh(prop['up'])
|
||||
# calculate new Transformation matrix
|
||||
self.T = numpy.dot(self.T.transpose().conjugate(),self.w).conjugate().transpose()
|
||||
self.T = numpy.dot(self.T.transpose().conjugate(),
|
||||
self.w).conjugate().transpose()
|
||||
else:
|
||||
self.eig,self.w = numpy.linalg.eigh(prop['ud'])
|
||||
self.eig, self.w = numpy.linalg.eigh(prop['ud'])
|
||||
# calculate new Transformation matrix
|
||||
self.T = numpy.dot(self.T.transpose().conjugate(),self.w).conjugate().transpose()
|
||||
self.T = numpy.dot(self.T.transpose().conjugate(),
|
||||
self.w).conjugate().transpose()
|
||||
|
||||
# measure for the 'unity' of the transformation:
|
||||
wsqr = sum(abs(self.w.diagonal())**2)/self.w.diagonal().size
|
||||
wsqr = sum(abs(self.w.diagonal())**2) / self.w.diagonal().size
|
||||
return wsqr
|
||||
|
||||
|
||||
def rotate_gf(self,gf_to_rot):
|
||||
def rotate_gf(self, gf_to_rot):
|
||||
"""
|
||||
Uses the diagonalisation matrix w to rotate a given GF into the new basis.
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
gf_to_rot : BlockGf
|
||||
Green's function block to rotate.
|
||||
|
||||
|
||||
Returns
|
||||
-------
|
||||
gfreturn : BlockGf
|
||||
@ -104,86 +107,90 @@ class TransBasis:
|
||||
"""
|
||||
|
||||
# build a full GF
|
||||
gfrotated = BlockGf( name_block_generator = [ (block,GfImFreq(indices = inner, mesh = gf_to_rot.mesh)) for block,inner in self.SK.gf_struct_sumk[0] ], make_copies = False)
|
||||
gfrotated = BlockGf(name_block_generator=[(block, GfImFreq(
|
||||
indices=inner, mesh=gf_to_rot.mesh)) for block, inner in self.SK.gf_struct_sumk[0]], make_copies=False)
|
||||
|
||||
# transform the CTQMC blocks to the full matrix:
|
||||
ish = self.SK.corr_to_inequiv[0] # ish is the index of the inequivalent shell corresponding to icrsh
|
||||
# ish is the index of the inequivalent shell corresponding to icrsh
|
||||
ish = self.SK.corr_to_inequiv[0]
|
||||
for block, inner in self.gf_struct_solver[ish].iteritems():
|
||||
for ind1 in inner:
|
||||
for ind2 in inner:
|
||||
gfrotated[self.SK.solver_to_sumk_block[ish][block]][ind1,ind2] << gf_to_rot[block][ind1,ind2]
|
||||
gfrotated[self.SK.solver_to_sumk_block[ish][block]][
|
||||
ind1, ind2] << gf_to_rot[block][ind1, ind2]
|
||||
|
||||
# Rotate using the matrix w
|
||||
for bname,gf in gfrotated:
|
||||
gfrotated[bname].from_L_G_R(self.w.transpose().conjugate(),gfrotated[bname],self.w)
|
||||
for bname, gf in gfrotated:
|
||||
gfrotated[bname].from_L_G_R(
|
||||
self.w.transpose().conjugate(), gfrotated[bname], self.w)
|
||||
|
||||
gfreturn = gf_to_rot.copy()
|
||||
# Put back into CTQMC basis:
|
||||
for block, inner in self.gf_struct_solver[ish].iteritems():
|
||||
for ind1 in inner:
|
||||
for ind2 in inner:
|
||||
gfreturn[block][ind1,ind2] << gfrotated[self.SK.solver_to_sumk_block[0][block]][ind1,ind2]
|
||||
gfreturn[block][ind1, ind2] << gfrotated[
|
||||
self.SK.solver_to_sumk_block[0][block]][ind1, ind2]
|
||||
|
||||
return gfreturn
|
||||
|
||||
|
||||
def write_trans_file(self, filename):
|
||||
"""
|
||||
Writes the new transformation T into a file readable by dmftproj. By that, the requested quantity is
|
||||
diagonal already at input.
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
filename : string
|
||||
Name of the file where the transformation is stored.
|
||||
"""
|
||||
|
||||
f = open(filename,'w')
|
||||
f = open(filename, 'w')
|
||||
Tnew = self.T.conjugate()
|
||||
dim = self.SK.corr_shells[0]['dim']
|
||||
|
||||
if self.SK.SO == 0:
|
||||
|
||||
for i in range(dim):
|
||||
st = ''
|
||||
for k in range(dim):
|
||||
st += " %9.6f"%(Tnew[i,k].real)
|
||||
st += " %9.6f"%(Tnew[i,k].imag)
|
||||
for k in range(2*dim):
|
||||
st += " 0.0"
|
||||
for i in range(dim):
|
||||
st = ''
|
||||
for k in range(dim):
|
||||
st += " %9.6f" % (Tnew[i, k].real)
|
||||
st += " %9.6f" % (Tnew[i, k].imag)
|
||||
for k in range(2 * dim):
|
||||
st += " 0.0"
|
||||
|
||||
if i < (dim-1):
|
||||
f.write("%s\n"%(st))
|
||||
else:
|
||||
st1 = st.replace(' ','*',1)
|
||||
f.write("%s\n"%(st1))
|
||||
if i < (dim - 1):
|
||||
f.write("%s\n" % (st))
|
||||
else:
|
||||
st1 = st.replace(' ', '*', 1)
|
||||
f.write("%s\n" % (st1))
|
||||
|
||||
for i in range(dim):
|
||||
st = ''
|
||||
for k in range(2*dim):
|
||||
st += " 0.0"
|
||||
for k in range(dim):
|
||||
st += " %9.6f"%(Tnew[i,k].real)
|
||||
st += " %9.6f"%(Tnew[i,k].imag)
|
||||
for i in range(dim):
|
||||
st = ''
|
||||
for k in range(2 * dim):
|
||||
st += " 0.0"
|
||||
for k in range(dim):
|
||||
st += " %9.6f" % (Tnew[i, k].real)
|
||||
st += " %9.6f" % (Tnew[i, k].imag)
|
||||
|
||||
if i < (dim-1):
|
||||
f.write("%s\n"%(st))
|
||||
else:
|
||||
st1 = st.replace(' ','*',1)
|
||||
f.write("%s\n"%(st1))
|
||||
if i < (dim - 1):
|
||||
f.write("%s\n" % (st))
|
||||
else:
|
||||
st1 = st.replace(' ', '*', 1)
|
||||
f.write("%s\n" % (st1))
|
||||
|
||||
else:
|
||||
|
||||
for i in range(dim):
|
||||
st = ''
|
||||
for k in range(dim):
|
||||
st += " %9.6f"%(Tnew[i,k].real)
|
||||
st += " %9.6f"%(Tnew[i,k].imag)
|
||||
st = ''
|
||||
for k in range(dim):
|
||||
st += " %9.6f" % (Tnew[i, k].real)
|
||||
st += " %9.6f" % (Tnew[i, k].imag)
|
||||
|
||||
if i < (dim-1):
|
||||
f.write("%s\n"%(st))
|
||||
else:
|
||||
st1 = st.replace(' ','*',1)
|
||||
f.write("%s\n"%(st1))
|
||||
if i < (dim - 1):
|
||||
f.write("%s\n" % (st))
|
||||
else:
|
||||
st1 = st.replace(' ', '*', 1)
|
||||
f.write("%s\n" % (st1))
|
||||
|
||||
f.close()
|
||||
|
@ -5,8 +5,8 @@ import numpy
|
||||
import subprocess
|
||||
|
||||
if len(sys.argv) < 2:
|
||||
print "Usage: python update_archive.py old_archive [v1.0|v1.2]"
|
||||
sys.exit()
|
||||
print "Usage: python update_archive.py old_archive [v1.0|v1.2]"
|
||||
sys.exit()
|
||||
|
||||
print """
|
||||
This script is an attempt to update your archive to TRIQS 1.2.
|
||||
@ -15,13 +15,16 @@ Please keep a copy of your old archive as this script is
|
||||
If you encounter any problem please report it on github!
|
||||
"""
|
||||
|
||||
|
||||
def convert_shells(shells):
|
||||
shell_entries = ['atom', 'sort', 'l', 'dim']
|
||||
return [ {name: int(val) for name, val in zip(shell_entries, shells[ish])} for ish in range(len(shells)) ]
|
||||
return [{name: int(val) for name, val in zip(shell_entries, shells[ish])} for ish in range(len(shells))]
|
||||
|
||||
|
||||
def convert_corr_shells(corr_shells):
|
||||
corr_shell_entries = ['atom', 'sort', 'l', 'dim', 'SO', 'irep']
|
||||
return [ {name: int(val) for name, val in zip(corr_shell_entries, corr_shells[icrsh])} for icrsh in range(len(corr_shells)) ]
|
||||
return [{name: int(val) for name, val in zip(corr_shell_entries, corr_shells[icrsh])} for icrsh in range(len(corr_shells))]
|
||||
|
||||
|
||||
def det_shell_equivalence(corr_shells):
|
||||
corr_to_inequiv = [0 for i in range(len(corr_shells))]
|
||||
@ -29,20 +32,20 @@ def det_shell_equivalence(corr_shells):
|
||||
n_inequiv_shells = 1
|
||||
|
||||
if len(corr_shells) > 1:
|
||||
inequiv_sort = [ corr_shells[0]['sort'] ]
|
||||
inequiv_l = [ corr_shells[0]['l'] ]
|
||||
for i in range(len(corr_shells)-1):
|
||||
inequiv_sort = [corr_shells[0]['sort']]
|
||||
inequiv_l = [corr_shells[0]['l']]
|
||||
for i in range(len(corr_shells) - 1):
|
||||
is_equiv = False
|
||||
for j in range(n_inequiv_shells):
|
||||
if (inequiv_sort[j]==corr_shells[i+1]['sort']) and (inequiv_l[j]==corr_shells[i+1]['l']):
|
||||
if (inequiv_sort[j] == corr_shells[i + 1]['sort']) and (inequiv_l[j] == corr_shells[i + 1]['l']):
|
||||
is_equiv = True
|
||||
corr_to_inequiv[i+1] = j
|
||||
if is_equiv==False:
|
||||
corr_to_inequiv[i+1] = n_inequiv_shells
|
||||
corr_to_inequiv[i + 1] = j
|
||||
if is_equiv == False:
|
||||
corr_to_inequiv[i + 1] = n_inequiv_shells
|
||||
n_inequiv_shells += 1
|
||||
inequiv_sort.append( corr_shells[i+1]['sort'] )
|
||||
inequiv_l.append( corr_shells[i+1]['l'] )
|
||||
inequiv_to_corr.append( i+1 )
|
||||
inequiv_sort.append(corr_shells[i + 1]['sort'])
|
||||
inequiv_l.append(corr_shells[i + 1]['l'])
|
||||
inequiv_to_corr.append(i + 1)
|
||||
|
||||
return n_inequiv_shells, corr_to_inequiv, inequiv_to_corr
|
||||
|
||||
@ -50,48 +53,50 @@ def det_shell_equivalence(corr_shells):
|
||||
### Main ###
|
||||
|
||||
filename = sys.argv[1]
|
||||
if len(sys.argv) > 2:
|
||||
if len(sys.argv) > 2:
|
||||
from_v = sys.argv[2]
|
||||
else: # Assume updating an old v1.0 script
|
||||
else: # Assume updating an old v1.0 script
|
||||
from_v = 'v1.0'
|
||||
A = h5py.File(filename)
|
||||
|
||||
# Rename groups
|
||||
old_to_new = {'SumK_LDA':'dft_input', 'SumK_LDA_ParProj':'dft_parproj_input',
|
||||
'SymmCorr':'dft_symmcorr_input', 'SymmPar':'dft_symmpar_input', 'SumK_LDA_Bands':'dft_bands_input'}
|
||||
old_to_new = {'SumK_LDA': 'dft_input', 'SumK_LDA_ParProj': 'dft_parproj_input',
|
||||
'SymmCorr': 'dft_symmcorr_input', 'SymmPar': 'dft_symmpar_input', 'SumK_LDA_Bands': 'dft_bands_input'}
|
||||
|
||||
for old, new in old_to_new.iteritems():
|
||||
if old not in A.keys(): continue
|
||||
print "Changing %s to %s ..."%(old, new)
|
||||
A.copy(old,new)
|
||||
if old not in A.keys():
|
||||
continue
|
||||
print "Changing %s to %s ..." % (old, new)
|
||||
A.copy(old, new)
|
||||
del(A[old])
|
||||
|
||||
# Move output items from dft_input to user_data
|
||||
move_to_output = ['chemical_potential','dc_imp','dc_energ']
|
||||
move_to_output = ['chemical_potential', 'dc_imp', 'dc_energ']
|
||||
for obj in move_to_output:
|
||||
if obj in A['dft_input'].keys():
|
||||
if 'user_data' not in A: A.create_group('user_data')
|
||||
print "Moving %s to user_data ..."%obj
|
||||
A.copy('dft_input/'+obj,'user_data/'+obj)
|
||||
del(A['dft_input'][obj])
|
||||
if 'user_data' not in A:
|
||||
A.create_group('user_data')
|
||||
print "Moving %s to user_data ..." % obj
|
||||
A.copy('dft_input/' + obj, 'user_data/' + obj)
|
||||
del(A['dft_input'][obj])
|
||||
# Delete obsolete quantities
|
||||
to_delete = ['gf_struct_solver','map_inv','map','deg_shells','h_field']
|
||||
to_delete = ['gf_struct_solver', 'map_inv', 'map', 'deg_shells', 'h_field']
|
||||
for obj in to_delete:
|
||||
if obj in A['dft_input'].keys():
|
||||
del(A['dft_input'][obj])
|
||||
del(A['dft_input'][obj])
|
||||
|
||||
if from_v == 'v1.0':
|
||||
# Update shells and corr_shells to list of dicts
|
||||
shells_old = HDFArchive(filename,'r')['dft_input']['shells']
|
||||
corr_shells_old = HDFArchive(filename,'r')['dft_input']['corr_shells']
|
||||
shells_old = HDFArchive(filename, 'r')['dft_input']['shells']
|
||||
corr_shells_old = HDFArchive(filename, 'r')['dft_input']['corr_shells']
|
||||
shells = convert_shells(shells_old)
|
||||
corr_shells = convert_corr_shells(corr_shells_old)
|
||||
del(A['dft_input']['shells'])
|
||||
del(A['dft_input']['corr_shells'])
|
||||
A.close()
|
||||
# Need to use HDFArchive for the following
|
||||
HDFArchive(filename,'a')['dft_input']['shells'] = shells
|
||||
HDFArchive(filename,'a')['dft_input']['corr_shells'] = corr_shells
|
||||
HDFArchive(filename, 'a')['dft_input']['shells'] = shells
|
||||
HDFArchive(filename, 'a')['dft_input']['corr_shells'] = corr_shells
|
||||
A = h5py.File(filename)
|
||||
|
||||
# Add shell equivalency quantities
|
||||
@ -102,32 +107,36 @@ if 'n_inequiv_shells' not in A['dft_input']:
|
||||
A['dft_input']['inequiv_to_corr'] = equiv_shell_info[2]
|
||||
|
||||
# Rename variables
|
||||
groups = ['dft_symmcorr_input','dft_symmpar_input']
|
||||
groups = ['dft_symmcorr_input', 'dft_symmpar_input']
|
||||
for group in groups:
|
||||
if group not in A.keys(): continue
|
||||
if 'n_s' not in A[group]: continue
|
||||
if group not in A.keys():
|
||||
continue
|
||||
if 'n_s' not in A[group]:
|
||||
continue
|
||||
print "Changing n_s to n_symm ..."
|
||||
A[group].move('n_s','n_symm')
|
||||
A[group].move('n_s', 'n_symm')
|
||||
# Convert orbits to list of dicts
|
||||
orbits_old = HDFArchive(filename,'r')[group]['orbits']
|
||||
orbits_old = HDFArchive(filename, 'r')[group]['orbits']
|
||||
orbits = convert_corr_shells(orbits_old)
|
||||
del(A[group]['orbits'])
|
||||
A.close()
|
||||
HDFArchive(filename,'a')[group]['orbits'] = orbits
|
||||
HDFArchive(filename, 'a')[group]['orbits'] = orbits
|
||||
A = h5py.File(filename)
|
||||
|
||||
groups = ['dft_parproj_input']
|
||||
for group in groups:
|
||||
if group not in A.keys(): continue
|
||||
if 'proj_mat_pc' not in A[group]: continue
|
||||
if group not in A.keys():
|
||||
continue
|
||||
if 'proj_mat_pc' not in A[group]:
|
||||
continue
|
||||
print "Changing proj_mat_pc to proj_mat_all ..."
|
||||
A[group].move('proj_mat_pc','proj_mat_all')
|
||||
A[group].move('proj_mat_pc', 'proj_mat_all')
|
||||
|
||||
A.close()
|
||||
|
||||
# Repack to reclaim disk space
|
||||
retcode = subprocess.call(["h5repack","-i%s"%filename, "-otemphgfrt.h5"])
|
||||
retcode = subprocess.call(["h5repack", "-i%s" % filename, "-otemphgfrt.h5"])
|
||||
if retcode != 0:
|
||||
print "h5repack failed!"
|
||||
else:
|
||||
subprocess.call(["mv","-f","temphgfrt.h5","%s"%filename])
|
||||
subprocess.call(["mv", "-f", "temphgfrt.h5", "%s" % filename])
|
||||
|
@ -21,10 +21,10 @@
|
||||
|
||||
version = "@DFT_TOOLS_VERSION@"
|
||||
triqs_hash = "@TRIQS_GIT_HASH@"
|
||||
cthyb_hash = "@CTHYB_GIT_HASH@"
|
||||
dft_tools_hash = "@DFT_TOOLS_GIT_HASH@"
|
||||
|
||||
def show_version():
|
||||
print "\nYou are using the dft_tools version %s\n"%version
|
||||
|
||||
def show_git_hash():
|
||||
print "\nYou are using the dft_tools git hash %s based on triqs git hash %s\n"%(cthyb_hash, triqs_hash)
|
||||
print "\nYou are using the dft_tools git hash %s based on triqs git hash %s\n"%(dft_tools_hash, triqs_hash)
|
||||
|
@ -14,5 +14,8 @@ triqs_add_python_test(sumkdft_basic)
|
||||
triqs_add_python_test(srvo3_Gloc)
|
||||
triqs_add_python_test(srvo3_transp)
|
||||
triqs_add_python_test(sigma_from_file)
|
||||
triqs_add_python_test(blockstructure)
|
||||
|
||||
# VASP converter tests
|
||||
add_subdirectory(plovasp)
|
||||
|
||||
|
BIN
test/blockstructure.in.h5
Normal file
BIN
test/blockstructure.in.h5
Normal file
Binary file not shown.
83
test/blockstructure.py
Normal file
83
test/blockstructure.py
Normal file
@ -0,0 +1,83 @@
|
||||
from pytriqs.applications.dft.sumk_dft import *
|
||||
from pytriqs.utility.h5diff import h5diff
|
||||
from pytriqs.gf.local import *
|
||||
from pytriqs.utility.comparison_tests import assert_block_gfs_are_close
|
||||
from pytriqs.applications.dft import BlockStructure
|
||||
|
||||
SK = SumkDFT('blockstructure.in.h5',use_dft_blocks=True)
|
||||
|
||||
original_bs = SK.block_structure
|
||||
|
||||
# check pick_gf_struct_solver
|
||||
pick1 = original_bs.copy()
|
||||
pick1.pick_gf_struct_solver([{'up_0': [1], 'up_1': [0], 'down_1': [0]}])
|
||||
|
||||
# check loading a block_structure from file
|
||||
SK.block_structure = SK.load(['block_structure'],'mod')[0]
|
||||
assert SK.block_structure == pick1, 'loading SK block structure from file failed'
|
||||
|
||||
# check SumkDFT backward compatibility
|
||||
sk_pick1 = BlockStructure(gf_struct_sumk = SK.gf_struct_sumk,
|
||||
gf_struct_solver = SK.gf_struct_solver,
|
||||
solver_to_sumk = SK.solver_to_sumk,
|
||||
sumk_to_solver = SK.sumk_to_solver,
|
||||
solver_to_sumk_block = SK.solver_to_sumk_block)
|
||||
assert sk_pick1 == pick1, 'constructing block structure from SumkDFT properties failed'
|
||||
|
||||
# check pick_gf_struct_sumk
|
||||
pick2 = original_bs.copy()
|
||||
pick2.pick_gf_struct_sumk([{'up': [1, 2], 'down': [0,1]}])
|
||||
|
||||
# check map_gf_struct_solver
|
||||
mapping = [{ ('down_0', 0):('down', 0),
|
||||
('down_0', 1):('down', 2),
|
||||
('down_1', 0):('down', 1),
|
||||
('up_0', 0) :('down_1', 0),
|
||||
('up_0', 1) :('up_0', 0) }]
|
||||
map1 = original_bs.copy()
|
||||
map1.map_gf_struct_solver(mapping)
|
||||
|
||||
# check create_gf
|
||||
G1 = original_bs.create_gf(beta=40,n_points=3)
|
||||
i = 1
|
||||
for block,gf in G1:
|
||||
gf << SemiCircular(i)
|
||||
i+=1
|
||||
|
||||
# check approximate_as_diagonal
|
||||
offd = original_bs.copy()
|
||||
offd.approximate_as_diagonal()
|
||||
|
||||
# check map_gf_struct_solver
|
||||
G2 = map1.convert_gf(G1,original_bs,beta=40,n_points=3,show_warnings=False)
|
||||
|
||||
# check full_structure
|
||||
full = BlockStructure.full_structure([{'up_0': [0, 1], 'up_1': [0], 'down_1': [0], 'down_0': [0, 1]}],None)
|
||||
|
||||
# check __eq__
|
||||
assert full==full, 'equality not correct (equal structures not equal)'
|
||||
assert pick1==pick1, 'equality not correct (equal structures not equal)'
|
||||
assert pick1!=pick2, 'equality not correct (different structures not different)'
|
||||
assert original_bs!=offd, 'equality not correct (different structures not different)'
|
||||
|
||||
if mpi.is_master_node():
|
||||
with HDFArchive('blockstructure.out.h5','w') as ar:
|
||||
ar['original_bs'] = original_bs
|
||||
ar['pick1'] = pick1
|
||||
ar['pick2'] = pick2
|
||||
ar['map1'] = map1
|
||||
ar['offd'] = offd
|
||||
ar['G1'] = G1
|
||||
ar['G2'] = G2
|
||||
ar['full'] = full
|
||||
|
||||
# cannot use h5diff because BlockStructure testing is not implemented
|
||||
# there (and seems difficult to implement because it would mix triqs
|
||||
# and dft_tools)
|
||||
with HDFArchive('blockstructure.out.h5','r') as ar,\
|
||||
HDFArchive('blockstructure.ref.h5','r') as ar2:
|
||||
for k in ar2:
|
||||
if isinstance(ar[k],BlockGf):
|
||||
assert_block_gfs_are_close(ar[k],ar2[k],1.e-6)
|
||||
else:
|
||||
assert ar[k]==ar2[k], '{} not equal'.format(k)
|
BIN
test/blockstructure.ref.h5
Normal file
BIN
test/blockstructure.ref.h5
Normal file
Binary file not shown.
@ -51,5 +51,4 @@ SK.set_Sigma([Sigma_txt])
|
||||
SK.hdf_file = 'sigma_from_file.out.h5'
|
||||
SK.save(['Sigma_imp_w'])
|
||||
|
||||
if ((Sigma_txt - Sigma_hdf).real < 1e-6) & ((Sigma_txt - Sigma_hdf).imag < 1e-6):
|
||||
print 'Conversion: HDF -> TRIQS -> TXT -> TRIQS successful!'
|
||||
assert_block_gfs_are_close(Sigma_txt, Sigma_hdf)
|
||||
|
Loading…
Reference in New Issue
Block a user