3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-03 10:05:49 +01:00

Reading vasptriqs.h5 file; reading GAMMA file for non-collinear full csc

This commit is contained in:
Dario Fiore Mosca 2024-05-06 10:30:17 +02:00 committed by the-hampel
parent f57080a6af
commit 75fbb9cbdb
2 changed files with 543 additions and 328 deletions

View File

@ -1,4 +1,3 @@
################################################################################
#
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
@ -44,6 +43,7 @@ from h5 import HDFArchive
log = logging.getLogger('plovasp.vaspio')
def read_lines(filename):
r"""
Generator of lines for a file
@ -57,6 +57,7 @@ def read_lines(filename):
for line in f:
yield line
################################################################################
################################################################################
#
@ -68,45 +69,59 @@ class VaspData:
"""
Container class for all VASP data.
"""
def __init__(self, vasp_dir, read_all=True, efermi_required=True):
self.vasp_dir = vasp_dir
self.plocar = Plocar()
self.poscar = Poscar()
self.kpoints = Kpoints()
self.eigenval = Eigenval()
self.doscar = Doscar()
# NEW vasptriqs.h5
vasptriqs = os.path.isfile(os.path.join(vasp_dir, 'vasptriqs.h5'))
if vasptriqs:
log.warning("Reading from vasptriqs.h5")
h5path = os.path.join(vasp_dir, 'vasptriqs.h5')
self.plocar = h5Plocar(h5path)
self.poscar = h5Poscar(h5path)
self.kpoints = h5Kpoints(h5path)
self.eigenval = h5Eigenval(h5path)
self.doscar = h5Doscar(h5path)
else:
self.plocar = Plocar()
self.poscar = Poscar()
self.kpoints = Kpoints()
self.eigenval = Eigenval()
self.doscar = Doscar()
if read_all:
self.plocar.from_file(vasp_dir)
self.poscar.from_file(vasp_dir)
self.kpoints.from_file(vasp_dir)
try:
self.eigenval.from_file(vasp_dir)
except (IOError, StopIteration):
self.eigenval.eigs = None
self.eigenval.ferw = None
log.warning("Error reading from EIGENVAL, trying LOCPROJ...")
if efermi_required:
if read_all:
self.plocar.from_file(vasp_dir)
self.poscar.from_file(vasp_dir)
self.kpoints.from_file(vasp_dir)
try:
with HDFArchive(vasp_dir + "vasptriqs.h5", 'r') as ar:
self.doscar.efermi = ar['triqs/efermi']
print(f'Fermi energy read from vasptriqs.h5: {self.doscar.efermi:.4f} eV')
except NameError:
raise Exception("Efermi cannot be read from vasptriqs.h5 file")
else:
# TODO: This a hack. Find out a way to determine ncdij without DOSCAR
log.warning("Error reading Efermi from DOSCAR, taking from config")
self.doscar.ncdij = self.plocar.nspin
self.eigenval.from_file(vasp_dir)
except (IOError, StopIteration):
self.eigenval.eigs = None
self.eigenval.ferw = None
log.warning("Error reading from EIGENVAL, trying LOCPROJ...")
################################################################################
################################################################################
try:
self.doscar.from_file(vasp_dir)
except (IOError, StopIteration):
if efermi_required:
log.warning("Error reading Efermi from DOSCAR, trying LOCPROJ...")
try:
self.plocar.efermi
self.doscar.efermi = self.plocar.efermi
except NameError:
raise Exception("Efermi cannot be read from DOSCAR or LOCPROJ")
else:
# TODO: This a hack. Find out a way to determine ncdij without DOSCAR
log.warning("Error reading Efermi from DOSCAR, taking from config")
self.doscar.ncdij = self.plocar.nspin
##########################
#
# class Plocar
#
################################################################################
################################################################################
##########################
class Plocar:
"""
Class containing raw PLO data from VASP.
@ -117,6 +132,7 @@ class Plocar:
- *ferw* (array(nion, ns, nk, nb)) : Fermi weights from VASP
"""
def __init__(self):
self.plo = None
self.proj_params = None
@ -133,15 +149,14 @@ class Plocar:
plocar_filename (str) : filename [default = 'PLOCAR']
"""
# Add a slash to the path name if necessary
# Add a slash to the path name if necessary
if vasp_dir[-1] != '/':
vasp_dir += '/'
# self.params, self.plo, self.ferw = c_plocar_io.read_plocar(vasp_dir + plocar_filename)
# self.proj_params, self.plo = self.temp_parser(projcar_filename=vasp_dir + "PROJCAR", locproj_filename=vasp_dir + "LOCPROJ")
# self.params, self.plo, self.ferw = c_plocar_io.read_plocar(vasp_dir + plocar_filename)
# self.proj_params, self.plo = self.temp_parser(projcar_filename=vasp_dir + "PROJCAR", locproj_filename=vasp_dir + "LOCPROJ")
self.proj_params, self.plo = self.locproj_parser(locproj_filename=vasp_dir + "LOCPROJ")
def locproj_parser(self, locproj_filename='LOCPROJ'):
r"""
Parses LOCPROJ (for VASP >= 5.4.2) to get VASP projectors.
@ -157,10 +172,10 @@ class Plocar:
def lm_to_l_m(lm):
l = int(np.sqrt(lm))
m = lm - l*l
m = lm - l * l
return l, m
# Read the first line of LOCPROJ to get the dimensions
# Read the first line of LOCPROJ to get the dimensions
with open(locproj_filename, 'rt') as f:
line = f.readline()
line = line.split("#")[0]
@ -173,6 +188,11 @@ class Plocar:
self.nspin_band = 2 if self.ncdij == 2 else 1
try:
self.efermi = float(sline[4])
except:
log.warning("Error reading Efermi from LOCPROJ, trying DOSCAR...")
plo = np.zeros((nproj, self.nspin, nk, self.nband), dtype=complex)
proj_params = [{} for i in range(nproj)]
@ -188,7 +208,7 @@ class Plocar:
log.debug("NC FLAG : {}".format(self.nc_flag))
# First read the header block with orbital labels
# First read the header block with orbital labels
line = self.search_for(f, "^ *ISITE")
ip = 0
while line:
@ -197,20 +217,20 @@ class Plocar:
label = sline[-1].strip()
lm = orb_labels.index(label)
l, m = lm_to_l_m(lm)
# ip_new = iproj_site * norb + il
# ip_prev = (iproj_site - 1) * norb + il
# ip_new = iproj_site * norb + il
# ip_prev = (iproj_site - 1) * norb + il
proj_params[ip]['label'] = label
proj_params[ip]['isite'] = isite
proj_params[ip]['l'] = l
if self.nc_flag == True:
if (ip % 2) == 0:
proj_params[ip]['m'] = 2*m
proj_params[ip]['m'] = 2 * m
else:
proj_params[ip]['m'] = 2*m + 1
proj_params[ip]['m'] = 2 * m + 1
else:
proj_params[ip]['m'] = m
ip +=1
ip += 1
line = f.readline().strip()
@ -244,7 +264,6 @@ class Plocar:
return proj_params, plo
def search_for(self, f, patt):
r"""
Reads file 'f' until pattern 'patt' is encountered and returns
@ -258,13 +277,11 @@ class Plocar:
return line
################################################################################
################################################################################
##########################
#
# class Poscar
#
################################################################################
################################################################################
##########################
class Poscar:
"""
Class containing POSCAR data from VASP.
@ -278,6 +295,7 @@ class Poscar:
- q_types ([numpy.array((nions, 3), dtype=float)]) : a list of
arrays each containing fractional coordinates of ions of a given type
"""
def __init__(self):
self.q_cart = None
@ -292,68 +310,69 @@ class Poscar:
plocar_filename (str) : filename [default = 'POSCAR']
"""
# Convenince local function
# Convenince local function
def readline_remove_comments():
return next(f).split('!')[0].split('#')[0].strip()
# Add a slash to the path name if necessary
# Add a slash to the path name if necessary
if vasp_dir[-1] != '/':
vasp_dir += '/'
f = read_lines(vasp_dir + poscar_filename)
# Comment line
# Comment line
comment = next(f).rstrip()
print(" Found POSCAR, title line: %s"%(comment))
print(" Found POSCAR, title line: %s" % (comment))
# Read scale
# Read scale
sline = readline_remove_comments()
ascale = float(sline)
# Read lattice vectors
# Read lattice vectors
self.a_brav = np.zeros((3, 3))
for ia in range(3):
sline = readline_remove_comments()
self.a_brav[ia, :] = list(map(float, sline.split()))
# Negative scale means that it is a volume scale
# Negative scale means that it is a volume scale
if ascale < 0:
vscale = -ascale
vol = np.linalg.det(self.a_brav)
ascale = (vscale / vol)**(1.0/3)
ascale = (vscale / vol) ** (1.0 / 3)
self.a_brav *= ascale
# Depending on the version of VASP there could be
# an extra line with element names
# Depending on the version of VASP there could be
# an extra line with element names
sline = readline_remove_comments()
try:
# Old v4.6 format: no element names
# Old v4.6 format: no element names
self.nions = list(map(int, sline.split()))
self.el_names = ['El%i'%(i) for i in range(len(self.nions))]
self.el_names = ['El%i' % (i) for i in range(len(self.nions))]
except ValueError:
# New v5.x format: read element names first
# New v5.x format: read element names first
self.el_names = sline.split()
sline = readline_remove_comments()
self.nions = list(map(int, sline.split()))
# Set the number of atom sorts (types) and the total
# number of atoms in the unit cell
# Set the number of atom sorts (types) and the total
# number of atoms in the unit cell
self.ntypes = len(self.nions)
self.nq = sum(self.nions)
# Check for the line 'Selective dynamics' (and ignore it)
# Check for the line 'Selective dynamics' (and ignore it)
sline = readline_remove_comments()
if sline[0].lower() == 's':
sline = readline_remove_comments()
# Check whether coordinates are cartesian or fractional
# Check whether coordinates are cartesian or fractional
cartesian = (sline[0].lower() in 'ck')
# determine reciprocal basis in units of 2*pi
self.kpt_basis = np.linalg.inv(self.a_brav.T)
# Read atomic positions
# Read atomic positions
self.q_types = []
self.type_of_ion = []
for it in range(self.ntypes):
# Array mapping ion index to type
# Array mapping ion index to type
self.type_of_ion += self.nions[it] * [it]
q_at_it = np.zeros((self.nions[it], 3))
@ -370,19 +389,12 @@ class Poscar:
print(" Number of types:", self.ntypes)
print(" Number of ions for each type:", self.nions)
# print
# print " Coords:"
# for it in range(ntypes):
# print " Element:", el_names[it]
# print q_at[it]
################################################################################
################################################################################
##########################
#
# class Kpoints
#
################################################################################
################################################################################
##########################
class Kpoints:
"""
Class describing k-points and optionally tetrahedra.
@ -395,13 +407,15 @@ class Kpoints:
- volt (float) : volume of a tetrahedron (the k-grid is assumed to
be uniform)
"""
def __init__(self):
self.kpts = None
self.nktot = None
self.kwghts = None
#
# Reads IBZKPT file
#
#
# Reads IBZKPT file
#
def from_file(self, vasp_dir='./', ibz_filename='IBZKPT'):
r"""
Reads from IBZKPT: k-points and optionally
@ -415,15 +429,15 @@ class Kpoints:
"""
# Add a slash to the path name if necessary
# Add a slash to the path name if necessary
if vasp_dir[-1] != '/':
vasp_dir += '/'
ibz_file = read_lines(vasp_dir + ibz_filename)
# Skip comment line
# Skip comment line
line = next(ibz_file)
# Number of k-points
# Number of k-points
line = next(ibz_file)
self.nktot = int(line.strip().split()[0])
@ -433,7 +447,7 @@ class Kpoints:
self.kpts = np.zeros((self.nktot, 3))
self.kwghts = np.zeros((self.nktot))
# Skip comment line
# Skip comment line
line = next(ibz_file)
for ik in range(self.nktot):
line = next(ibz_file)
@ -443,12 +457,12 @@ class Kpoints:
self.kwghts /= self.nktot
# Attempt to read tetrahedra
# Skip comment line ("Tetrahedra")
# Attempt to read tetrahedra
# Skip comment line ("Tetrahedra")
try:
line = next(ibz_file)
# Number of tetrahedra and volume = 1/(6*nkx*nky*nkz)
# Number of tetrahedra and volume = 1/(6*nkx*nky*nkz)
line = next(ibz_file)
sline = line.split()
self.ntet = int(sline[0])
@ -456,35 +470,26 @@ class Kpoints:
print(" {0:>26} {1:d}".format("Total number of tetrahedra:", self.ntet))
# Traditionally, itet[it, 0] contains multiplicity
# Traditionally, itet[it, 0] contains multiplicity
self.itet = np.zeros((self.ntet, 5), dtype=int)
for it in range(self.ntet):
line = next(ibz_file)
self.itet[it, :] = list(map(int, line.split()[:5]))
line = next(ibz_file)
self.itet[it, :] = list(map(int, line.split()[:5]))
except StopIteration as ValueError:
print(" No tetrahedron data found in %s. Skipping..."%(ibz_filename))
print(" No tetrahedron data found in %s. Skipping..." % (ibz_filename))
self.ntet = 0
# data = { 'nktot': nktot,
# 'kpts': kpts,
# 'ntet': ntet,
# 'itet': itet,
# 'volt': volt }
#
# return data
################################################################################
################################################################################
##########################
#
# class Eigenval
#
################################################################################
################################################################################
##########################
class Eigenval:
"""
Class containing Kohn-Sham-eigenvalues data from VASP (EIGENVAL file).
"""
def __init__(self):
self.eigs = None
self.ferw = None
@ -496,43 +501,43 @@ class Eigenval:
then used to check the consistency of files read.
"""
# Add a slash to the path name if necessary
# Add a slash to the path name if necessary
if vasp_dir[-1] != '/':
vasp_dir += '/'
f = read_lines(vasp_dir + eig_filename)
# First line: only the first and the last number out of four
# are used; these are 'nions' and 'ispin'
# First line: only the first and the last number out of four
# are used; these are 'nions' and 'ispin'
sline = next(f).split()
self.nq = int(sline[0])
self.ispin = int(sline[3])
# Second line: cell volume and lengths of lattice vectors (skip)
# Second line: cell volume and lengths of lattice vectors (skip)
sline = next(f)
# Third line: temperature (skip)
# Third line: temperature (skip)
sline = next(f)
# Fourth and fifth line: useless
# Fourth and fifth line: useless
sline = next(f)
sline = next(f)
# Sixth line: NELECT, NKTOT, NBTOT
# Sixth line: NELECT, NKTOT, NBTOT
sline = next(f).split()
self.nelect = int(sline[0])
self.nktot = int(sline[1])
self.nband = int(sline[2])
# Set of eigenvalues and k-points
# Set of eigenvalues and k-points
self.kpts = np.zeros((self.nktot, 3))
self.kwghts = np.zeros((self.nktot,))
self.eigs = np.zeros((self.nktot, self.nband, self.ispin))
self.ferw = np.zeros((self.nktot, self.nband, self.ispin))
for ik in range(self.nktot):
sline = next(f) # Empty line
sline = next(f) # k-point info
sline = next(f) # Empty line
sline = next(f) # k-point info
tmp = list(map(float, sline.split()))
self.kpts[ik, :] = tmp[:3]
self.kwghts[ik] = tmp[3]
@ -541,21 +546,20 @@ class Eigenval:
sline = next(f).split()
tmp = list(map(float, sline))
assert len(tmp) == 2 * self.ispin + 1, "EIGENVAL file is incorrect (probably from old versions of VASP)"
self.eigs[ik, ib, :] = tmp[1:self.ispin+1]
self.ferw[ik, ib, :] = tmp[self.ispin+1:]
self.eigs[ik, ib, :] = tmp[1:self.ispin + 1]
self.ferw[ik, ib, :] = tmp[self.ispin + 1:]
################################################################################
################################################################################
##########################
#
# class Doscar
#
################################################################################
################################################################################
##########################
class Doscar:
"""
Class containing some data from DOSCAR
"""
def __init__(self):
self.ncdij = None
self.efermi = None
@ -565,38 +569,40 @@ class Doscar:
Reads only E_Fermi from DOSCAR.
"""
# Add a slash to the path name if necessary
# Add a slash to the path name if necessary
if vasp_dir[-1] != '/':
vasp_dir += '/'
f = read_lines(vasp_dir + dos_filename)
# First line: NION, NION, JOBPAR, NCDIJ
# First line: NION, NION, JOBPAR, NCDIJ
sline = next(f).split()
# Skip next 4 lines
# Skip next 4 lines
for _ in range(4):
sline = next(f)
# Sixth line: EMAX, EMIN, NEDOS, EFERMI, 1.0
# Sixth line: EMAX, EMIN, NEDOS, EFERMI, 1.0
sline = next(f).split()
self.efermi = float(sline[3])
# TODO: implement output of SYMMCAR in VASP and read it here
################################################################
##########################
#
# Reads SYMMCAR
#
################################################################
##########################
def read_symmcar(vasp_dir, symm_filename='SYMMCAR'):
"""
Reads SYMMCAR.
"""
# Shorthand for simple parsing
# Shorthand for simple parsing
def extract_int_par(parname):
return int(re.findall(parname + '\s*=\s*(\d+)', line)[-1])
# Add a slash to the path name if necessary
# Add a slash to the path name if necessary
if vasp_dir[-1] != '/':
vasp_dir += '/'
@ -607,11 +613,11 @@ def read_symmcar(vasp_dir, symm_filename='SYMMCAR'):
line = next(sym_file)
ntrans = extract_int_par('NPCELL')
# Lmax
# Lmax
line = next(sym_file)
lmax = extract_int_par('LMAX')
mmax = 2 * lmax + 1
# Nion
# Nion
line = next(sym_file)
nion = extract_int_par('NION')
@ -620,22 +626,22 @@ def read_symmcar(vasp_dir, symm_filename='SYMMCAR'):
print(" {0:>26} {1:d}".format("Number of ions:", nion))
print(" {0:>26} {1:d}".format("L_max:", lmax))
rot_mats = np.zeros((nrot, lmax+1, mmax, mmax))
rot_mats = np.zeros((nrot, lmax + 1, mmax, mmax))
rot_map = np.zeros((nrot, ntrans, nion), dtype=int)
for irot in range(nrot):
# Empty line
# Empty line
line = next(sym_file)
# IROT index (skip it)
# IROT index (skip it)
line = next(sym_file)
# ISYMOP matrix (can be also skipped)
# ISYMOP matrix (can be also skipped)
line = next(sym_file)
line = next(sym_file)
line = next(sym_file)
# Skip comment " Permutation map..."
# Skip comment " Permutation map..."
line = next(sym_file)
# Permutations (in chunks of 20 indices per line)
# Permutations (in chunks of 20 indices per line)
for it in range(ntrans):
for ibl in range((nion - 1) // 20 + 1):
i1 = ibl * 20
@ -645,12 +651,163 @@ def read_symmcar(vasp_dir, symm_filename='SYMMCAR'):
for l in range(lmax + 1):
mmax = 2 * l + 1
# Comment: "L = ..."
# Comment: "L = ..."
line = next(sym_file)
for m in range(mmax):
line = next(sym_file)
rot_mats[irot, l, m, :mmax] = list(map(float, line.split()[:mmax]))
data.update({ 'nrot': nrot, 'ntrans': ntrans,
'lmax': lmax, 'nion': nion,
'sym_rots': rot_mats, 'perm_map': rot_map })
data.update({'nrot': nrot, 'ntrans': ntrans,
'lmax': lmax, 'nion': nion,
'sym_rots': rot_mats, 'perm_map': rot_map})
class h5Poscar:
def __init__(self, h5path):
# self.q_cart = None
with HDFArchive(h5path, 'a') as archive:
struct = archive['triqs']['structure']
ascale = struct['scale']
self.a_brav = struct['lattice_vectors']
self.nions = struct['number_ion_types']
self.el_names = struct['ion_types']
direct = struct['direct_coordinates']
qcoord = struct['position_ions']
if ascale < 0:
vscale = -ascale
vol = np.linalg.det(self.a_brav)
ascale = (vscale / vol) ** (1.0 / 3)
self.a_brav *= ascale
# determine reciprocal basis in units of 2*pi
self.kpt_basis = np.linalg.inv(self.a_brav.T)
# Set the number of atom sorts (types) and the total
# number of atoms in the unit cell
self.ntypes = len(self.nions)
self.nq = sum(self.nions)
# Read atomic positions
self.q_types = []
self.type_of_ion = []
for it in range(self.ntypes):
# Array mapping ion index to type
self.type_of_ion += self.nions[it] * [it]
q_at_it = np.zeros((self.nions[it], 3))
for iq in range(self.nions[it]):
if not direct:
qcoord = np.dot(self.kpt_basis, qcoord[iq + it])
q_at_it[iq, :] = qcoord[iq + it]
self.q_types.append(q_at_it)
print(" Total number of ions:", self.nq)
print(" Number of types:", self.ntypes)
print(" Number of ions for each type:", self.nions)
class h5Kpoints:
def __init__(self, h5path):
# h5path = './vasptriqs.h5'
with HDFArchive(h5path, 'a') as archive:
kpoints = archive['triqs']['kpoints']
self.nktot = kpoints['num_kpoints']
self.kpts = kpoints['kpoint_coords']
self.kwghts = kpoints['kpoints_symmetry_weight']
try:
self.ntet = kpoints['num_tetrahedra']
self.vtet = kpoints['volume_weight_tetrahedra']
self.itet = kpoints['coordinate_id_tetrahedra']
except StopIteration as ValueError:
print(" No tetrahedron data found in vasptriqs.h5. Skipping...")
self.ntet = 0
print()
print(" {0:>26} {1:d}".format("Total number of k-points:", self.nktot))
print(" {0:>26} {1:d}".format("Total number of tetrahedra:", self.ntet))
class h5Eigenval:
def __init__(self, h5path):
with HDFArchive(h5path, 'a') as archive:
self.eigs = archive['triqs']['eigenvalues']
self.ferw = archive['triqs']['fermi_weights']
# TODO Change the format in VASP to have [kpoints, bands, spin]
self.eigs = np.transpose(self.eigs, (1, 2, 0))
self.ferw = np.transpose(self.ferw, (1, 2, 0))
class h5Doscar:
def __init__(self, h5path):
with HDFArchive(h5path, 'a') as archive:
self.efermi = archive['triqs']['efermi']
class h5Plocar():
def __init__(self, h5path):
with HDFArchive(h5path, 'a') as archive:
plo = np.array(archive['triqs']['plo'])
self.nc_flag = int(archive['triqs']['noncoll'])
self.nproj = plo.shape[0]
self.ncdij = plo.shape[1]
nk = plo.shape[2]
self.nband = plo.shape[3]
self.nspin = self.ncdij if self.ncdij < 4 else 1
self.nspin_band = 2 if self.ncdij == 2 else 1
log.debug("ISPIN is {}".format(self.nspin))
log.debug("NC FLAG : {}".format(self.nc_flag))
# self.proj_params, self.plo = self.locproj_parser(locproj_filename=vasp_dir + "LOCPROJ")
orb_labels = ["s", "py", "pz", "px", "dxy", "dyz", "dz2", "dxz", "dx2-y2",
"fy(3x2-y2)", "fxyz", "fyz2", "fz3", "fxz2", "fz(x2-y2)", "fx(x2-3y2)"]
self.plo = np.zeros((self.nproj, self.nspin, nk, self.nband), dtype=complex)
for proj in range(self.nproj):
for spin in range(self.nspin):
for kpt in range(nk):
for band in range(self.nband):
real_plo = plo[proj, spin, kpt, band, 0] # Real part
imag_plo = plo[proj, spin, kpt, band, 1] # Imaginary part
self.plo[proj, spin, kpt, band] = complex(real_plo, imag_plo)
def lm_to_l_m(lm):
l = int(np.sqrt(lm))
m = lm - l * l
return l, m
self.proj_params = [{} for i in range(self.nproj)]
with HDFArchive(h5path, 'a') as archive:
for it in range(self.nproj):
projectors = archive['triqs']['plo_parameters'][str(it + 1)]
self.proj_params[it]['label'] = projectors['ang_type']
self.proj_params[it]['isite'] = projectors['site']
self.proj_params[it]['coord'] = projectors['coordinates']
for it in range(self.nproj):
lm = orb_labels.index(self.proj_params[it]['label'])
l, m = lm_to_l_m(lm)
self.proj_params[it]['l'] = l
if self.nc_flag == True:
if (it % 2) == 0:
self.proj_params[it]['m'] = 2 * m
else:
self.proj_params[it]['m'] = 2 * m + 1
else:
self.proj_params[it]['m'] = m
# assert ip == nproj, "Number of projectors in the header is wrong in LOCPROJ"
print("Read parameters: LOCPROJ")
for il, par in enumerate(self.proj_params):
print(il, " -> ", par)

View File

@ -1,4 +1,3 @@
##########################################################################
#
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
@ -48,7 +47,7 @@ class SumkDFT(object):
def __init__(self, hdf_file, h_field=0.0, mesh=None, beta=40, n_iw=1025, use_dft_blocks=False,
dft_data='dft_input', symmcorr_data='dft_symmcorr_input', parproj_data='dft_parproj_input',
symmpar_data='dft_symmpar_input', bands_data='dft_bands_input', transp_data='dft_transp_input',
misc_data='dft_misc_input',bc_data='dft_bandchar_input',cont_data='dft_contours_input'):
misc_data='dft_misc_input', bc_data='dft_bandchar_input', cont_data='dft_contours_input'):
r"""
Initialises the class from data previously stored into an hdf5 archive.
@ -122,26 +121,33 @@ class SumkDFT(object):
self.block_structure = BlockStructure()
# Read input from HDF:
req_things_to_read = ['energy_unit', 'n_k', 'k_dep_projection', 'SP', 'SO', 'charge_below', 'density_required',
'symm_op', 'n_shells', 'shells', 'n_corr_shells', 'corr_shells', 'use_rotations', 'rot_mat',
'rot_mat_time_inv', 'n_reps', 'dim_reps', 'T', 'n_orbitals', 'proj_mat', 'bz_weights', 'hopping',
'n_inequiv_shells', 'corr_to_inequiv', 'inequiv_to_corr']
req_things_to_read = ['energy_unit', 'n_k', 'k_dep_projection', 'SP', 'SO', 'charge_below',
'density_required',
'symm_op', 'n_shells', 'shells', 'n_corr_shells', 'corr_shells', 'use_rotations',
'rot_mat',
'rot_mat_time_inv', 'n_reps', 'dim_reps', 'T', 'n_orbitals', 'proj_mat', 'bz_weights',
'hopping',
'n_inequiv_shells', 'corr_to_inequiv', 'inequiv_to_corr']
self.subgroup_present, self.values_not_read = self.read_input_from_hdf(
subgrp=self.dft_data, things_to_read=req_things_to_read)
# test if all required properties have been found
if len(self.values_not_read) > 0 and mpi.is_master_node:
raise ValueError('ERROR: One or more necessary SumK input properties have not been found in the given h5 archive:', self.values_not_read)
raise ValueError(
'ERROR: One or more necessary SumK input properties have not been found in the given h5 archive:',
self.values_not_read)
# optional properties to load
# soon bz_weights is depraced and replaced by kpt_weights, kpts_basis and kpts will become required to read soon
optional_things_to_read = ['proj_mat_csc', 'proj_or_hk', 'kpt_basis', 'kpts', 'kpt_weights', 'dft_code']
subgroup_present, self.optional_values_not_read = self.read_input_from_hdf(subgrp=self.dft_data, things_to_read=optional_things_to_read)
subgroup_present, self.optional_values_not_read = self.read_input_from_hdf(subgrp=self.dft_data,
things_to_read=optional_things_to_read)
# warning if dft_code was not read (old h5 structure)
if 'dft_code' in self.optional_values_not_read:
self.dft_code = None
mpi.report('\nWarning: old h5 archive without dft_code input flag detected. Please specify sumk.dft_code manually!\n')
mpi.report(
'\nWarning: old h5 archive without dft_code input flag detected. Please specify sumk.dft_code manually!\n')
if self.symm_op:
self.symmcorr = Symmetry(hdf_file, subgroup=self.symmcorr_data)
@ -164,11 +170,13 @@ class SumkDFT(object):
# GF structure used for the local things in the k sums
# Most general form allowing for all hybridisation, i.e. largest
# blocks possible
self.gf_struct_sumk = [[(sp, self.corr_shells[icrsh]['dim']) for sp in self.spin_block_names[self.corr_shells[icrsh]['SO']]]
for icrsh in range(self.n_corr_shells)]
self.gf_struct_sumk = [
[(sp, self.corr_shells[icrsh]['dim']) for sp in self.spin_block_names[self.corr_shells[icrsh]['SO']]]
for icrsh in range(self.n_corr_shells)]
# First set a standard gf_struct solver (add _0 here for consistency with analyse_block_structure):
self.gf_struct_solver = [dict([(sp+'_0', self.corr_shells[self.inequiv_to_corr[ish]]['dim'])
for sp in self.spin_block_names[self.corr_shells[self.inequiv_to_corr[ish]]['SO']]])
self.gf_struct_solver = [dict([(sp + '_0', self.corr_shells[self.inequiv_to_corr[ish]]['dim'])
for sp in
self.spin_block_names[self.corr_shells[self.inequiv_to_corr[ish]]['SO']]])
for ish in range(self.n_inequiv_shells)]
# Set standard (identity) maps from gf_struct_sumk <->
# gf_struct_solver
@ -178,12 +186,12 @@ class SumkDFT(object):
for ish in range(self.n_inequiv_shells)]
for ish in range(self.n_inequiv_shells):
for block, inner_dim in self.gf_struct_sumk[self.inequiv_to_corr[ish]]:
self.solver_to_sumk_block[ish][block+'_0'] = block
self.solver_to_sumk_block[ish][block + '_0'] = block
for inner in range(inner_dim):
self.sumk_to_solver[ish][
(block, inner)] = (block+'_0', inner)
(block, inner)] = (block + '_0', inner)
self.solver_to_sumk[ish][
(block+'_0', inner)] = (block, inner)
(block + '_0', inner)] = (block, inner)
# assume no shells are degenerate
self.deg_shells = [[] for ish in range(self.n_inequiv_shells)]
@ -205,9 +213,9 @@ class SumkDFT(object):
self.min_band_energy = None
self.max_band_energy = None
################
# hdf5 FUNCTIONS
################
################
# hdf5 FUNCTIONS
################
def read_input_from_hdf(self, subgrp, things_to_read):
r"""
@ -278,8 +286,8 @@ class SumkDFT(object):
with HDFArchive(self.hdf_file, 'a') as ar:
if not subgrp in ar: ar.create_group(subgrp)
for it in things_to_save:
if it in [ "gf_struct_sumk", "gf_struct_solver",
"solver_to_sumk", "sumk_to_solver", "solver_to_sumk_block"]:
if it in ["gf_struct_sumk", "gf_struct_solver",
"solver_to_sumk", "sumk_to_solver", "solver_to_sumk_block"]:
warn("It is not recommended to save '{}' individually. Save 'block_structure' instead.".format(it))
try:
ar[subgrp][it] = getattr(self, it)
@ -316,9 +324,9 @@ class SumkDFT(object):
raise ValueError("load: %s not found, and so not loaded." % it)
return list_to_return
################
# CORE FUNCTIONS
################
################
# CORE FUNCTIONS
################
def downfold(self, ik, ish, bname, gf_to_downfold, gf_inp, shells='corr', ir=None):
r"""
@ -479,7 +487,7 @@ class SumkDFT(object):
), gf_rotated, rot_mat[ish].transpose())
else:
gf_rotated.from_L_G_R(rot_mat[ish], gf_rotated, rot_mat[
ish].conjugate().transpose())
ish].conjugate().transpose())
elif direction == 'toLocal':
@ -535,15 +543,15 @@ class SumkDFT(object):
broadening = 2.0 * ((mesh.w_max - mesh.w_min) / (len(mesh) - 1))
# Check if G_latt is present
set_up_G_latt = False # Assume not
if not hasattr(self, "G_latt" ):
set_up_G_latt = False # Assume not
if not hasattr(self, "G_latt"):
# Need to create G_latt_(i)w
set_up_G_latt = True
else: # Check that existing GF is consistent
else: # Check that existing GF is consistent
G_latt = self.G_latt
GFsize = [gf.target_shape[0] for bname, gf in G_latt]
unchangedsize = all([self.n_orbitals[ik, ntoi[spn[isp]]] == GFsize[
isp] for isp in range(self.n_spin_blocks[self.SO])])
isp] for isp in range(self.n_spin_blocks[self.SO])])
if (not mesh is None) or (not unchangedsize):
set_up_G_latt = True
@ -606,7 +614,7 @@ class SumkDFT(object):
- self.hopping[ik, ind, 0:n_orb, 0:n_orb])
else:
gf.data[:, :, :] = (idmat[ibl] *
(mesh_values[:, None, None] + mu + self.h_field*(1-2*ibl) + 1j*broadening)
(mesh_values[:, None, None] + mu + self.h_field * (1 - 2 * ibl) + 1j * broadening)
- self.hopping[ik, ind, 0:n_orb, 0:n_orb])
if with_Sigma:
@ -640,9 +648,9 @@ class SumkDFT(object):
if transform_to_sumk_blocks:
Sigma_imp = self.transform_to_sumk_blocks(Sigma_imp)
assert isinstance(Sigma_imp, list),\
assert isinstance(Sigma_imp, list), \
"put_Sigma: Sigma_imp has to be a list of Sigmas for the correlated shells, even if it is of length 1!"
assert len(Sigma_imp) == self.n_corr_shells,\
assert len(Sigma_imp) == self.n_corr_shells, \
"put_Sigma: give exactly one Sigma for each corr. shell!"
if (isinstance(self.mesh, (MeshImFreq, MeshDLRImFreq)) and
@ -651,12 +659,15 @@ class SumkDFT(object):
gf.mesh == self.mesh for bname, gf in Sigma_imp[0])):
# Imaginary frequency Sigma:
self.Sigma_imp = [self.block_structure.create_gf(ish=icrsh, mesh=Sigma_imp[icrsh].mesh, space='sumk')
for icrsh in range(self.n_corr_shells)]
for icrsh in range(self.n_corr_shells)]
SK_Sigma_imp = self.Sigma_imp
elif isinstance(self.mesh, MeshReFreq) and all(isinstance(gf, Gf) and isinstance(gf.mesh, MeshReFreq) and gf.mesh == self.mesh for bname, gf in Sigma_imp[0]):
elif isinstance(self.mesh, MeshReFreq) and all(
isinstance(gf, Gf) and isinstance(gf.mesh, MeshReFreq) and gf.mesh == self.mesh for bname, gf in
Sigma_imp[0]):
# Real frequency Sigma:
self.Sigma_imp = [self.block_structure.create_gf(ish=icrsh, mesh=Sigma_imp[icrsh].mesh, gf_function=Gf, space='sumk')
for icrsh in range(self.n_corr_shells)]
self.Sigma_imp = [
self.block_structure.create_gf(ish=icrsh, mesh=Sigma_imp[icrsh].mesh, gf_function=Gf, space='sumk')
for icrsh in range(self.n_corr_shells)]
SK_Sigma_imp = self.Sigma_imp
else:
@ -672,13 +683,16 @@ class SumkDFT(object):
else:
gf << Sigma_imp[icrsh][bname]
#warning if real frequency self energy is within the bounds of the band energies
# warning if real frequency self energy is within the bounds of the band energies
if isinstance(self.mesh, MeshReFreq):
if self.min_band_energy is None or self.max_band_energy is None:
self.calculate_min_max_band_energies()
mesh = np.linspace(self.mesh.w_min, self.mesh.w_max, len(self.mesh))
if mesh[0] > (self.min_band_energy - self.chemical_potential) or mesh[-1] < (self.max_band_energy - self.chemical_potential):
warn('The given Sigma is on a mesh which does not cover the band energy range. The Sigma MeshReFreq runs from %f to %f, while the band energy (minus the chemical potential) runs from %f to %f'%(mesh[0], mesh[-1], self.min_band_energy, self.max_band_energy))
if mesh[0] > (self.min_band_energy - self.chemical_potential) or mesh[-1] < (
self.max_band_energy - self.chemical_potential):
warn(
'The given Sigma is on a mesh which does not cover the band energy range. The Sigma MeshReFreq runs from %f to %f, while the band energy (minus the chemical potential) runs from %f to %f' % (
mesh[0], mesh[-1], self.min_band_energy, self.max_band_energy))
def transform_to_sumk_blocks(self, Sigma_imp, Sigma_out=None):
r""" transform Sigma from solver to sumk space
@ -693,13 +707,14 @@ class SumkDFT(object):
according to ``gf_struct_sumk``; if None, it will be created
"""
assert isinstance(Sigma_imp, list),\
assert isinstance(Sigma_imp, list), \
"transform_to_sumk_blocks: Sigma_imp has to be a list of Sigmas for the inequivalent correlated shells, even if it is of length 1!"
assert len(Sigma_imp) == self.n_inequiv_shells,\
assert len(Sigma_imp) == self.n_inequiv_shells, \
"transform_to_sumk_blocks: give exactly one Sigma for each inequivalent corr. shell!"
if Sigma_out is None:
Sigma_out = [self.block_structure.create_gf(ish=icrsh, mesh=Sigma_imp[self.corr_to_inequiv[icrsh]].mesh, space='sumk')
Sigma_out = [self.block_structure.create_gf(ish=icrsh, mesh=Sigma_imp[self.corr_to_inequiv[icrsh]].mesh,
space='sumk')
for icrsh in range(self.n_corr_shells)]
else:
for icrsh in range(self.n_corr_shells):
@ -808,7 +823,7 @@ class SumkDFT(object):
return G_loc
def transform_to_solver_blocks(self, G_loc, G_out=None, show_warnings = True):
def transform_to_solver_blocks(self, G_loc, G_out=None, show_warnings=True):
""" transform G_loc from sumk to solver space
Parameters
@ -846,7 +861,7 @@ class SumkDFT(object):
ish_to=ish,
space_from='sumk',
G_out=G_out[ish],
show_warnings = show_warnings)
show_warnings=show_warnings)
# return only the inequivalent shells:
return G_out
@ -876,10 +891,12 @@ class SumkDFT(object):
"""
if dm is None:
warn("WARNING: No density matrix given. Calculating density matrix with default parameters. This will be deprecated in future releases.")
warn(
"WARNING: No density matrix given. Calculating density matrix with default parameters. This will be deprecated in future releases.")
dm = self.density_matrix(method='using_gf', transform_to_solver_blocks=False)
assert len(dm) == self.n_corr_shells, "The number of density matrices must be equal to the number of correlated shells."
assert len(
dm) == self.n_corr_shells, "The number of density matrices must be equal to the number of correlated shells."
dens_mat = [dm[self.inequiv_to_corr[ish]]
for ish in range(self.n_inequiv_shells)]
if hloc is None:
@ -894,7 +911,8 @@ class SumkDFT(object):
self.solver_to_sumk_block[ish] = {}
for sp in self.spin_block_names[self.corr_shells[self.inequiv_to_corr[ish]]['SO']]:
assert sp in dens_mat[ish], f"The density matrix does not contain the block {sp}. Is the input dm given in sumk block structure?"
assert sp in dens_mat[
ish], f"The density matrix does not contain the block {sp}. Is the input dm given in sumk block structure?"
n_orb = self.corr_shells[self.inequiv_to_corr[ish]]['dim']
# gives an index list of entries larger that threshold
dmbool = (abs(dens_mat[ish][sp]) > threshold)
@ -914,10 +932,10 @@ class SumkDFT(object):
pair = offdiag.pop()
for b1, b2 in product(blocs, blocs):
if (pair[0] in b1) and (pair[1] in b2):
if blocs.index(b1) != blocs.index(b2): # In separate blocks?
if blocs.index(b1) != blocs.index(b2): # In separate blocks?
# Merge two blocks
b1.extend(blocs.pop(blocs.index(b2)))
break # Move on to next pair in offdiag
break # Move on to next pair in offdiag
# Set the gf_struct for the solver accordingly
num_blocs = len(blocs)
@ -993,9 +1011,10 @@ class SumkDFT(object):
"""
# make a GfImTime from the supplied GfImFreq
if all(isinstance(g_sh.mesh, MeshImFreq) for g_sh in G):
gf = [BlockGf(name_block_generator = [(name, GfImTime(beta=block.mesh.beta,
indices=block.indices,n_points=len(block.mesh)+1)) for name, block in g_sh],
make_copies=False) for g_sh in G]
gf = [BlockGf(name_block_generator=[(name, GfImTime(beta=block.mesh.beta,
indices=block.indices, n_points=len(block.mesh) + 1))
for name, block in g_sh],
make_copies=False) for g_sh in G]
for ish in range(len(gf)):
for name, g in gf[ish]:
g.set_from_fourier(G[ish][name])
@ -1007,7 +1026,7 @@ class SumkDFT(object):
gf = [g_sh.copy() for g_sh in G]
for ish in range(len(gf)):
for name, g in gf[ish]:
g << 1.0j*(g-g.conjugate().transpose())/2.0/np.pi
g << 1.0j * (g - g.conjugate().transpose()) / 2.0 / np.pi
elif all(isinstance(g_sh.mesh, MeshReTime) for g_sh in G):
def get_delta_from_mesh(mesh):
w0 = None
@ -1015,24 +1034,23 @@ class SumkDFT(object):
if w0 is None:
w0 = w
else:
return w-w0
gf = [BlockGf(name_block_generator = [(name, GfReFreq(
window=(-np.pi*(len(block.mesh)-1) / (len(block.mesh)*get_delta_from_mesh(block.mesh)),
np.pi*(len(block.mesh)-1) / (len(block.mesh)*get_delta_from_mesh(block.mesh))),
return w - w0
gf = [BlockGf(name_block_generator=[(name, GfReFreq(
window=(-np.pi * (len(block.mesh) - 1) / (len(block.mesh) * get_delta_from_mesh(block.mesh)),
np.pi * (len(block.mesh) - 1) / (len(block.mesh) * get_delta_from_mesh(block.mesh))),
n_points=len(block.mesh), indices=block.indices)) for name, block in g_sh], make_copies=False)
for g_sh in G]
for g_sh in G]
for ish in range(len(gf)):
for name, g in gf[ish]:
g.set_from_fourier(G[ish][name])
g << 1.0j*(g-g.conjugate().transpose())/2.0/np.pi
g << 1.0j * (g - g.conjugate().transpose()) / 2.0 / np.pi
else:
raise Exception("G must be a list of BlockGf of either GfImFreq, GfImTime, GfReFreq or GfReTime")
return gf
def analyse_block_structure_from_gf(self, G, threshold=1.e-5, include_shells=None, analyse_deg_shells = True):
def analyse_block_structure_from_gf(self, G, threshold=1.e-5, include_shells=None, analyse_deg_shells=True):
r"""
Determines the block structure of local Green's functions by analysing
the structure of the corresponding non-interacting Green's function.
@ -1065,7 +1083,8 @@ class SumkDFT(object):
"""
assert isinstance(G, list), "G must be a list (with elements for each correlated shell)"
assert len(G) == self.n_corr_shells, "G must have one element for each correlated shell, run extract_G_loc with transform_to_solver_blocks=False to get the correct G"
assert len(
G) == self.n_corr_shells, "G must have one element for each correlated shell, run extract_G_loc with transform_to_solver_blocks=False to get the correct G"
gf = self._get_hermitian_quantity_from_gf(G)
@ -1079,11 +1098,12 @@ class SumkDFT(object):
self.solver_to_sumk[ish] = {}
self.solver_to_sumk_block[ish] = {}
for sp in self.spin_block_names[self.corr_shells[self.inequiv_to_corr[ish]]['SO']]:
assert sp in gf[self.inequiv_to_corr[ish]].indices, f"The Green's function does not contain the block {sp}. Is the input G given in sumk block structure?"
assert sp in gf[self.inequiv_to_corr[
ish]].indices, f"The Green's function does not contain the block {sp}. Is the input G given in sumk block structure?"
n_orb = self.corr_shells[self.inequiv_to_corr[ish]]['dim']
# gives an index list of entries larger that threshold
max_gf = np.max(np.abs(gf[self.inequiv_to_corr[ish]][sp].data),0)
max_gf = np.max(np.abs(gf[self.inequiv_to_corr[ish]][sp].data), 0)
maxgf_bool = (max_gf > threshold)
# Determine off-diagonal entries in upper triangular part of the
@ -1100,10 +1120,10 @@ class SumkDFT(object):
pair = offdiag.pop()
for b1, b2 in product(blocs, blocs):
if (pair[0] in b1) and (pair[1] in b2):
if blocs.index(b1) != blocs.index(b2): # In separate blocks?
if blocs.index(b1) != blocs.index(b2): # In separate blocks?
# Merge two blocks
b1.extend(blocs.pop(blocs.index(b2)))
break # Move on to next pair in offdiag
break # Move on to next pair in offdiag
# Set the gf_struct for the solver accordingly
num_blocs = len(blocs)
@ -1129,13 +1149,13 @@ class SumkDFT(object):
# transform G to the new structure
full_structure = BlockStructure.full_structure(
[{sp:self.corr_shells[self.inequiv_to_corr[ish]]['dim']
for sp in self.spin_block_names[self.corr_shells[self.inequiv_to_corr[ish]]['SO']]}
for ish in range(self.n_inequiv_shells)],self.corr_to_inequiv)
[{sp: self.corr_shells[self.inequiv_to_corr[ish]]['dim']
for sp in self.spin_block_names[self.corr_shells[self.inequiv_to_corr[ish]]['SO']]}
for ish in range(self.n_inequiv_shells)], self.corr_to_inequiv)
G_transformed = [
self.block_structure.convert_gf(G[ish],
full_structure, ish, mesh=G[ish].mesh.copy(), show_warnings=threshold,
gf_function=type(G[ish]._first()), space_from='sumk', space_to='solver')
full_structure, ish, mesh=G[ish].mesh.copy(), show_warnings=threshold,
gf_function=type(G[ish]._first()), space_from='sumk', space_to='solver')
for ish in range(self.n_inequiv_shells)]
if analyse_deg_shells:
@ -1196,7 +1216,7 @@ class SumkDFT(object):
for ish in include_shells:
for block1 in self.gf_struct_solver[ish].keys():
for block2 in self.gf_struct_solver[ish].keys():
if block1==block2: continue
if block1 == block2: continue
# check if the blocks are already present in the deg_shells
ind1 = -1
@ -1229,9 +1249,9 @@ class SumkDFT(object):
e1 = np.linalg.eigvalsh(gf1.data[0])
e2 = np.linalg.eigvalsh(gf2.data[0])
if np.any(abs(e1-e2) > threshold): continue
if np.any(abs(e1 - e2) > threshold): continue
for conjugate in [False,True]:
for conjugate in [False, True]:
if conjugate:
gf2 = gf2.conjugate()
@ -1248,13 +1268,15 @@ class SumkDFT(object):
# product to get a linear problem, which consists
# of finding the null space of M vec T = 0.
M = np.kron(np.eye(*gf1.target_shape),gf2.data[0])-np.kron(gf1.data[0].transpose(),np.eye(*gf1.target_shape))
M = np.kron(np.eye(*gf1.target_shape), gf2.data[0]) - np.kron(gf1.data[0].transpose(),
np.eye(*gf1.target_shape))
N = null(M, threshold)
# now we get the intersection of the null spaces
# of all values of tau
for i in range(1,len(gf1.data)):
M = np.kron(np.eye(*gf1.target_shape),gf2.data[i])-np.kron(gf1.data[i].transpose(),np.eye(*gf1.target_shape))
for i in range(1, len(gf1.data)):
M = np.kron(np.eye(*gf1.target_shape), gf2.data[i]) - np.kron(gf1.data[i].transpose(),
np.eye(*gf1.target_shape))
# transform M into current null space
M = np.dot(M, N)
N = np.dot(N, null(M, threshold))
@ -1288,6 +1310,7 @@ class SumkDFT(object):
Then, it calculates the chi2 of
sum y[i] N[:,:,i] y[j].conjugate() N[:,:,j].conjugate().transpose() - eye.
"""
def chi2(y):
# reinterpret y as complex number
y = y.view(complex)
@ -1295,7 +1318,7 @@ class SumkDFT(object):
for a in range(Z.shape[0]):
for b in range(Z.shape[1]):
ret += np.abs(np.dot(y, np.dot(Z[a, b], y.conjugate()))
- (1.0 if a == b else 0.0))**2
- (1.0 if a == b else 0.0)) ** 2
return ret
# use the minimization routine from scipy
@ -1348,7 +1371,8 @@ class SumkDFT(object):
# C1(v1^dagger G1 v1) = C2(v2^dagger G2 v2)
if (ind1 < 0) and (ind2 >= 0):
if conjugate:
self.deg_shells[ish][ind2][block1] = np.dot(T.conjugate().transpose(), v2[0].conjugate()), not v2[1]
self.deg_shells[ish][ind2][block1] = np.dot(T.conjugate().transpose(),
v2[0].conjugate()), not v2[1]
else:
self.deg_shells[ish][ind2][block1] = np.dot(T.conjugate().transpose(), v2[0]), v2[1]
# the first block is already present
@ -1379,7 +1403,8 @@ class SumkDFT(object):
# a block was found, break out of the loop
break
def calculate_diagonalization_matrix(self, prop_to_be_diagonal='eal', calc_in_solver_blocks=True, write_to_blockstructure = True, shells=None):
def calculate_diagonalization_matrix(self, prop_to_be_diagonal='eal', calc_in_solver_blocks=True,
write_to_blockstructure=True, shells=None):
"""
Calculates the diagonalisation matrix, and (optionally) stores it in the BlockStructure.
@ -1410,13 +1435,13 @@ class SumkDFT(object):
if self.block_structure.transformation:
mpi.report(
"calculate_diagonalization_matrix: requires block_structure.transformation = None.")
"calculate_diagonalization_matrix: requires block_structure.transformation = None.")
return 0
# Use all shells
if shells is None:
shells = range(self.n_corr_shells)
elif max(shells) >= self.n_corr_shells: # Check if the shell indices are present
elif max(shells) >= self.n_corr_shells: # Check if the shell indices are present
mpi.report("calculate_diagonalization_matrix: shells not correct.")
return 0
@ -1439,7 +1464,7 @@ class SumkDFT(object):
prop[ish] = self.block_structure.convert_matrix(prop[ish], space_from='sumk', space_to='solver')
# Get diagonalisation matrix, if not already diagonal
for name in prop[ish]:
if np.sum(abs(prop[ish][name]-np.diag(np.diagonal(prop[ish][name])))) > 1e-13:
if np.sum(abs(prop[ish][name] - np.diag(np.diagonal(prop[ish][name])))) > 1e-13:
trafo[name] = np.linalg.eigh(prop[ish][name])[1].conj().T
else:
trafo[name] = np.identity(np.shape(prop[ish][name])[0])
@ -1477,7 +1502,7 @@ class SumkDFT(object):
ntoi = self.spin_names_to_ind[self.SO]
spn = self.spin_block_names[self.SO]
for ik in mpi.slice_array(ikarray):
dims = {sp:self.n_orbitals[ik, ntoi[sp]] for sp in spn}
dims = {sp: self.n_orbitals[ik, ntoi[sp]] for sp in spn}
MMat = [np.zeros([dims[sp], dims[sp]], complex) for sp in spn]
for isp, sp in enumerate(spn):
@ -1498,7 +1523,7 @@ class SumkDFT(object):
n_orb = self.n_orbitals[ik, ind]
projmat = self.proj_mat[ik, ind, icrsh, 0:dim, 0:n_orb]
dens_mat[icrsh][sp] += self.bz_weights[ik] * np.dot(np.dot(projmat, MMat[isp]),
projmat.transpose().conjugate())
projmat.transpose().conjugate())
# get data from nodes:
for icrsh in range(self.n_corr_shells):
@ -1515,14 +1540,14 @@ class SumkDFT(object):
for sp in dens_mat[icrsh]:
if self.rot_mat_time_inv[icrsh] == 1:
dens_mat[icrsh][sp] = dens_mat[icrsh][sp].conjugate()
dens_mat[icrsh][sp] = np.dot(np.dot(self.rot_mat[icrsh].conjugate().transpose(), dens_mat[icrsh][sp]),
self.rot_mat[icrsh])
dens_mat[icrsh][sp] = np.dot(
np.dot(self.rot_mat[icrsh].conjugate().transpose(), dens_mat[icrsh][sp]),
self.rot_mat[icrsh])
return dens_mat
def density_matrix(self, method='using_gf', mu=None, with_Sigma=True, with_dc=True, broadening=None,
transform_to_solver_blocks=True, show_warnings=True):
transform_to_solver_blocks=True, show_warnings=True):
"""Calculate density matrices in one of two ways.
Parameters
@ -1562,10 +1587,11 @@ class SumkDFT(object):
transform_to_solver_blocks, show_warnings)
dens_mat = [G.density() for G in Gloc]
elif method == "using_point_integration":
warn("WARNING: density_matrix: method 'using_point_integration' is deprecated. Use 'density_matrix_using_point_integration' instead. All additionally provided arguments are ignored.")
warn(
"WARNING: density_matrix: method 'using_point_integration' is deprecated. Use 'density_matrix_using_point_integration' instead. All additionally provided arguments are ignored.")
dens_mat = self.density_matrix_using_point_integration()
else:
raise ValueError("density_matrix: the method '%s' is not supported." % method)
raise ValueError("density_matrix: the method '%s' is not supported." % method)
return dens_mat
@ -1622,10 +1648,10 @@ class SumkDFT(object):
n_orb = self.n_orbitals[ik, ind]
MMat = np.identity(n_orb, complex)
MMat = self.hopping[
ik, ind, 0:n_orb, 0:n_orb] - (1 - 2 * isp) * self.h_field * MMat
ik, ind, 0:n_orb, 0:n_orb] - (1 - 2 * isp) * self.h_field * MMat
projmat = self.proj_mat[ik, ind, icrsh, 0:dim, 0:n_orb]
self.Hsumk[icrsh][sp] += self.bz_weights[ik] * np.dot(np.dot(projmat, MMat),
projmat.conjugate().transpose())
projmat.conjugate().transpose())
# symmetrisation:
if self.symm_op != 0:
self.Hsumk = self.symmcorr.symmetrize(self.Hsumk)
@ -1637,8 +1663,9 @@ class SumkDFT(object):
if self.rot_mat_time_inv[icrsh] == 1:
self.Hsumk[icrsh][sp] = self.Hsumk[
icrsh][sp].conjugate()
self.Hsumk[icrsh][sp] = np.dot(np.dot(self.rot_mat[icrsh].conjugate().transpose(), self.Hsumk[icrsh][sp]),
self.rot_mat[icrsh])
self.Hsumk[icrsh][sp] = np.dot(
np.dot(self.rot_mat[icrsh].conjugate().transpose(), self.Hsumk[icrsh][sp]),
self.rot_mat[icrsh])
# add to matrix:
for ish in range(self.n_inequiv_shells):
@ -1761,7 +1788,7 @@ class SumkDFT(object):
dim //= 2
if use_dc_value is None:
#For legacy compatibility
# For legacy compatibility
if use_dc_formula == 0:
mpi.report(f"Detected {use_dc_formula=}, changing to sFLL")
use_dc_formula = "sFLL"
@ -1773,7 +1800,8 @@ class SumkDFT(object):
use_dc_formula = "sAMF"
for sp in spn:
DC_val, E_val = compute_DC_from_density(N_tot=Ncrtot,U=U_interact, J=J_hund, n_orbitals=dim, N_spin=Ncr[sp], method=use_dc_formula)
DC_val, E_val = compute_DC_from_density(N_tot=Ncrtot, U=U_interact, J=J_hund, n_orbitals=dim,
N_spin=Ncr[sp], method=use_dc_formula)
self.dc_imp[icrsh][sp] *= DC_val
self.dc_energ[icrsh] = E_val
@ -1793,7 +1821,7 @@ class SumkDFT(object):
for sp in spn:
T = self.block_structure.effective_transformation_sumk[icrsh][sp]
self.dc_imp[icrsh][sp] = np.dot(T.conjugate().transpose(),
np.dot(self.dc_imp[icrsh][sp], T))
np.dot(self.dc_imp[icrsh][sp], T))
def add_dc(self):
r"""
@ -1968,9 +1996,11 @@ class SumkDFT(object):
beta = 1 / broadening
if isinstance(self.mesh, MeshReFreq):
def tot_den(bgf): return bgf.total_density(beta)
def tot_den(bgf):
return bgf.total_density(beta)
else:
def tot_den(bgf): return bgf.total_density()
def tot_den(bgf):
return bgf.total_density()
dens = 0.0
ikarray = np.array(list(range(self.n_k)))
@ -2030,6 +2060,7 @@ class SumkDFT(object):
within specified precision.
"""
def find_bounds(function, x_init, delta_x, max_loops=1000):
mpi.report("Finding bounds on chemical potential")
x = x_init
@ -2042,12 +2073,12 @@ class SumkDFT(object):
nbre_loop = 0
# abort the loop after maxiter is reached or when y1 and y2 have different sign
while (nbre_loop <= max_loops) and (y2*y1) > 0:
while (nbre_loop <= max_loops) and (y2 * y1) > 0:
nbre_loop += 1
x1 = x2
y1 = y2
x2 -= eps*delta_x
x2 -= eps * delta_x
y2 = function(x2)
if nbre_loop > (max_loops):
@ -2064,8 +2095,11 @@ class SumkDFT(object):
# previous implementation
def F_bisection(mu): return self.total_density(mu=mu, broadening=broadening, beta=beta).real
def F_bisection(mu):
return self.total_density(mu=mu, broadening=broadening, beta=beta).real
density = self.density_required - self.charge_below
# using scipy.optimize
def F_optimize(mu):
@ -2119,7 +2153,8 @@ class SumkDFT(object):
return self.chemical_potential
def calc_density_correction(self, filename=None, dm_type=None, spinave=False, kpts_to_write=None, broadening=None, beta=None):
def calc_density_correction(self, filename=None, dm_type=None, spinave=False, kpts_to_write=None, broadening=None,
beta=None):
r"""
Calculates the charge density correction and stores it into a file.
@ -2159,12 +2194,12 @@ class SumkDFT(object):
the corresponing total charge `dens`.
"""
#automatically set dm_type if required
# automatically set dm_type if required
if dm_type is None:
dm_type = self.dft_code
assert dm_type in ('vasp', 'wien2k','elk', 'qe'), "'dm_type' must be either 'vasp', 'wienk', 'elk' or 'qe'"
#default file names
assert dm_type in ('vasp', 'wien2k', 'elk', 'qe'), "'dm_type' must be either 'vasp', 'wienk', 'elk' or 'qe'"
# default file names
if filename is None:
if dm_type == 'wien2k':
filename = 'dens_mat.dat'
@ -2175,40 +2210,38 @@ class SumkDFT(object):
elif dm_type == 'qe':
filename = self.hdf_file
assert isinstance(filename, str), ("calc_density_correction: "
"filename has to be a string!")
"filename has to be a string!")
assert kpts_to_write is None or dm_type == 'vasp', ('Selecting k-points only'
+'implemented for vasp')
+ 'implemented for vasp')
ntoi = self.spin_names_to_ind[self.SO]
spn = self.spin_block_names[self.SO]
dens = {sp: 0.0 for sp in spn}
band_en_correction = 0.0
# Fetch Fermi weights and energy window band indices
if dm_type in ['vasp','qe']:
# Fetch Fermi weights and energy window band indices
if dm_type in ['vasp', 'qe']:
fermi_weights = 0
band_window = 0
if mpi.is_master_node():
with HDFArchive(self.hdf_file,'r') as ar:
with HDFArchive(self.hdf_file, 'r') as ar:
fermi_weights = ar['dft_misc_input']['dft_fermi_weights']
band_window = ar['dft_misc_input']['band_window']
fermi_weights = mpi.bcast(fermi_weights)
band_window = mpi.bcast(band_window)
# Convert Fermi weights to a density matrix
# Convert Fermi weights to a density matrix
dens_mat_dft = {}
for sp in spn:
dens_mat_dft[sp] = [fermi_weights[ik, ntoi[sp], :].astype(complex) for ik in range(self.n_k)]
# Set up deltaN:
deltaN = {}
for sp in spn:
deltaN[sp] = [np.zeros([self.n_orbitals[ik, ntoi[sp]], self.n_orbitals[
ik, ntoi[sp]]], complex) for ik in range(self.n_k)]
ik, ntoi[sp]]], complex) for ik in range(self.n_k)]
ikarray = np.arange(self.n_k)
for ik in mpi.slice_array(ikarray):
@ -2219,7 +2252,7 @@ class SumkDFT(object):
for bname, gf in G_latt:
G_latt_rot = gf.copy()
G_latt_rot << self.upfold(
ik, 0, bname, G_latt[bname], gf,shells='csc')
ik, 0, bname, G_latt[bname], gf, shells='csc')
G_latt[bname] = G_latt_rot.copy()
@ -2230,23 +2263,25 @@ class SumkDFT(object):
dens[bname] += self.bz_weights[ik] * G_latt[bname].total_density()
else:
dens[bname] += self.bz_weights[ik] * G_latt[bname].total_density(beta)
if dm_type in ['vasp','qe']:
# In 'vasp'-mode subtract the DFT density matrix
if dm_type in ['vasp', 'qe']:
# In 'vasp'-mode subtract the DFT density matrix
nb = self.n_orbitals[ik, ntoi[bname]]
diag_inds = np.diag_indices(nb)
deltaN[bname][ik][diag_inds] -= dens_mat_dft[bname][ik][:nb]
if self.charge_mixing and self.deltaNOld is not None:
G2 = np.sum(self.kpts_cart[ik,:]**2)
G2 = np.sum(self.kpts_cart[ik, :] ** 2)
# Kerker mixing
mix_fac = self.charge_mixing_alpha * G2 / (G2 + self.charge_mixing_gamma**2)
deltaN[bname][ik][diag_inds] = (1.0 - mix_fac) * self.deltaNOld[bname][ik][diag_inds] + mix_fac * deltaN[bname][ik][diag_inds]
mix_fac = self.charge_mixing_alpha * G2 / (G2 + self.charge_mixing_gamma ** 2)
deltaN[bname][ik][diag_inds] = (1.0 - mix_fac) * self.deltaNOld[bname][ik][
diag_inds] + mix_fac * deltaN[bname][ik][diag_inds]
dens[bname] -= self.bz_weights[ik] * dens_mat_dft[bname][ik].sum().real
isp = ntoi[bname]
b1, b2 = band_window[isp][ik, :2]
nb = b2 - b1 + 1
assert nb == self.n_orbitals[ik, ntoi[bname]], "Number of bands is inconsistent at ik = %s"%(ik)
band_en_correction += np.dot(deltaN[bname][ik], self.hopping[ik, isp, :nb, :nb]).trace().real * self.bz_weights[ik]
assert nb == self.n_orbitals[ik, ntoi[bname]], "Number of bands is inconsistent at ik = %s" % (ik)
band_en_correction += np.dot(deltaN[bname][ik], self.hopping[ik, isp, :nb, :nb]).trace().real * \
self.bz_weights[ik]
# mpi reduce:
for bname in deltaN:
@ -2256,8 +2291,6 @@ class SumkDFT(object):
self.deltaNOld = copy.copy(deltaN)
mpi.barrier()
band_en_correction = mpi.all_reduce(band_en_correction)
# now save to file:
@ -2285,9 +2318,9 @@ class SumkDFT(object):
for inu in range(self.n_orbitals[ik, 0]):
for imu in range(self.n_orbitals[ik, 0]):
valre = (deltaN['up'][ik][
inu, imu].real + deltaN['down'][ik][inu, imu].real) / 2.0
inu, imu].real + deltaN['down'][ik][inu, imu].real) / 2.0
valim = (deltaN['up'][ik][
inu, imu].imag + deltaN['down'][ik][inu, imu].imag) / 2.0
inu, imu].imag + deltaN['down'][ik][inu, imu].imag) / 2.0
f.write("%.14f %.14f " % (valre, valim))
f.write("\n")
f.write("\n")
@ -2307,7 +2340,7 @@ class SumkDFT(object):
for inu in range(self.n_orbitals[ik, isp]):
for imu in range(self.n_orbitals[ik, isp]):
fout.write("%.14f %.14f " % (deltaN[sp][ik][
inu, imu].real, deltaN[sp][ik][inu, imu].imag))
inu, imu].real, deltaN[sp][ik][inu, imu].imag))
fout.write("\n")
fout.write("\n")
fout.close()
@ -2321,16 +2354,21 @@ class SumkDFT(object):
if mpi.is_master_node():
with open(filename, 'w') as f:
f.write(" %i -1 ! Number of k-points, default number of bands\n"%len(kpts_to_write))
f.write(" %i -1 ! Number of k-points, default number of bands\n" % len(kpts_to_write))
for index, ik in enumerate(kpts_to_write):
ib1 = band_window[0][ik, 0]
ib2 = band_window[0][ik, 1]
f.write(" %i %i %i\n"%(index + 1, ib1, ib2))
f.write(" %i %i %i\n" % (index + 1, ib1, ib2))
for inu in range(self.n_orbitals[ik, 0]):
for imu in range(self.n_orbitals[ik, 0]):
valre = (deltaN['up'][ik][inu, imu].real + deltaN['down'][ik][inu, imu].real) / 2.0
valim = (deltaN['up'][ik][inu, imu].imag + deltaN['down'][ik][inu, imu].imag) / 2.0
f.write(" %.14f %.14f"%(valre, valim))
if (self.SO == 1):
valre = (deltaN['ud'][ik][inu, imu].real) / 1.0
valim = (deltaN['ud'][ik][inu, imu].imag) / 1.0
f.write(" %.14f %.14f" % (valre, valim))
else:
valre = (deltaN['up'][ik][inu, imu].real + deltaN['down'][ik][inu, imu].real) / 2.0
valim = (deltaN['up'][ik][inu, imu].imag + deltaN['down'][ik][inu, imu].imag) / 2.0
f.write(" %.14f %.14f" % (valre, valim))
f.write("\n")
if os.path.isfile('vasptriqs.h5'):
@ -2342,54 +2380,58 @@ class SumkDFT(object):
elif dm_type == 'elk':
# output each k-point density matrix for Elk
# output each k-point density matrix for Elk
if mpi.is_master_node():
# read in misc data from .h5 file
things_to_read = ['band_window','vkl','nstsv']
# read in misc data from .h5 file
things_to_read = ['band_window', 'vkl', 'nstsv']
self.subgroup_present, self.value_read = self.read_input_from_hdf(
subgrp=self.misc_data, things_to_read=things_to_read)
# open file
subgrp=self.misc_data, things_to_read=things_to_read)
# open file
with open(filename, 'w') as f:
# determine the number of spin blocks
# determine the number of spin blocks
n_spin_blocks = self.SP + 1 - self.SO
nbmax = np.max(self.n_orbitals)
# output beta and mu in Hartrees
# output beta and mu in Hartrees
beta = self.mesh.beta * self.energy_unit
mu = self.chemical_potential/self.energy_unit
# ouput n_k, nspin and max orbitals - a check
f.write(" %d %d %d %.14f %.14f ! nkpt, nspin, nstmax, beta, mu\n"%(self.n_k, n_spin_blocks, nbmax, beta, mu))
mu = self.chemical_potential / self.energy_unit
# ouput n_k, nspin and max orbitals - a check
f.write(" %d %d %d %.14f %.14f ! nkpt, nspin, nstmax, beta, mu\n" % (
self.n_k, n_spin_blocks, nbmax, beta, mu))
for ik in range(self.n_k):
for ispn in range(n_spin_blocks):
#Determine the SO density matrix band indices from the spinor band indices
if(self.SO==1):
band0=[self.band_window[0][ik, 0],self.band_window[1][ik, 0]]
band1=[self.band_window[0][ik, 1],self.band_window[1][ik, 1]]
ib1=int(min(band0))
ib2=int(max(band1))
else:
#Determine the density matrix band indices from the spinor band indices
ib1 = self.band_window[ispn][ik, 0]
ib2 = self.band_window[ispn][ik, 1]
f.write(" %d %d %d %d ! ik, ispn, minist, maxist\n"%(ik + 1, ispn + 1, ib1, ib2))
for inu in range(self.n_orbitals[ik, ispn]):
for imu in range(self.n_orbitals[ik, ispn]):
#output non-magnetic or spin-averaged density matrix
if((self.SP==0) or (spinave)):
valre = (deltaN['up'][ik][inu, imu].real + deltaN['down'][ik][inu, imu].real) / 2.0
valim = (deltaN['up'][ik][inu, imu].imag + deltaN['down'][ik][inu, imu].imag) / 2.0
else:
valre = deltaN[spn[ispn]][ik][inu, imu].real
valim = deltaN[spn[ispn]][ik][inu, imu].imag
f.write(" %.14f %.14f"%(valre, valim))
f.write("\n")
for ispn in range(n_spin_blocks):
# Determine the SO density matrix band indices from the spinor band indices
if (self.SO == 1):
band0 = [self.band_window[0][ik, 0], self.band_window[1][ik, 0]]
band1 = [self.band_window[0][ik, 1], self.band_window[1][ik, 1]]
ib1 = int(min(band0))
ib2 = int(max(band1))
else:
# Determine the density matrix band indices from the spinor band indices
ib1 = self.band_window[ispn][ik, 0]
ib2 = self.band_window[ispn][ik, 1]
f.write(" %d %d %d %d ! ik, ispn, minist, maxist\n" % (ik + 1, ispn + 1, ib1, ib2))
for inu in range(self.n_orbitals[ik, ispn]):
for imu in range(self.n_orbitals[ik, ispn]):
# output non-magnetic or spin-averaged density matrix
if ((self.SP == 0) or (spinave)):
valre = (deltaN['up'][ik][inu, imu].real + deltaN['down'][ik][
inu, imu].real) / 2.0
valim = (deltaN['up'][ik][inu, imu].imag + deltaN['down'][ik][
inu, imu].imag) / 2.0
else:
valre = deltaN[spn[ispn]][ik][inu, imu].real
valim = deltaN[spn[ispn]][ik][inu, imu].imag
f.write(" %.14f %.14f" % (valre, valim))
f.write("\n")
elif dm_type == 'qe':
if self.SP == 0:
mpi.report("SUMK calc_density_correction: WARNING! Averaging out spin-polarized correction in the density channel")
mpi.report(
"SUMK calc_density_correction: WARNING! Averaging out spin-polarized correction in the density channel")
subgrp = 'dft_update'
delta_N = np.zeros([self.n_k, max(self.n_orbitals[:,0]), max(self.n_orbitals[:,0])], dtype=complex)
mpi.report(" %i -1 ! Number of k-points, default number of bands\n"%(self.n_k))
delta_N = np.zeros([self.n_k, max(self.n_orbitals[:, 0]), max(self.n_orbitals[:, 0])], dtype=complex)
mpi.report(" %i -1 ! Number of k-points, default number of bands\n" % (self.n_k))
for ik in range(self.n_k):
ib1 = band_window[0][ik, 0]
ib2 = band_window[0][ik, 1]
@ -2398,7 +2440,7 @@ class SumkDFT(object):
valre = (deltaN['up'][ik][inu, imu].real + deltaN['down'][ik][inu, imu].real) / 2.0
valim = (deltaN['up'][ik][inu, imu].imag + deltaN['down'][ik][inu, imu].imag) / 2.0
# write into delta_N
delta_N[ik, inu, imu] = valre + 1j*valim
delta_N[ik, inu, imu] = valre + 1j * valim
if mpi.is_master_node():
with HDFArchive(self.hdf_file, 'a') as ar:
if subgrp not in ar:
@ -2409,7 +2451,7 @@ class SumkDFT(object):
else:
raise NotImplementedError("Unknown density matrix type: '%s'"%(dm_type))
raise NotImplementedError("Unknown density matrix type: '%s'" % (dm_type))
res = deltaN, dens
@ -2431,9 +2473,9 @@ class SumkDFT(object):
self.max_band_energy = max_band_energy
return min_band_energy, max_band_energy
################
# FIXME LEAVE UNDOCUMENTED
################
################
# FIXME LEAVE UNDOCUMENTED
################
def check_projectors(self):
"""Calculated the density matrix from projectors (DM = P Pdagger) to check that it is correct and
@ -2447,7 +2489,7 @@ class SumkDFT(object):
n_orb = self.n_orbitals[ik, 0]
projmat = self.proj_mat[ik, 0, icrsh, 0:dim, 0:n_orb]
dens_mat[icrsh][
:, :] += np.dot(projmat, projmat.transpose().conjugate()) * self.bz_weights[ik]
:, :] += np.dot(projmat, projmat.transpose().conjugate()) * self.bz_weights[ik]
if self.symm_op != 0:
dens_mat = self.symmcorr.symmetrize(dens_mat)
@ -2458,7 +2500,7 @@ class SumkDFT(object):
if self.rot_mat_time_inv[icrsh] == 1:
dens_mat[icrsh] = dens_mat[icrsh].conjugate()
dens_mat[icrsh] = np.dot(np.dot(self.rot_mat[icrsh].conjugate().transpose(), dens_mat[icrsh]),
self.rot_mat[icrsh])
self.rot_mat[icrsh])
return dens_mat
@ -2482,39 +2524,51 @@ class SumkDFT(object):
# after introducing the block_structure class
def __get_gf_struct_sumk(self):
return self.block_structure.gf_struct_sumk
def __set_gf_struct_sumk(self,value):
def __set_gf_struct_sumk(self, value):
self.block_structure.gf_struct_sumk = value
gf_struct_sumk = property(__get_gf_struct_sumk,__set_gf_struct_sumk)
gf_struct_sumk = property(__get_gf_struct_sumk, __set_gf_struct_sumk)
def __get_gf_struct_solver(self):
return self.block_structure.gf_struct_solver
def __set_gf_struct_solver(self,value):
def __set_gf_struct_solver(self, value):
self.block_structure.gf_struct_solver = value
gf_struct_solver = property(__get_gf_struct_solver,__set_gf_struct_solver)
gf_struct_solver = property(__get_gf_struct_solver, __set_gf_struct_solver)
def __get_solver_to_sumk(self):
return self.block_structure.solver_to_sumk
def __set_solver_to_sumk(self,value):
def __set_solver_to_sumk(self, value):
self.block_structure.solver_to_sumk = value
solver_to_sumk = property(__get_solver_to_sumk,__set_solver_to_sumk)
solver_to_sumk = property(__get_solver_to_sumk, __set_solver_to_sumk)
def __get_sumk_to_solver(self):
return self.block_structure.sumk_to_solver
def __set_sumk_to_solver(self,value):
def __set_sumk_to_solver(self, value):
self.block_structure.sumk_to_solver = value
sumk_to_solver = property(__get_sumk_to_solver,__set_sumk_to_solver)
sumk_to_solver = property(__get_sumk_to_solver, __set_sumk_to_solver)
def __get_solver_to_sumk_block(self):
return self.block_structure.solver_to_sumk_block
def __set_solver_to_sumk_block(self,value):
def __set_solver_to_sumk_block(self, value):
self.block_structure.solver_to_sumk_block = value
solver_to_sumk_block = property(__get_solver_to_sumk_block,__set_solver_to_sumk_block)
solver_to_sumk_block = property(__get_solver_to_sumk_block, __set_solver_to_sumk_block)
def __get_deg_shells(self):
return self.block_structure.deg_shells
def __set_deg_shells(self,value):
def __set_deg_shells(self, value):
self.block_structure.deg_shells = value
deg_shells = property(__get_deg_shells,__set_deg_shells)
deg_shells = property(__get_deg_shells, __set_deg_shells)
@property
def gf_struct_solver_list(self):
@ -2534,12 +2588,16 @@ class SumkDFT(object):
def __get_corr_to_inequiv(self):
return self.block_structure.corr_to_inequiv
def __set_corr_to_inequiv(self, value):
self.block_structure.corr_to_inequiv = value
corr_to_inequiv = property(__get_corr_to_inequiv, __set_corr_to_inequiv)
def __get_inequiv_to_corr(self):
return self.block_structure.inequiv_to_corr
def __set_inequiv_to_corr(self, value):
self.block_structure.inequiv_to_corr = value
inequiv_to_corr = property(__get_inequiv_to_corr, __set_inequiv_to_corr)