3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-02 17:45:47 +01:00

Clean up of sumk_dft_tools

This commit is contained in:
Priyanka Seth 2015-03-13 11:10:38 +01:00
parent 460219fb16
commit 74b676f841
3 changed files with 209 additions and 209 deletions

View File

@ -375,8 +375,9 @@ class SumkDFT:
for bname,gf in tmp: tmp[bname] << self.downfold(ik,icrsh,bname,G_latt_iw[bname],gf) for bname,gf in tmp: tmp[bname] << self.downfold(ik,icrsh,bname,G_latt_iw[bname],gf)
G_loc[icrsh] += tmp G_loc[icrsh] += tmp
# collect data from mpi # Collect data from mpi
for icrsh in range(self.n_corr_shells): G_loc[icrsh] << mpi.all_reduce(mpi.world, G_loc[icrsh], lambda x,y : x+y) for icrsh in range(self.n_corr_shells):
G_loc[icrsh] << mpi.all_reduce(mpi.world, G_loc[icrsh], lambda x,y : x+y)
mpi.barrier() mpi.barrier()
# G_loc[:] is now the sum over k projected to the local orbitals. # G_loc[:] is now the sum over k projected to the local orbitals.

View File

@ -40,26 +40,29 @@ class SumkDFTTools(SumkDFT):
misc_data=misc_data) misc_data=misc_data)
def read_parproj_input_from_hdf(self): def dos_wannier_basis(self, mu=None, broadening=None, mesh=None, with_Sigma=True, with_dc=True, save_to_file=True):
"""
Reads the data for the partial projectors from the HDF file
"""
things_to_read = ['dens_mat_below','n_parproj','proj_mat_all','rot_mat_all','rot_mat_all_time_inv'] if (mesh is None) and (not with_Sigma):
value_read = self.read_input_from_hdf(subgrp=self.parproj_data,things_to_read = things_to_read) raise ValueError, "lattice_gf: Give the mesh=(om_min,om_max,n_points) for the lattice GfReFreq."
return value_read if mesh is None:
om_mesh = [x.real for x in self.Sigma_imp_w[0].mesh]
om_min = om_mesh[0]
om_max = om_mesh[-1]
n_om = len(om_mesh)
mesh = (om_min,om_max,n_om)
else:
om_min,om_max,n_om = mesh
delta_om = (om_max-om_min)/(n_om-1)
om_mesh = [om_min + delta_om * i for i in range(n_om)]
G_loc = []
for icrsh in range(self.n_corr_shells):
spn = self.spin_block_names[self.corr_shells[icrsh]['SO']]
glist = [ GfReFreq(indices = inner, window = (om_min,om_max), n_points = n_om) for block,inner in self.gf_struct_sumk[icrsh]]
G_loc.append(BlockGf(name_list = spn, block_list = glist, make_copies=False))
for icrsh in range(self.n_corr_shells): G_loc[icrsh].zero()
def check_input_dos(self, om_min, om_max, n_om, beta=10, broadening=0.01): DOS = { sp: numpy.zeros([n_om],numpy.float_) for sp in self.spin_block_names[self.SO] }
delta_om = (om_max-om_min)/(n_om-1)
om_mesh = numpy.zeros([n_om],numpy.float_)
for i in range(n_om): om_mesh[i] = om_min + delta_om * i
DOS = {}
for sp in self.spin_block_names[self.SO]:
DOS[sp] = numpy.zeros([n_om],numpy.float_)
DOSproj = [ {} for ish in range(self.n_inequiv_shells) ] DOSproj = [ {} for ish in range(self.n_inequiv_shells) ]
DOSproj_orb = [ {} for ish in range(self.n_inequiv_shells) ] DOSproj_orb = [ {} for ish in range(self.n_inequiv_shells) ]
for ish in range(self.n_inequiv_shells): for ish in range(self.n_inequiv_shells):
@ -68,86 +71,96 @@ class SumkDFTTools(SumkDFT):
DOSproj[ish][sp] = numpy.zeros([n_om],numpy.float_) DOSproj[ish][sp] = numpy.zeros([n_om],numpy.float_)
DOSproj_orb[ish][sp] = numpy.zeros([n_om,dim,dim],numpy.float_) DOSproj_orb[ish][sp] = numpy.zeros([n_om,dim,dim],numpy.float_)
# init: ikarray = numpy.array(range(self.n_k))
Gloc = [] for ik in mpi.slice_array(ikarray):
for icrsh in range(self.n_corr_shells):
spn = self.spin_block_names[self.corr_shells[icrsh]['SO']]
glist = lambda : [ GfReFreq(indices = inner, window = (om_min,om_max), n_points = n_om) for block,inner in self.gf_struct_sumk[icrsh]]
Gloc.append(BlockGf(name_list = spn, block_list = glist(),make_copies=False))
for icrsh in range(self.n_corr_shells): Gloc[icrsh].zero() # initialize to zero
for ik in range(self.n_k): G_latt_w = self.lattice_gf(ik=ik,mu=mu,iw_or_w="w",broadening=broadening,mesh=mesh,with_Sigma=with_Sigma,with_dc=with_dc)
G_latt_w=self.lattice_gf(ik=ik,mu=self.chemical_potential,iw_or_w="w",broadening=broadening,mesh=(om_min,om_max,n_om),with_Sigma=False)
G_latt_w *= self.bz_weights[ik] G_latt_w *= self.bz_weights[ik]
# non-projected DOS # Non-projected DOS
for iom in range(n_om): for iom in range(n_om):
for bname,gf in G_latt_w: for bname,gf in G_latt_w:
asd = gf.data[iom,:,:].imag.trace()/(-3.1415926535) DOS[bname][iom] += gf.data[iom,:,:].imag.trace()/numpy.pi
DOS[bname][iom] += asd
# Projected DOS:
for icrsh in range(self.n_corr_shells): for icrsh in range(self.n_corr_shells):
tmp = Gloc[icrsh].copy() tmp = G_loc[icrsh].copy()
for bname,gf in tmp: tmp[bname] << self.downfold(ik,icrsh,bname,G_latt_w[bname],gf) # downfolding G for bname,gf in tmp: tmp[bname] << self.downfold(ik,icrsh,bname,G_latt_w[bname],gf) # downfolding G
Gloc[icrsh] += tmp G_loc[icrsh] += tmp
if self.symm_op != 0: Gloc = self.symmcorr.symmetrize(Gloc) # Collect data from mpi:
for bname in DOS:
DOS[bname] = mpi.all_reduce(mpi.world, DOS[bname], lambda x,y : x+y)
for ish in range(self.n_shells):
G_loc[ish] << mpi.all_reduce(mpi.world, G_loc[ish], lambda x,y : x+y)
mpi.barrier()
# Symmetrize and rotate to local coord. system if needed:
if self.symm_op != 0: G_loc = self.symmcorr.symmetrize(G_loc)
if self.use_rotations: if self.use_rotations:
for icrsh in range(self.n_corr_shells): for icrsh in range(self.n_corr_shells):
for bname,gf in Gloc[icrsh]: Gloc[icrsh][bname] << self.rotloc(icrsh,gf,direction='toLocal') for bname,gf in G_loc[icrsh]: G_loc[icrsh][bname] << self.rotloc(icrsh,gf,direction='toLocal')
# Gloc can now also be used to look at orbitally resolved quantities # G_loc can now also be used to look at orbitally-resolved quantities
for ish in range(self.n_inequiv_shells): for ish in range(self.n_inequiv_shells):
for bname,gf in Gloc[self.inequiv_to_corr[ish]]: # loop over spins for bname,gf in G_loc[self.inequiv_to_corr[ish]]: # loop over spins
for iom in range(n_om): DOSproj[ish][bname][iom] += gf.data[iom,:,:].imag.trace()/(-3.1415926535) for iom in range(n_om): DOSproj[ish][bname][iom] += gf.data[iom,:,:].imag.trace()/numpy.pi
DOSproj_orb[ish][bname][:,:,:] += gf.data[:,:,:].imag/numpy.pi
DOSproj_orb[ish][bname][:,:,:] += gf.data[:,:,:].imag/(-3.1415926535) # Write to files
if save_to_file and mpi.is_master_node():
# output:
if mpi.is_master_node():
for sp in self.spin_block_names[self.SO]: for sp in self.spin_block_names[self.SO]:
f=open('DOS%s.dat'%sp, 'w') f = open('DOS_wann_%s.dat'%sp, 'w')
for i in range(n_om): f.write("%s %s\n"%(om_mesh[i],DOS[sp][i])) for iom in range(n_om): f.write("%s %s\n"%(om_mesh[iom],DOS[sp][i]))
f.close() f.close()
# Partial
for ish in range(self.n_inequiv_shells): for ish in range(self.n_inequiv_shells):
f=open('DOS%s_proj%s.dat'%(sp,ish),'w') f = open('DOS_wann_%s_proj%s.dat'%(sp,ish),'w')
for i in range(n_om): f.write("%s %s\n"%(om_mesh[i],DOSproj[ish][sp][i])) for iom in range(n_om): f.write("%s %s\n"%(om_mesh[iom],DOSproj[ish][sp][i]))
f.close() f.close()
# Orbitally-resolved
for i in range(self.corr_shells[self.inequiv_to_corr[ish]]['dim']): for i in range(self.corr_shells[self.inequiv_to_corr[ish]]['dim']):
for j in range(i,self.corr_shells[self.inequiv_to_corr[ish]]['dim']): for j in range(i,self.corr_shells[self.inequiv_to_corr[ish]]['dim']):
Fname = 'DOS'+sp+'_proj'+str(ish)+'_'+str(i)+'_'+str(j)+'.dat' f = open('DOS_wann_'+sp+'_proj'+str(ish)+'_'+str(i)+'_'+str(j)+'.dat','w')
f=open(Fname,'w')
for iom in range(n_om): f.write("%s %s\n"%(om_mesh[iom],DOSproj_orb[ish][sp][iom,i,j])) for iom in range(n_om): f.write("%s %s\n"%(om_mesh[iom],DOSproj_orb[ish][sp][iom,i,j]))
f.close() f.close()
return DOS, DOSproj, DOSproj_orb
def dos_partial(self,broadening=0.01):
"""calculates the orbitally-resolved DOS"""
assert hasattr(self,"Sigma_imp_w"), "dos_partial: Set Sigma_imp_w first." def dos_parproj_basis(self, mu=None, broadening=None, mesh=None, with_Sigma=True, with_dc=True, save_to_file=True):
"""Calculates the orbitally-resolved DOS"""
value_read = self.read_parproj_input_from_hdf() things_to_read = ['n_parproj','proj_mat_all','rot_mat_all','rot_mat_all_time_inv']
value_read = self.read_input_from_hdf(subgrp=self.parproj_data,things_to_read = things_to_read)
if not value_read: return value_read if not value_read: return value_read
if self.symm_op: self.symmpar = Symmetry(self.hdf_file,subgroup=self.symmpar_data) if self.symm_op: self.symmpar = Symmetry(self.hdf_file,subgroup=self.symmpar_data)
mu = self.chemical_potential if (mesh is None) and (not with_Sigma):
raise ValueError, "lattice_gf: Give the mesh=(om_min,om_max,n_points) for the lattice GfReFreq."
if mesh is None:
om_mesh = [x.real for x in self.Sigma_imp_w[0].mesh]
om_min = om_mesh[0]
om_max = om_mesh[-1]
n_om = len(om_mesh)
mesh = (om_min,om_max,n_om)
else:
om_min,om_max,n_om = mesh
delta_om = (om_max-om_min)/(n_om-1)
om_mesh = [om_min + delta_om * i for i in range(n_om)]
gf_struct_proj = [ [ (sp, range(self.shells[i]['dim'])) for sp in self.spin_block_names[self.SO] ] for i in range(self.n_shells) ] G_loc = []
Gproj = [BlockGf(name_block_generator = [ (block,GfReFreq(indices = inner, mesh = self.Sigma_imp_w[0].mesh)) spn = self.spin_block_names[self.SO]
for block,inner in gf_struct_proj[ish] ], make_copies = False ) for ish in range(self.n_shells)] gf_struct_parproj = [ [ (sp, range(self.shells[ish]['dim'])) for sp in spn ]
for ish in range(self.n_shells): Gproj[ish].zero() for ish in range(self.n_shells) ]
for ish in range(self.n_shells):
mesh = [x.real for x in self.Sigma_imp_w[0].mesh] glist = [ GfReFreq(indices = inner, window = (om_min,om_max), n_points = n_om) for block,inner in gf_struct_parproj[ish] ]
n_om = len(mesh) G_loc.append(BlockGf(name_list = spn, block_list = glist, make_copies=False))
for ish in range(self.n_shells): G_loc[ish].zero()
DOS = {}
for sp in self.spin_block_names[self.SO]:
DOS[sp] = numpy.zeros([n_om],numpy.float_)
DOS = { sp: numpy.zeros([n_om],numpy.float_) for sp in self.spin_block_names[self.SO] }
DOSproj = [ {} for ish in range(self.n_shells) ] DOSproj = [ {} for ish in range(self.n_shells) ]
DOSproj_orb = [ {} for ish in range(self.n_shells) ] DOSproj_orb = [ {} for ish in range(self.n_shells) ]
for ish in range(self.n_shells): for ish in range(self.n_shells):
@ -156,271 +169,259 @@ class SumkDFTTools(SumkDFT):
DOSproj[ish][sp] = numpy.zeros([n_om],numpy.float_) DOSproj[ish][sp] = numpy.zeros([n_om],numpy.float_)
DOSproj_orb[ish][sp] = numpy.zeros([n_om,dim,dim],numpy.float_) DOSproj_orb[ish][sp] = numpy.zeros([n_om,dim,dim],numpy.float_)
ikarray=numpy.array(range(self.n_k)) ikarray = numpy.array(range(self.n_k))
for ik in mpi.slice_array(ikarray): for ik in mpi.slice_array(ikarray):
G_latt_w = self.lattice_gf(ik=ik,mu=mu,iw_or_w="w",broadening=broadening) G_latt_w = self.lattice_gf(ik=ik,mu=mu,iw_or_w="w",broadening=broadening,mesh=mesh,with_Sigma=with_Sigma,with_dc=with_dc)
G_latt_w *= self.bz_weights[ik] G_latt_w *= self.bz_weights[ik]
# non-projected DOS # Non-projected DOS
for iom in range(n_om): for iom in range(n_om):
for bname,gf in G_latt_w: DOS[bname][iom] += gf.data[iom,:,:].imag.trace()/(-3.1415926535) for bname,gf in G_latt_w:
DOS[bname][iom] += gf.data[iom,:,:].imag.trace()/numpy.pi
#projected DOS: # Projected DOS:
for ish in range(self.n_shells): for ish in range(self.n_shells):
tmp = Gproj[ish].copy() tmp = G_loc[ish].copy()
for ir in range(self.n_parproj[ish]): for ir in range(self.n_parproj[ish]):
for bname,gf in tmp: tmp[bname] << self.downfold(ik,ish,bname,G_latt_w[bname],gf,shells='all',ir=ir) for bname,gf in tmp: tmp[bname] << self.downfold(ik,ish,bname,G_latt_w[bname],gf,shells='all',ir=ir)
Gproj[ish] += tmp G_loc[ish] += tmp
# collect data from mpi: # Collect data from mpi:
for bname in DOS: for bname in DOS:
DOS[bname] = mpi.all_reduce(mpi.world, DOS[bname], lambda x,y : x+y) DOS[bname] = mpi.all_reduce(mpi.world, DOS[bname], lambda x,y : x+y)
for ish in range(self.n_shells): for ish in range(self.n_shells):
Gproj[ish] << mpi.all_reduce(mpi.world, Gproj[ish], lambda x,y : x+y) G_loc[ish] << mpi.all_reduce(mpi.world, G_loc[ish], lambda x,y : x+y)
mpi.barrier() mpi.barrier()
if self.symm_op != 0: Gproj = self.symmpar.symmetrize(Gproj) # Symmetrize and rotate to local coord. system if needed:
if self.symm_op != 0: G_loc = self.symmpar.symmetrize(G_loc)
# rotation to local coord. system:
if self.use_rotations: if self.use_rotations:
for ish in range(self.n_shells): for ish in range(self.n_shells):
for bname,gf in Gproj[ish]: Gproj[ish][bname] << self.rotloc(ish,gf,direction='toLocal',shells='all') for bname,gf in G_loc[ish]: G_loc[ish][bname] << self.rotloc(ish,gf,direction='toLocal',shells='all')
# G_loc can now also be used to look at orbitally-resolved quantities
for ish in range(self.n_shells): for ish in range(self.n_shells):
for bname,gf in Gproj[ish]: for bname,gf in G_loc[ish]:
for iom in range(n_om): DOSproj[ish][bname][iom] += gf.data[iom,:,:].imag.trace()/(-3.1415926535) for iom in range(n_om): DOSproj[ish][bname][iom] += gf.data[iom,:,:].imag.trace()/numpy.pi
DOSproj_orb[ish][bname][:,:,:] += gf.data[:,:,:].imag / (-3.1415926535) DOSproj_orb[ish][bname][:,:,:] += gf.data[:,:,:].imag/numpy.pi
# Write to files
if mpi.is_master_node(): if save_to_file and mpi.is_master_node():
# output to files
for sp in self.spin_block_names[self.SO]: for sp in self.spin_block_names[self.SO]:
f=open('./DOScorr%s.dat'%sp, 'w') f = open('DOS_parproj_%s.dat'%sp, 'w')
for i in range(n_om): f.write("%s %s\n"%(mesh[i],DOS[sp][i])) for iom in range(n_om): f.write("%s %s\n"%(om_mesh[iom],DOS[sp][i]))
f.close() f.close()
# partial # Partial
for ish in range(self.n_shells): for ish in range(self.n_shells):
f=open('DOScorr%s_proj%s.dat'%(sp,ish),'w') f = open('DOS_parproj_%s_proj%s.dat'%(sp,ish),'w')
for i in range(n_om): f.write("%s %s\n"%(mesh[i],DOSproj[ish][sp][i])) for iom in range(n_om): f.write("%s %s\n"%(om_mesh[iom],DOSproj[ish][sp][i]))
f.close() f.close()
# Orbitally-resolved
for i in range(self.shells[ish]['dim']): for i in range(self.shells[ish]['dim']):
for j in range(i,self.shells[ish]['dim']): for j in range(i,self.shells[ish]['dim']):
Fname = './DOScorr'+sp+'_proj'+str(ish)+'_'+str(i)+'_'+str(j)+'.dat' f = open('DOS_parproj_'+sp+'_proj'+str(ish)+'_'+str(i)+'_'+str(j)+'.dat','w')
f=open(Fname,'w') for iom in range(n_om): f.write("%s %s\n"%(om_mesh[iom],DOSproj_orb[ish][sp][iom,i,j]))
for iom in range(n_om): f.write("%s %s\n"%(mesh[iom],DOSproj_orb[ish][sp][iom,i,j]))
f.close() f.close()
return DOS, DOSproj, DOSproj_orb
def spaghettis(self,broadening,shift=0.0,plot_range=None, ishell=None, invert_Akw=False, fermi_surface=False):
def spaghettis(self,broadening,plot_shift=0.0,plot_range=None,ishell=None,invert_Akw=False,fermi_surface=False,mu=None,save_to_file=True):
""" Calculates the correlated band structure with a real-frequency self energy.""" """ Calculates the correlated band structure with a real-frequency self energy."""
assert hasattr(self,"Sigma_imp_w"), "spaghettis: Set Sigma_imp_w first." assert hasattr(self,"Sigma_imp_w"), "spaghettis: Set Sigma_imp_w first."
things_to_read = ['n_k','n_orbitals','proj_mat','hopping','n_parproj','proj_mat_all'] things_to_read = ['n_k','n_orbitals','proj_mat','hopping','n_parproj','proj_mat_all']
value_read = self.read_input_from_hdf(subgrp=self.bands_data,things_to_read=things_to_read) value_read = self.read_input_from_hdf(subgrp=self.bands_data,things_to_read=things_to_read)
if not value_read: return value_read if not value_read: return value_read
things_to_read = ['rot_mat_all','rot_mat_all_time_inv']
value_read = self.read_input_from_hdf(subgrp=self.parproj_data,things_to_read = things_to_read)
if not value_read: return value_read
if fermi_surface: ishell=None if mu is None: mu = self.chemical_potential
# FIXME CAN REMOVE?
# print hamiltonian for checks:
#=========================================
# calculate A(k,w):
mu = self.chemical_potential
spn = self.spin_block_names[self.SO] spn = self.spin_block_names[self.SO]
# init DOS:
mesh = [x.real for x in self.Sigma_imp_w[0].mesh] mesh = [x.real for x in self.Sigma_imp_w[0].mesh]
n_om = len(mesh) n_om = len(mesh)
if plot_range is None: if plot_range is None:
om_minplot = mesh[0]-0.001 om_minplot = mesh[0] - 0.001
om_maxplot = mesh[n_om-1] + 0.001 om_maxplot = mesh[n_om-1] + 0.001
else: else:
om_minplot = plot_range[0] om_minplot = plot_range[0]
om_maxplot = plot_range[1] om_maxplot = plot_range[1]
if ishell is None: if ishell is None:
Akw = {} Akw = { sp: numpy.zeros([self.n_k,n_om],numpy.float_) for sp in spn }
for sp in spn: Akw[sp] = numpy.zeros([self.n_k, n_om ],numpy.float_)
else: else:
Akw = {} Akw = { sp: numpy.zeros([self.shells[ishell]['dim'],self.n_k,n_om],numpy.float_) for sp in spn }
for sp in spn: Akw[sp] = numpy.zeros([self.shells[ishell]['dim'],self.n_k, n_om ],numpy.float_)
if fermi_surface: if fermi_surface:
ishell = None
Akw = { sp: numpy.zeros([self.n_k,1],numpy.float_) for sp in spn }
om_minplot = -2.0*broadening om_minplot = -2.0*broadening
om_maxplot = 2.0*broadening om_maxplot = 2.0*broadening
Akw = {}
for sp in spn: Akw[sp] = numpy.zeros([self.n_k,1],numpy.float_)
if not ishell is None: if not ishell is None:
GFStruct_proj = [ (sp, range(self.shells[ishell]['dim'])) for sp in spn ] gf_struct_parproj = [ (sp, range(self.shells[ishell]['dim'])) for sp in spn ]
Gproj = BlockGf(name_block_generator = [ (block,GfReFreq(indices = inner, mesh = self.Sigma_imp_w[0].mesh)) for block,inner in GFStruct_proj ], make_copies = False) G_loc = BlockGf(name_block_generator = [ (block,GfReFreq(indices = inner, mesh = self.Sigma_imp_w[0].mesh))
Gproj.zero() for block,inner in gf_struct_parproj ], make_copies = False)
G_loc.zero()
for ik in range(self.n_k): for ik in range(self.n_k):
G_latt_w = self.lattice_gf(ik=ik,mu=mu,iw_or_w="w",broadening=broadening) G_latt_w = self.lattice_gf(ik=ik,mu=mu,iw_or_w="w",broadening=broadening)
if ishell is None: if ishell is None:
# non-projected A(k,w) # Non-projected A(k,w)
for iom in range(n_om): for iom in range(n_om):
if (mesh[iom] > om_minplot) and (mesh[iom] < om_maxplot): if (mesh[iom] > om_minplot) and (mesh[iom] < om_maxplot):
if fermi_surface: if fermi_surface:
for bname,gf in G_latt_w: Akw[bname][ik,0] += gf.data[iom,:,:].imag.trace()/(-3.1415926535) * (mesh[1]-mesh[0]) for bname,gf in G_latt_w: Akw[bname][ik,0] += gf.data[iom,:,:].imag.trace()/(-1.0*numpy.pi) * (mesh[1]-mesh[0])
else: else:
for bname,gf in G_latt_w: Akw[bname][ik,iom] += gf.data[iom,:,:].imag.trace()/(-3.1415926535) for bname,gf in G_latt_w: Akw[bname][ik,iom] += gf.data[iom,:,:].imag.trace()/(-1.0*numpy.pi)
Akw[bname][ik,iom] += ik*shift # shift Akw for plotting in xmgrace -- REMOVE Akw[bname][ik,iom] += ik*plot_shift # shift Akw for plotting stacked k-resolved eps(k) curves
if invert_Akw:
for sp in spn: # loop over GF blocs:
maxAkw = Akw[sp].max()
minAkw = Akw[sp].min()
if fermi_surface:
Akw[sp][ik,0] = 1.0/(minAkw-maxAkw)*(Akw[sp][ik,0] - maxAkw)
else:
for iom in range(n_om):
if (mesh[iom] > om_minplot) and (mesh[iom] < om_maxplot):
Akw[sp][ik,iom] = 1.0/(minAkw-maxAkw)*(Akw[sp][ik,iom] - maxAkw)
else: else: # ishell not None
# projected A(k,w): # Projected A(k,w):
Gproj.zero() G_loc.zero()
tmp = Gproj.copy() tmp = G_loc.copy()
for ir in range(self.n_parproj[ishell]): for ir in range(self.n_parproj[ishell]):
for bname,gf in tmp: tmp[bname] << self.downfold(ik,ishell,bname,G_latt_w[bname],gf,shells='all',ir=ir) for bname,gf in tmp: tmp[bname] << self.downfold(ik,ishell,bname,G_latt_w[bname],gf,shells='all',ir=ir)
Gproj += tmp G_loc += tmp
# FIXME NEED TO READ IN ROTMAT_ALL FROM PARPROJ SUBGROUP, REPLACE ROTLOC WITH ROTLOC_ALL # Rotate to local frame
# TO BE FIXED: if self.use_rotations:
# rotate to local frame for bname,gf in G_loc: G_loc[bname] << self.rotloc(ishell,gf,direction='toLocal',shells='all')
#if (self.use_rotations):
# for bname,gf in Gproj: Gproj[bname] << self.rotloc(0,gf,direction='toLocal')
for iom in range(n_om): for iom in range(n_om):
if (mesh[iom] > om_minplot) and (mesh[iom] < om_maxplot): if (mesh[iom] > om_minplot) and (mesh[iom] < om_maxplot):
for ish in range(self.shells[ishell]['dim']): for ish in range(self.shells[ishell]['dim']):
for ibn in spn: for sp in spn:
Akw[ibn][ish,ik,iom] = Gproj[ibn].data[iom,ish,ish].imag/(-3.1415926535) Akw[sp][ish,ik,iom] = G_loc[sp].data[iom,ish,ish].imag/(-1.0*numpy.pi)
if invert_Akw:
for sp in spn:
for ish in range(self.shells[ishell]['dim']):
maxAkw=Akw[sp][ish,:,:].max()
minAkw=Akw[sp][ish,:,:].min()
for iom in range(n_om):
if (mesh[iom] > om_minplot) and (mesh[iom] < om_maxplot):
Akw[sp][ish,ik,iom] = 1.0/(minAkw-maxAkw)*(Akw[sp][ish,ik,iom] - maxAkw)
# END k-LOOP if save_to_file and mpi.is_master_node():
if mpi.is_master_node():
if ishell is None: if ishell is None:
for sp in spn: # loop over GF blocs:
for ibn in spn: # Open file for storage:
# loop over GF blocs:
if invert_Akw:
maxAkw=Akw[ibn].max()
minAkw=Akw[ibn].min()
# open file for storage:
if fermi_surface: if fermi_surface:
f=open('FS_'+ibn+'.dat','w') f = open('FS_'+sp+'.dat','w')
else: else:
f=open('Akw_'+ibn+'.dat','w') f = open('Akw_'+sp+'.dat','w')
for ik in range(self.n_k): for ik in range(self.n_k):
if fermi_surface: if fermi_surface:
if invert_Akw: f.write('%s %s\n'%(ik,Akw[sp][ik,0]))
Akw[ibn][ik,0] = 1.0/(minAkw-maxAkw)*(Akw[ibn][ik,0] - maxAkw)
f.write('%s %s\n'%(ik,Akw[ibn][ik,0]))
else: else:
for iom in range(n_om): for iom in range(n_om):
if (mesh[iom] > om_minplot) and (mesh[iom] < om_maxplot): if (mesh[iom] > om_minplot) and (mesh[iom] < om_maxplot):
if invert_Akw: if plot_shift > 0.0001:
Akw[ibn][ik,iom] = 1.0/(minAkw-maxAkw)*(Akw[ibn][ik,iom] - maxAkw) f.write('%s %s\n'%(mesh[iom],Akw[sp][ik,iom]))
if shift > 0.0001:
f.write('%s %s\n'%(mesh[iom],Akw[ibn][ik,iom]))
else: else:
f.write('%s %s %s\n'%(ik,mesh[iom],Akw[ibn][ik,iom])) f.write('%s %s %s\n'%(ik,mesh[iom],Akw[sp][ik,iom]))
f.write('\n') f.write('\n')
f.close() f.close()
else: else: # ishell is not None
for ibn in spn: for sp in spn:
for ish in range(self.shells[ishell]['dim']): for ish in range(self.shells[ishell]['dim']):
if invert_Akw: f = open('Akw_'+sp+'_proj'+str(ish)+'.dat','w')
maxAkw=Akw[ibn][ish,:,:].max()
minAkw=Akw[ibn][ish,:,:].min()
f=open('Akw_'+ibn+'_proj'+str(ish)+'.dat','w')
for ik in range(self.n_k): for ik in range(self.n_k):
for iom in range(n_om): for iom in range(n_om):
if (mesh[iom] > om_minplot) and (mesh[iom] < om_maxplot): if (mesh[iom] > om_minplot) and (mesh[iom] < om_maxplot):
if invert_Akw: if plot_shift > 0.0001:
Akw[ibn][ish,ik,iom] = 1.0/(minAkw-maxAkw)*(Akw[ibn][ish,ik,iom] - maxAkw) f.write('%s %s\n'%(mesh[iom],Akw[sp][ish,ik,iom]))
if shift > 0.0001:
f.write('%s %s\n'%(mesh[iom],Akw[ibn][ish,ik,iom]))
else: else:
f.write('%s %s %s\n'%(ik,mesh[iom],Akw[ibn][ish,ik,iom])) f.write('%s %s %s\n'%(ik,mesh[iom],Akw[sp][ish,ik,iom]))
f.write('\n') f.write('\n')
f.close() f.close()
return Akw
def partial_charges(self,beta=40): def partial_charges(self,beta=40,mu=None,with_Sigma=True,with_dc=True):
"""Calculates the orbitally-resolved density matrix for all the orbitals considered in the input. """Calculates the orbitally-resolved density matrix for all the orbitals considered in the input.
The theta-projectors are used, hence case.parproj data is necessary""" The theta-projectors are used, hence case.parproj data is necessary"""
value_read = self.read_parproj_input_from_hdf() things_to_read = ['dens_mat_below','n_parproj','proj_mat_all','rot_mat_all','rot_mat_all_time_inv']
value_read = self.read_input_from_hdf(subgrp=self.parproj_data,things_to_read = things_to_read)
if not value_read: return value_read if not value_read: return value_read
if self.symm_op: self.symmpar = Symmetry(self.hdf_file,subgroup=self.symmpar_data) if self.symm_op: self.symmpar = Symmetry(self.hdf_file,subgroup=self.symmpar_data)
# Density matrix in the window
spn = self.spin_block_names[self.SO] spn = self.spin_block_names[self.SO]
ntoi = self.spin_names_to_ind[self.SO] ntoi = self.spin_names_to_ind[self.SO]
self.dens_mat_window = [ [numpy.zeros([self.shells[ish]['dim'],self.shells[ish]['dim']],numpy.complex_) for ish in range(self.n_shells)] # Density matrix in the window
for isp in range(len(spn)) ] # init the density matrix self.dens_mat_window = [ [ numpy.zeros([self.shells[ish]['dim'],self.shells[ish]['dim']],numpy.complex_)
for ish in range(self.n_shells) ]
mu = self.chemical_potential for isp in range(len(spn)) ]
GFStruct_proj = [ [ (sp, range(self.shells[i]['dim'])) for sp in spn ] for i in range(self.n_shells) ] # Set up G_loc
if hasattr(self,"Sigma_imp_iw"): gf_struct_parproj = [ [ (sp, range(self.shells[ish]['dim'])) for sp in spn ]
Gproj = [BlockGf(name_block_generator = [ (block,GfImFreq(indices = inner, mesh = self.Sigma_imp_iw[0].mesh)) for block,inner in GFStruct_proj[ish] ], make_copies = False) for ish in range(self.n_shells) ]
if with_Sigma:
G_loc = [ BlockGf(name_block_generator = [ (block,GfImFreq(indices = inner, mesh = self.Sigma_imp_iw[0].mesh))
for block,inner in gf_struct_parproj[ish] ], make_copies = False)
for ish in range(self.n_shells)] for ish in range(self.n_shells)]
beta = self.Sigma_imp_iw[0].mesh.beta beta = self.Sigma_imp_iw[0].mesh.beta
else: else:
Gproj = [BlockGf(name_block_generator = [ (block,GfImFreq(indices = inner, beta = beta)) for block,inner in GFStruct_proj[ish] ], make_copies = False) G_loc = [ BlockGf(name_block_generator = [ (block,GfImFreq(indices = inner, beta = beta))
for block,inner in gf_struct_parproj[ish] ], make_copies = False)
for ish in range(self.n_shells)] for ish in range(self.n_shells)]
for ish in range(self.n_shells): G_loc[ish].zero()
for ish in range(self.n_shells): Gproj[ish].zero() ikarray = numpy.array(range(self.n_k))
ikarray=numpy.array(range(self.n_k))
for ik in mpi.slice_array(ikarray): for ik in mpi.slice_array(ikarray):
G_latt_iw = self.lattice_gf(ik=ik,mu=mu,iw_or_w="iw",beta=beta)
G_latt_iw *= self.bz_weights[ik]
G_latt_iw = self.lattice_gf(ik=ik,mu=mu,iw_or_w="iw",beta=beta,with_Sigma=with_Sigma,with_dc=with_dc)
G_latt_iw *= self.bz_weights[ik]
for ish in range(self.n_shells): for ish in range(self.n_shells):
tmp = Gproj[ish].copy() tmp = G_loc[ish].copy()
for ir in range(self.n_parproj[ish]): for ir in range(self.n_parproj[ish]):
for bname,gf in tmp: tmp[bname] << self.downfold(ik,ish,bname,G_latt_iw[bname],gf,shells='all',ir=ir) for bname,gf in tmp: tmp[bname] << self.downfold(ik,ish,bname,G_latt_iw[bname],gf,shells='all',ir=ir)
Gproj[ish] += tmp G_loc[ish] += tmp
#collect data from mpi: # Collect data from mpi:
for ish in range(self.n_shells): for ish in range(self.n_shells):
Gproj[ish] << mpi.all_reduce(mpi.world, Gproj[ish], lambda x,y : x+y) G_loc[ish] << mpi.all_reduce(mpi.world, G_loc[ish], lambda x,y : x+y)
mpi.barrier() mpi.barrier()
# Symmetrize and rotate to local coord. system if needed:
# Symmetrisation: if self.symm_op != 0: G_loc = self.symmpar.symmetrize(G_loc)
if self.symm_op != 0: Gproj = self.symmpar.symmetrize(Gproj) if self.use_rotations:
for ish in range(self.n_shells):
for bname,gf in G_loc[ish]: G_loc[ish][bname] << self.rotloc(ish,gf,direction='toLocal',shells='all')
for ish in range(self.n_shells): for ish in range(self.n_shells):
# Rotation to local:
if self.use_rotations:
for bname,gf in Gproj[ish]: Gproj[ish][bname] << self.rotloc(ish,gf,direction='toLocal',shells='all')
isp = 0 isp = 0
for bname,gf in Gproj[ish]: #dmg.append(Gproj[ish].density()[bname]) for bname,gf in G_loc[ish]:
self.dens_mat_window[isp][ish] = Gproj[ish].density()[bname] self.dens_mat_window[isp][ish] = G_loc[ish].density()[bname]
isp+=1 isp += 1
# add Density matrices to get the total: # Add density matrices to get the total:
dens_mat = [ [ self.dens_mat_below[ntoi[spn[isp]]][ish]+self.dens_mat_window[isp][ish] for ish in range(self.n_shells)] dens_mat = [ [ self.dens_mat_below[ntoi[spn[isp]]][ish] + self.dens_mat_window[isp][ish]
for ish in range(self.n_shells) ]
for isp in range(len(spn)) ] for isp in range(len(spn)) ]
return dens_mat return dens_mat
@ -429,9 +430,8 @@ class SumkDFTTools(SumkDFT):
def print_hamiltonian(self): def print_hamiltonian(self):
""" Print Hamiltonian for checks.""" """ Print Hamiltonian for checks."""
if self.SP == 1 and self.SO == 0: if self.SP == 1 and self.SO == 0:
f1=open('hamup.dat','w') f1 = open('hamup.dat','w')
f2=open('hamdn.dat','w') f2 = open('hamdn.dat','w')
for ik in range(self.n_k): for ik in range(self.n_k):
for i in range(self.n_orbitals[ik,0]): for i in range(self.n_orbitals[ik,0]):
f1.write('%s %s\n'%(ik,self.hopping[ik,0,i,i].real)) f1.write('%s %s\n'%(ik,self.hopping[ik,0,i,i].real))
@ -442,7 +442,7 @@ class SumkDFTTools(SumkDFT):
f1.close() f1.close()
f2.close() f2.close()
else: else:
f=open('ham.dat','w') f = open('ham.dat','w')
for ik in range(self.n_k): for ik in range(self.n_k):
for i in range(self.n_orbitals[ik,0]): for i in range(self.n_orbitals[ik,0]):
f.write('%s %s\n'%(ik,self.hopping[ik,0,i,i].real)) f.write('%s %s\n'%(ik,self.hopping[ik,0,i,i].real))
@ -668,4 +668,3 @@ class SumkDFTTools(SumkDFT):
fermi distribution at x = omega * beta fermi distribution at x = omega * beta
""" """
return 1.0/(numpy.exp(x)+1) return 1.0/(numpy.exp(x)+1)

View File

@ -27,7 +27,7 @@ from pytriqs.applications.dft.sumk_dft_tools import SumkDFTTools
SK = SumkDFTTools(hdf_file = 'SrVO3.h5') SK = SumkDFTTools(hdf_file = 'SrVO3.h5')
dm = SK.density_matrix(method = 'using_gf', beta = 40) dm = SK.density_matrix(method = 'using_gf', beta = 40)
dm_pc = SK.partial_charges(40) dm_pc = SK.partial_charges(beta=40,with_Sigma=False,with_dc=False)
ar = HDFArchive('sumkdft_basic.output.h5','w') ar = HDFArchive('sumkdft_basic.output.h5','w')
ar['dm'] = dm ar['dm'] = dm