diff --git a/python/converters/vasp/python/vasp_converter.py b/python/converters/vasp/python/vasp_converter.py new file mode 100644 index 00000000..3de09dc7 --- /dev/null +++ b/python/converters/vasp/python/vasp_converter.py @@ -0,0 +1,600 @@ + +################################################################################ +# +# TRIQS: a Toolbox for Research in Interacting Quantum Systems +# +# Copyright (C) 2011 by M. Aichhorn, L. Pourovskii, V. Vildosola +# +# TRIQS is free software: you can redistribute it and/or modify it under the +# terms of the GNU General Public License as published by the Free Software +# Foundation, either version 3 of the License, or (at your option) any later +# version. +# +# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY +# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS +# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more +# details. +# +# You should have received a copy of the GNU General Public License along with +# TRIQS. If not, see . +# +################################################################################ + +from types import * +import numpy +from pytriqs.archive import * +from converter_tools import * +import os.path + +class VaspConverter(ConverterTools): + """ + Conversion from VASP output to an hdf5 file that can be used as input for the SumkDFT class. + """ + + def __init__(self, filename, hdf_filename = None, + dft_subgrp = 'dft_input', symmcorr_subgrp = 'dft_symmcorr_input', + parproj_subgrp='dft_parproj_input', symmpar_subgrp='dft_symmpar_input', + bands_subgrp = 'dft_bands_input', misc_subgrp = 'dft_misc_input', + transp_subgrp = 'dft_transp_input', repacking = False): + """ + Init of the class. Variable filename gives the root of all filenames, e.g. case.ctqmcout, case.h5, and so on. + """ + + assert type(filename)==StringType, "Please provide the DFT files' base name as a string." + if hdf_filename is None: hdf_filename = filename+'.h5' + self.hdf_file = hdf_filename + self.basename = filename + self.ctrl_file = filename+'.ctrl' +# self.pmat_file = filename+'.pmat' + self.dft_subgrp = dft_subgrp + self.symmcorr_subgrp = symmcorr_subgrp + self.parproj_subgrp = parproj_subgrp + self.symmpar_subgrp = symmpar_subgrp + self.bands_subgrp = bands_subgrp + self.misc_subgrp = misc_subgrp + self.transp_subgrp = transp_subgrp + self.fortran_to_replace = {'D':'E'} + + # Checks if h5 file is there and repacks it if wanted: + if (os.path.exists(self.hdf_file) and repacking): + ConverterTools.repack(self) + + + def read_data(self, fh): + """ + Generator for reading plain data. + """ + + def read_header_and_data(self, filename): + """ + Opens a file and returns a JSON-header and the generator for the plain data. + """ + def convert_dft_input(self): + """ + Reads the input files, and stores the data in the HDFfile + """ + + # Read and write only on the master node + if not (mpi.is_master_node()): return + mpi.report("Reading input from %s..."%self.dft_file) + + # R is a generator : each R.Next() will return the next number in the file + R = ConverterTools.read_fortran_file(self,self.dft_file,self.fortran_to_replace) + try: + energy_unit = R.next() # read the energy convertion factor + n_k = int(R.next()) # read the number of k points + k_dep_projection = 1 + SP = int(R.next()) # flag for spin-polarised calculation + SO = int(R.next()) # flag for spin-orbit calculation + charge_below = R.next() # total charge below energy window + density_required = R.next() # total density required, for setting the chemical potential + symm_op = 1 # Use symmetry groups for the k-sum + + # the information on the non-correlated shells is not important here, maybe skip: + n_shells = int(R.next()) # number of shells (e.g. Fe d, As p, O p) in the unit cell, + # corresponds to index R in formulas + # now read the information about the shells (atom, sort, l, dim): + shell_entries = ['atom', 'sort', 'l', 'dim'] + shells = [ {name: int(val) for name, val in zip(shell_entries, R)} for ish in range(n_shells) ] + + n_corr_shells = int(R.next()) # number of corr. shells (e.g. Fe d, Ce f) in the unit cell, + # corresponds to index R in formulas + # now read the information about the shells (atom, sort, l, dim, SO flag, irep): + corr_shell_entries = ['atom', 'sort', 'l', 'dim', 'SO', 'irep'] + corr_shells = [ {name: int(val) for name, val in zip(corr_shell_entries, R)} for icrsh in range(n_corr_shells) ] + + # determine the number of inequivalent correlated shells and maps, needed for further reading + n_inequiv_shells, corr_to_inequiv, inequiv_to_corr = ConverterTools.det_shell_equivalence(self,corr_shells) + + use_rotations = 1 + rot_mat = [numpy.identity(corr_shells[icrsh]['dim'],numpy.complex_) for icrsh in range(n_corr_shells)] + + # read the matrices + rot_mat_time_inv = [0 for i in range(n_corr_shells)] + + for icrsh in range(n_corr_shells): + for i in range(corr_shells[icrsh]['dim']): # read real part: + for j in range(corr_shells[icrsh]['dim']): + rot_mat[icrsh][i,j] = R.next() + for i in range(corr_shells[icrsh]['dim']): # read imaginary part: + for j in range(corr_shells[icrsh]['dim']): + rot_mat[icrsh][i,j] += 1j * R.next() + + if (SP==1): # read time inversion flag: + rot_mat_time_inv[icrsh] = int(R.next()) + + # Read here the info for the transformation of the basis: + n_reps = [1 for i in range(n_inequiv_shells)] + dim_reps = [0 for i in range(n_inequiv_shells)] + T = [] + for ish in range(n_inequiv_shells): + n_reps[ish] = int(R.next()) # number of representatives ("subsets"), e.g. t2g and eg + dim_reps[ish] = [int(R.next()) for i in range(n_reps[ish])] # dimensions of the subsets + + # The transformation matrix: + # is of dimension 2l+1 without SO, and 2*(2l+1) with SO! + ll = 2*corr_shells[inequiv_to_corr[ish]]['l']+1 + lmax = ll * (corr_shells[inequiv_to_corr[ish]]['SO'] + 1) + T.append(numpy.zeros([lmax,lmax],numpy.complex_)) + + # now read it from file: + for i in range(lmax): + for j in range(lmax): + T[ish][i,j] = R.next() + for i in range(lmax): + for j in range(lmax): + T[ish][i,j] += 1j * R.next() + + # Spin blocks to be read: + n_spin_blocs = SP + 1 - SO + + # read the list of n_orbitals for all k points + n_orbitals = numpy.zeros([n_k,n_spin_blocs],numpy.int) + for isp in range(n_spin_blocs): + for ik in range(n_k): + n_orbitals[ik,isp] = int(R.next()) + + # Initialise the projectors: + proj_mat = numpy.zeros([n_k,n_spin_blocs,n_corr_shells,max([crsh['dim'] for crsh in corr_shells]),max(n_orbitals)],numpy.complex_) + + # Read the projectors from the file: + for ik in range(n_k): + for icrsh in range(n_corr_shells): + n_orb = corr_shells[icrsh]['dim'] + # first Real part for BOTH spins, due to conventions in dmftproj: + for isp in range(n_spin_blocs): + for i in range(n_orb): + for j in range(n_orbitals[ik][isp]): + proj_mat[ik,isp,icrsh,i,j] = R.next() + # now Imag part: + for isp in range(n_spin_blocs): + for i in range(n_orb): + for j in range(n_orbitals[ik][isp]): + proj_mat[ik,isp,icrsh,i,j] += 1j * R.next() + + # now define the arrays for weights and hopping ... + bz_weights = numpy.ones([n_k],numpy.float_)/ float(n_k) # w(k_index), default normalisation + hopping = numpy.zeros([n_k,n_spin_blocs,max(n_orbitals),max(n_orbitals)],numpy.complex_) + + # weights in the file + for ik in range(n_k) : bz_weights[ik] = R.next() + + # if the sum over spins is in the weights, take it out again!! + sm = sum(bz_weights) + bz_weights[:] /= sm + + # Grab the H + # we use now the convention of a DIAGONAL Hamiltonian -- convention for Wien2K. + for isp in range(n_spin_blocs): + for ik in range(n_k) : + n_orb = n_orbitals[ik,isp] + for i in range(n_orb): + hopping[ik,isp,i,i] = R.next() * energy_unit + + # keep some things that we need for reading parproj: + things_to_set = ['n_shells','shells','n_corr_shells','corr_shells','n_spin_blocs','n_orbitals','n_k','SO','SP','energy_unit'] + for it in things_to_set: setattr(self,it,locals()[it]) + except StopIteration : # a more explicit error if the file is corrupted. + raise "Wien2k_converter : reading file %s failed!"%filename + + R.close() + # Reading done! + + # Save it to the HDF: + ar = HDFArchive(self.hdf_file,'a') + if not (self.dft_subgrp in ar): ar.create_group(self.dft_subgrp) + # The subgroup containing the data. If it does not exist, it is created. If it exists, the data is overwritten! + things_to_save = ['energy_unit','n_k','k_dep_projection','SP','SO','charge_below','density_required', + 'symm_op','n_shells','shells','n_corr_shells','corr_shells','use_rotations','rot_mat', + 'rot_mat_time_inv','n_reps','dim_reps','T','n_orbitals','proj_mat','bz_weights','hopping', + 'n_inequiv_shells', 'corr_to_inequiv', 'inequiv_to_corr'] + for it in things_to_save: ar[self.dft_subgrp][it] = locals()[it] + del ar + + # Symmetries are used, so now convert symmetry information for *correlated* orbitals: + self.convert_symmetry_input(orbits=self.corr_shells,symm_file=self.symmcorr_file,symm_subgrp=self.symmcorr_subgrp,SO=self.SO,SP=self.SP) + self.convert_misc_input(bandwin_file=self.bandwin_file,struct_file=self.struct_file,outputs_file=self.outputs_file, + misc_subgrp=self.misc_subgrp,SO=self.SO,SP=self.SP,n_k=self.n_k) + + + def convert_parproj_input(self): + """ + Reads the input for the partial charges projectors from case.parproj, and stores it in the symmpar_subgrp + group in the HDF5. + """ + + if not (mpi.is_master_node()): return + mpi.report("Reading input from %s..."%self.parproj_file) + + dens_mat_below = [ [numpy.zeros([self.shells[ish]['dim'],self.shells[ish]['dim']],numpy.complex_) for ish in range(self.n_shells)] + for isp in range(self.n_spin_blocs) ] + + R = ConverterTools.read_fortran_file(self,self.parproj_file,self.fortran_to_replace) + + n_parproj = [int(R.next()) for i in range(self.n_shells)] + n_parproj = numpy.array(n_parproj) + + # Initialise P, here a double list of matrices: + proj_mat_all = numpy.zeros([self.n_k,self.n_spin_blocs,self.n_shells,max(n_parproj),max([sh['dim'] for sh in self.shells]),max(self.n_orbitals)],numpy.complex_) + + rot_mat_all = [numpy.identity(self.shells[ish]['dim'],numpy.complex_) for ish in range(self.n_shells)] + rot_mat_all_time_inv = [0 for i in range(self.n_shells)] + + for ish in range(self.n_shells): + # read first the projectors for this orbital: + for ik in range(self.n_k): + for ir in range(n_parproj[ish]): + + for isp in range(self.n_spin_blocs): + for i in range(self.shells[ish]['dim']): # read real part: + for j in range(self.n_orbitals[ik][isp]): + proj_mat_all[ik,isp,ish,ir,i,j] = R.next() + + for isp in range(self.n_spin_blocs): + for i in range(self.shells[ish]['dim']): # read imaginary part: + for j in range(self.n_orbitals[ik][isp]): + proj_mat_all[ik,isp,ish,ir,i,j] += 1j * R.next() + + + # now read the Density Matrix for this orbital below the energy window: + for isp in range(self.n_spin_blocs): + for i in range(self.shells[ish]['dim']): # read real part: + for j in range(self.shells[ish]['dim']): + dens_mat_below[isp][ish][i,j] = R.next() + for isp in range(self.n_spin_blocs): + for i in range(self.shells[ish]['dim']): # read imaginary part: + for j in range(self.shells[ish]['dim']): + dens_mat_below[isp][ish][i,j] += 1j * R.next() + if (self.SP==0): dens_mat_below[isp][ish] /= 2.0 + + # Global -> local rotation matrix for this shell: + for i in range(self.shells[ish]['dim']): # read real part: + for j in range(self.shells[ish]['dim']): + rot_mat_all[ish][i,j] = R.next() + for i in range(self.shells[ish]['dim']): # read imaginary part: + for j in range(self.shells[ish]['dim']): + rot_mat_all[ish][i,j] += 1j * R.next() + + if (self.SP): + rot_mat_all_time_inv[ish] = int(R.next()) + + R.close() + # Reading done! + + # Save it to the HDF: + ar = HDFArchive(self.hdf_file,'a') + if not (self.parproj_subgrp in ar): ar.create_group(self.parproj_subgrp) + # The subgroup containing the data. If it does not exist, it is created. If it exists, the data is overwritten! + things_to_save = ['dens_mat_below','n_parproj','proj_mat_all','rot_mat_all','rot_mat_all_time_inv'] + for it in things_to_save: ar[self.parproj_subgrp][it] = locals()[it] + del ar + + # Symmetries are used, so now convert symmetry information for *all* orbitals: + self.convert_symmetry_input(orbits=self.shells,symm_file=self.symmpar_file,symm_subgrp=self.symmpar_subgrp,SO=self.SO,SP=self.SP) + + + def convert_bands_input(self): + """ + Converts the input for momentum resolved spectral functions, and stores it in bands_subgrp in the + HDF5. + """ + + if not (mpi.is_master_node()): return + mpi.report("Reading bands input from %s..."%self.band_file) + + R = ConverterTools.read_fortran_file(self,self.band_file,self.fortran_to_replace) + try: + n_k = int(R.next()) + + # read the list of n_orbitals for all k points + n_orbitals = numpy.zeros([n_k,self.n_spin_blocs],numpy.int) + for isp in range(self.n_spin_blocs): + for ik in range(n_k): + n_orbitals[ik,isp] = int(R.next()) + + # Initialise the projectors: + proj_mat = numpy.zeros([n_k,self.n_spin_blocs,self.n_corr_shells,max([crsh['dim'] for crsh in self.corr_shells]),max(n_orbitals)],numpy.complex_) + + # Read the projectors from the file: + for ik in range(n_k): + for icrsh in range(self.n_corr_shells): + n_orb = self.corr_shells[icrsh]['dim'] + # first Real part for BOTH spins, due to conventions in dmftproj: + for isp in range(self.n_spin_blocs): + for i in range(n_orb): + for j in range(n_orbitals[ik,isp]): + proj_mat[ik,isp,icrsh,i,j] = R.next() + # now Imag part: + for isp in range(self.n_spin_blocs): + for i in range(n_orb): + for j in range(n_orbitals[ik,isp]): + proj_mat[ik,isp,icrsh,i,j] += 1j * R.next() + + hopping = numpy.zeros([n_k,self.n_spin_blocs,max(n_orbitals),max(n_orbitals)],numpy.complex_) + + # Grab the H + # we use now the convention of a DIAGONAL Hamiltonian!!!! + for isp in range(self.n_spin_blocs): + for ik in range(n_k) : + n_orb = n_orbitals[ik,isp] + for i in range(n_orb): + hopping[ik,isp,i,i] = R.next() * self.energy_unit + + # now read the partial projectors: + n_parproj = [int(R.next()) for i in range(self.n_shells)] + n_parproj = numpy.array(n_parproj) + + # Initialise P, here a double list of matrices: + proj_mat_all = numpy.zeros([n_k,self.n_spin_blocs,self.n_shells,max(n_parproj),max([sh['dim'] for sh in self.shells]),max(n_orbitals)],numpy.complex_) + + for ish in range(self.n_shells): + for ik in range(n_k): + for ir in range(n_parproj[ish]): + for isp in range(self.n_spin_blocs): + + for i in range(self.shells[ish]['dim']): # read real part: + for j in range(n_orbitals[ik,isp]): + proj_mat_all[ik,isp,ish,ir,i,j] = R.next() + + for i in range(self.shells[ish]['dim']): # read imaginary part: + for j in range(n_orbitals[ik,isp]): + proj_mat_all[ik,isp,ish,ir,i,j] += 1j * R.next() + + except StopIteration : # a more explicit error if the file is corrupted. + raise "Wien2k_converter : reading file band_file failed!" + + R.close() + # Reading done! + + # Save it to the HDF: + ar = HDFArchive(self.hdf_file,'a') + if not (self.bands_subgrp in ar): ar.create_group(self.bands_subgrp) + # The subgroup containing the data. If it does not exist, it is created. If it exists, the data is overwritten! + things_to_save = ['n_k','n_orbitals','proj_mat','hopping','n_parproj','proj_mat_all'] + for it in things_to_save: ar[self.bands_subgrp][it] = locals()[it] + del ar + + + def convert_misc_input(self, bandwin_file, struct_file, outputs_file, misc_subgrp, SO, SP, n_k): + """ + Reads input for the band window from bandwin_file, which is case.oubwin, + structure from struct_file, which is case.struct, + symmetries from outputs_file, which is case.outputs. + """ + + if not (mpi.is_master_node()): return + things_to_save = [] + + # Read relevant data from .oubwin/up/dn files + ############################################# + # band_window: Contains the index of the lowest and highest band within the + # projected subspace (used by dmftproj) for each k-point. + + if (SP == 0 or SO == 1): + files = [self.bandwin_file] + elif SP == 1: + files = [self.bandwin_file+'up', self.bandwin_file+'dn'] + else: # SO and SP can't both be 1 + assert 0, "convert_transport_input: Reding oubwin error! Check SP and SO!" + + band_window = [numpy.zeros((n_k, 2), dtype=int) for isp in range(SP + 1 - SO)] + for isp, f in enumerate(files): + if os.path.exists(f): + mpi.report("Reading input from %s..."%f) + R = ConverterTools.read_fortran_file(self, f, self.fortran_to_replace) + assert int(R.next()) == n_k, "convert_misc_input: Number of k-points is inconsistent in oubwin file!" + assert int(R.next()) == SO, "convert_misc_input: SO is inconsistent in oubwin file!" + for ik in xrange(n_k): + R.next() + band_window[isp][ik,0] = R.next() # lowest band + band_window[isp][ik,1] = R.next() # highest band + R.next() + things_to_save.append('band_window') + + R.close() # Reading done! + + # Read relevant data from .struct file + ###################################### + # lattice_type: bravais lattice type as defined by Wien2k + # lattice_constants: unit cell parameters in a. u. + # lattice_angles: unit cell angles in rad + + if (os.path.exists(self.struct_file)): + mpi.report("Reading input from %s..."%self.struct_file) + + with open(self.struct_file) as R: + try: + R.readline() + lattice_type = R.readline().split()[0] + R.readline() + temp = R.readline() + print temp + lattice_constants = numpy.array([float(temp[0+10*i:10+10*i].strip()) for i in range(3)]) + lattice_angles = numpy.array([float(temp[30+10*i:40+10*i].strip()) for i in range(3)]) * numpy.pi / 180.0 + things_to_save.extend(['lattice_type', 'lattice_constants', 'lattice_angles']) + except IOError: + raise "convert_misc_input: reading file %s failed" %self.struct_file + + # Read relevant data from .outputs file + ####################################### + # rot_symmetries: matrix representation of all (space group) symmetry operations + + if (os.path.exists(self.outputs_file)): + mpi.report("Reading input from %s..."%self.outputs_file) + + rot_symmetries = [] + with open(self.outputs_file) as R: + try: + while 1: + temp = R.readline().strip(' ').split() + if (temp[0] =='PGBSYM:'): + n_symmetries = int(temp[-1]) + break + for i in range(n_symmetries): + while 1: + if (R.readline().strip().split()[0] == 'Symmetry'): break + sym_i = numpy.zeros((3, 3), dtype = float) + for ir in range(3): + temp = R.readline().strip().split() + for ic in range(3): + sym_i[ir, ic] = float(temp[ic]) + R.readline() + rot_symmetries.append(sym_i) + things_to_save.extend(['n_symmetries', 'rot_symmetries']) + things_to_save.append('rot_symmetries') + except IOError: + raise "convert_misc_input: reading file %s failed" %self.outputs_file + + # Save it to the HDF: + ar=HDFArchive(self.hdf_file,'a') + if not (misc_subgrp in ar): ar.create_group(misc_subgrp) + for it in things_to_save: ar[misc_subgrp][it] = locals()[it] + del ar + + + def convert_transport_input(self): + """ + Reads the input files necessary for transport calculations + and stores the data in the HDFfile + """ + if not (mpi.is_master_node()): return + + # Check if SP, SO and n_k are already in h5 + ar = HDFArchive(self.hdf_file, 'a') + if not (self.dft_subgrp in ar): raise IOError, "convert_transport_input: No %s subgroup in hdf file found! Call convert_dmft_input first." %self.dft_subgrp + SP = ar[self.dft_subgrp]['SP'] + SO = ar[self.dft_subgrp]['SO'] + n_k = ar[self.dft_subgrp]['n_k'] + del ar + + # Read relevant data from .pmat/up/dn files + ########################################### + # band_window_optics: Contains the index of the lowest and highest band within the + # band window (used by optics) for each k-point. + # velocities_k: velocity (momentum) matrix elements between all bands in band_window_optics + # and each k-point. + + if (SP == 0 or SO == 1): + files = [self.pmat_file] + elif SP == 1: + files = [self.pmat_file+'up', self.pmat_file+'dn'] + else: # SO and SP can't both be 1 + assert 0, "convert_transport_input: Reading velocity file error! Check SP and SO!" + + velocities_k = [[] for f in files] + band_window_optics = [] + for isp, f in enumerate(files): + if not os.path.exists(f) : raise IOError, "convert_transport_input: File %s does not exist" %f + mpi.report("Reading input from %s..."%f) + + R = ConverterTools.read_fortran_file(self, f, {'D':'E','(':'',')':'',',':' '}) + band_window_optics_isp = [] + for ik in xrange(n_k): + R.next() + nu1 = int(R.next()) + nu2 = int(R.next()) + band_window_optics_isp.append((nu1, nu2)) + n_bands = nu2 - nu1 + 1 + for _ in range(4): R.next() + if n_bands <= 0: + velocity_xyz = numpy.zeros((1, 1, 3), dtype = complex) + else: + velocity_xyz = numpy.zeros((n_bands, n_bands, 3), dtype = complex) + for nu_i in range(n_bands): + for nu_j in range(nu_i, n_bands): + for i in range(3): + velocity_xyz[nu_i][nu_j][i] = R.next() + R.next()*1j + if (nu_i != nu_j): velocity_xyz[nu_j][nu_i][i] = velocity_xyz[nu_i][nu_j][i].conjugate() + velocities_k[isp].append(velocity_xyz) + band_window_optics.append(numpy.array(band_window_optics_isp)) + R.close() # Reading done! + + # Put data to HDF5 file + ar = HDFArchive(self.hdf_file, 'a') + if not (self.transp_subgrp in ar): ar.create_group(self.transp_subgrp) + # The subgroup containing the data. If it does not exist, it is created. If it exists, the data is overwritten!!! + things_to_save = ['band_window_optics', 'velocities_k'] + for it in things_to_save: ar[self.transp_subgrp][it] = locals()[it] + del ar + + def convert_symmetry_input(self, orbits, symm_file, symm_subgrp, SO, SP): + """ + Reads input for the symmetrisations from symm_file, which is case.sympar or case.symqmc. + """ + + if not (mpi.is_master_node()): return + mpi.report("Reading input from %s..."%symm_file) + + n_orbits = len(orbits) + + R = ConverterTools.read_fortran_file(self,symm_file,self.fortran_to_replace) + + try: + n_symm = int(R.next()) # Number of symmetry operations + n_atoms = int(R.next()) # number of atoms involved + perm = [ [int(R.next()) for i in range(n_atoms)] for j in range(n_symm) ] # list of permutations of the atoms + if SP: + time_inv = [ int(R.next()) for j in range(n_symm) ] # time inversion for SO coupling + else: + time_inv = [ 0 for j in range(n_symm) ] + + # Now read matrices: + mat = [] + for i_symm in range(n_symm): + + mat.append( [ numpy.zeros([orbits[orb]['dim'], orbits[orb]['dim']],numpy.complex_) for orb in range(n_orbits) ] ) + for orb in range(n_orbits): + for i in range(orbits[orb]['dim']): + for j in range(orbits[orb]['dim']): + mat[i_symm][orb][i,j] = R.next() # real part + for i in range(orbits[orb]['dim']): + for j in range(orbits[orb]['dim']): + mat[i_symm][orb][i,j] += 1j * R.next() # imaginary part + + mat_tinv = [numpy.identity(orbits[orb]['dim'],numpy.complex_) + for orb in range(n_orbits)] + + if ((SO==0) and (SP==0)): + # here we need an additional time inversion operation, so read it: + for orb in range(n_orbits): + for i in range(orbits[orb]['dim']): + for j in range(orbits[orb]['dim']): + mat_tinv[orb][i,j] = R.next() # real part + for i in range(orbits[orb]['dim']): + for j in range(orbits[orb]['dim']): + mat_tinv[orb][i,j] += 1j * R.next() # imaginary part + + + + except StopIteration : # a more explicit error if the file is corrupted. + raise "Wien2k_converter : reading file symm_file failed!" + + R.close() + # Reading done! + + # Save it to the HDF: + ar=HDFArchive(self.hdf_file,'a') + if not (symm_subgrp in ar): ar.create_group(symm_subgrp) + things_to_save = ['n_symm','n_atoms','perm','orbits','SO','SP','time_inv','mat','mat_tinv'] + for it in things_to_save: ar[symm_subgrp][it] = locals()[it] + del ar