mirror of
https://github.com/triqs/dft_tools
synced 2025-01-02 17:45:47 +01:00
new version of single-shot dft+dmft
This commit is contained in:
parent
a7cc27cab3
commit
6fff56fe8d
@ -5,11 +5,10 @@
|
||||
Single-shot DFT+DMFT
|
||||
====================
|
||||
|
||||
.. warning::
|
||||
TO BE UPDATED!
|
||||
|
||||
After having set up the hdf5 archive, we can now do our DFT+DMFT calculation. It consists of
|
||||
initialisation steps, and the actual DMFT self consistency loop.
|
||||
initialization steps, and the actual DMFT self-consistency loop, as is
|
||||
discussed below.
|
||||
|
||||
Initialisation of the calculation
|
||||
---------------------------------
|
||||
@ -25,15 +24,27 @@ to get the local quantities used in DMFT. It is initialized by::
|
||||
Setting up the impurity solver
|
||||
------------------------------
|
||||
|
||||
The next step is to setup the impurity solver.
|
||||
For more details here, see the `CTHYB <http://ipht.cea.fr/triqs/1.2/applications/cthyb/>`_ documentation.
|
||||
The next step is to setup an impurity solver. There are different
|
||||
solvers available within the TRIQS framework. Below, we will discuss
|
||||
the example of the hybridisation
|
||||
expansion :ref:`CTHYB solver <triqscthyb:welcome>`. Later on, we will
|
||||
see also the example of the Hubbard-I solver. They all have in common,
|
||||
that they are called by a uniform command::
|
||||
|
||||
S.solve(params)
|
||||
|
||||
where `params` are the solver parameters and depend on the actual
|
||||
solver that is used. Before going into the details of the solver, let
|
||||
us discuss in the next section how to perform the DMFT loop using
|
||||
the methods of :program:`dft_tools`, assuming that we have set up a
|
||||
working solver instance.
|
||||
|
||||
|
||||
Doing the DMFT loop
|
||||
-------------------
|
||||
|
||||
Having initialised the SumK class and the Solver, we can proceed with the DMFT
|
||||
loop itself. As explained in the tutorial, we have to set up the loop over DMFT
|
||||
Having initialized the SumK class and the Solver, we can proceed with the DMFT
|
||||
loop itself. We have to set up the loop over DMFT
|
||||
iterations and the self-consistency condition::
|
||||
|
||||
n_loops = 5
|
||||
@ -47,13 +58,18 @@ iterations and the self-consistency condition::
|
||||
S.solve(h_int=h_int, **p) # now solve the impurity problem
|
||||
|
||||
dm = S.G_iw.density() # Density matrix of the impurity problem
|
||||
SK.calc_dc(dm, U_interact=U, J_hund=J, orb=0, use_dc_formula=dc_type) # Set the double counting term
|
||||
SK.calc_dc(dm, U_interact=U, J_hund=J, orb=0, use_dc_formula=1) # Set the double counting term
|
||||
SK.save(['chemical_potential','dc_imp','dc_energ']) # Save data in the hdf5 archive
|
||||
|
||||
These basic steps are enough to set up the basic DMFT Loop. For a detailed
|
||||
description of the :class:`SumkDFT` routines, see the reference manual. After
|
||||
the self-consistency steps, the solution of the Anderson impurity problem is
|
||||
calculation by CTQMC. Different to model calculations, we have to do a few
|
||||
description of the :class:`SumkDFT` routines, see the reference
|
||||
manual.
|
||||
|
||||
After
|
||||
the self-consistency steps (extracting a new :math:`G^0(i\omega)`),
|
||||
the Anderson impurity problem is solved.
|
||||
|
||||
Different to model calculations, we have to do a few
|
||||
more steps after this, because of the double-counting correction. We first
|
||||
calculate the density of the impurity problem. Then, the routine `calc_dc`
|
||||
takes as parameters this density matrix, the Coulomb interaction, Hund's rule
|
||||
@ -80,11 +96,21 @@ For full charge-self consistent calculations, there are some more things
|
||||
to consider, which we will see later on.
|
||||
|
||||
|
||||
A more advanced example
|
||||
-----------------------
|
||||
A full DFT+DMFT calculation
|
||||
---------------------------
|
||||
|
||||
We will discuss now how to set up a full working calculation,
|
||||
including setting up the CTHYB solver, and specifying some more parameters
|
||||
in order to make the calculation more efficient. Here, we
|
||||
will see a more advanced example, which is also suited for parallel
|
||||
execution. For the convenience of the user, we provide also two
|
||||
working python scripts in this documentation. One for a calculation
|
||||
using Kanamori definitions (:download:`dft_dmft_cthyb.py
|
||||
<images_scripts/dft_dmft_cthyb.py>`) and one with a
|
||||
rotational-invariant Slater interaction hamiltonian (:download:`dft_dmft_cthyb_slater.py
|
||||
<images_scripts/dft_dmft_cthyb.py>`). The user has to adapt these
|
||||
scripts to his own needs.
|
||||
|
||||
Normally, one wants to adjust some more parameters in order to make the calculation more efficient. Here, we
|
||||
will see a more advanced example, which is also suited for parallel execution.
|
||||
First, we load the necessary modules::
|
||||
|
||||
from pytriqs.applications.dft.sumk_dft import *
|
||||
@ -94,16 +120,17 @@ First, we load the necessary modules::
|
||||
from pytriqs.operators.util import *
|
||||
from pytriqs.applications.impurity_solvers.cthyb import *
|
||||
|
||||
The last two lines load the modules for the construction of the CTHYB
|
||||
solver.
|
||||
|
||||
Then we define some parameters::
|
||||
|
||||
dft_filename='srvo3'
|
||||
U = 2.7
|
||||
dft_filename='SrVO3'
|
||||
U = 4.0
|
||||
J = 0.65
|
||||
beta = 40
|
||||
loops = 10 # Number of DMFT sc-loops
|
||||
sigma_mix = 0.8 # Mixing factor of Sigma after solution of the AIM
|
||||
delta_mix = 1.0 # Mixing factor of Delta as input for the AIM
|
||||
dc_type = 1 # DC type: 0 FLL, 1 Held, 2 AMF
|
||||
use_blocks = True # use bloc structure from DFT input
|
||||
prec_mu = 0.0001
|
||||
@ -114,7 +141,11 @@ Then we define some parameters::
|
||||
p["n_warmup_cycles"] = 2000
|
||||
p["n_cycles"] = 20000
|
||||
|
||||
Most of these parameters are self-explanatory. The first, `dft_filename`, gives the filename of the input files.
|
||||
Most of these parameters are self-explanatory. The first,
|
||||
`dft_filename`, gives the filename of the input files. For more
|
||||
details on the solver parameters, we refer the user to
|
||||
the :ref:`CTHYB solver <triqscthyb:welcome>` documentation.
|
||||
|
||||
The next step, as described in the previous section, is to convert the input files::
|
||||
|
||||
Converter = Wien2kConverter(filename=dft_filename, repacking=True)
|
||||
@ -140,24 +171,57 @@ from scratch::
|
||||
previous_runs = mpi.bcast(previous_runs)
|
||||
previous_present = mpi.bcast(previous_present)
|
||||
|
||||
|
||||
You can see in this code snipet, that all results of this calculation
|
||||
will be stored in a separate subgroup in the hdf file, called
|
||||
`dmft_output`. Removing this subgroup allows you to reset your
|
||||
calculation to the starting point easily.
|
||||
|
||||
Now we can use all this information to initialise the :class:`SumkDFT` class::
|
||||
|
||||
SK = SumkDFT(hdf_file=dft_filename+'.h5',use_dft_blocks=use_blocks)
|
||||
|
||||
The next step is to initialise the :class:`Solver` class::
|
||||
The next step is to initialise the :class:`Solver` class. It consist
|
||||
of two steps
|
||||
|
||||
#. Calculating the multi-band interaction matrix, and setting up the
|
||||
interaction hamiltonian
|
||||
#. Setting up the solver class
|
||||
|
||||
The first step is done using methods of
|
||||
the :ref:`TRIQS <triqslibs:welcome>` library::
|
||||
|
||||
n_orb = SK.corr_shells[0]['dim']
|
||||
l = SK.corr_shells[0]['l']
|
||||
spin_names = ["up","down"]
|
||||
orb_names = [i for i in range(n_orb)]
|
||||
# Use GF structure determined by DFT blocks
|
||||
# Use GF structure determined by DFT blocks:
|
||||
gf_struct = SK.gf_struct_solver[0]
|
||||
# Construct U matrix for density-density calculations
|
||||
# Construct U matrix for density-density calculations:
|
||||
Umat, Upmat = U_matrix_kanamori(n_orb=n_orb, U_int=U, J_hund=J)
|
||||
# Construct Hamiltonian and solver
|
||||
h_int = h_int_density(spin_names, orb_names, map_operator_structure=SK.sumk_to_solver[0], U=Umat, Uprime=Upmat, H_dump="H.txt")
|
||||
|
||||
We assumed here that we want to use an interaction matrix with
|
||||
Kanamori definitions of :math:`U` and :math:`J`. For
|
||||
other choices (Slater interaction matrix for instance), and other
|
||||
parameters, we refer to the reference manual
|
||||
of the :ref:`TRIQS <triqslibs:welcome>` library.
|
||||
|
||||
Next, we construct the hamiltonian and the solver::
|
||||
|
||||
h_int = h_int_density(spin_names, orb_names, map_operator_structure=SK.sumk_to_solver[0], U=Umat, Uprime=Upmat)
|
||||
S = Solver(beta=beta, gf_struct=gf_struct)
|
||||
|
||||
As you see, we take only density-density interactions into
|
||||
account. Other choices for the hamiltonian are
|
||||
|
||||
* h_int_kanamori
|
||||
* h_int_slater
|
||||
|
||||
These two include full rotational invariant interactions. Again,
|
||||
options can be found in the :ref:`TRIQS <triqslibs:welcome>` library
|
||||
reference manual.
|
||||
|
||||
|
||||
If there are previous runs stored in the hdf5 archive, we can now load the self energy
|
||||
of the last iteration::
|
||||
|
||||
@ -174,7 +238,7 @@ last saved chemical potential and double counting values are read in and set.
|
||||
|
||||
Now we can go to the definition of the self-consistency step. It consists again
|
||||
of the basic steps discussed in the previous section, with some additional
|
||||
refinement::
|
||||
refinements::
|
||||
|
||||
for iteration_number in range(1,loops+1):
|
||||
if mpi.is_master_node(): print "Iteration = ", iteration_number
|
||||
@ -192,24 +256,13 @@ refinement::
|
||||
S.Sigma_iw << SK.dc_imp[0]['up'][0,0]
|
||||
|
||||
# Calculate new G0_iw to input into the solver:
|
||||
if mpi.is_master_node():
|
||||
# We can do a mixing of Delta in order to stabilize the DMFT iterations:
|
||||
S.G0_iw << S.Sigma_iw + inverse(S.G_iw)
|
||||
ar = HDFArchive(dft_filename+'.h5','a')['dmft_output']
|
||||
if (iteration_number>1 or previous_present):
|
||||
mpi.report("Mixing input Delta with factor %s"%delta_mix)
|
||||
Delta = (delta_mix * delta(S.G0_iw)) + (1.0-delta_mix) * ar['Delta_iw']
|
||||
S.G0_iw << S.G0_iw + delta(S.G0_iw) - Delta
|
||||
ar['Delta_iw'] = delta(S.G0_iw)
|
||||
S.G0_iw << inverse(S.G0_iw)
|
||||
del ar
|
||||
|
||||
S.G0_iw << mpi.bcast(S.G0_iw)
|
||||
|
||||
# Solve the impurity problem:
|
||||
S.solve(h_int=h_int, **p)
|
||||
|
||||
# Solved. Now do post-processing:
|
||||
# Solved. Now do post-solution stuff:
|
||||
mpi.report("Total charge of impurity problem : %.6f"%S.G_iw.total_density())
|
||||
|
||||
# Now mix Sigma and G with factor sigma_mix, if wanted:
|
||||
|
149
doc/guide/images_scripts/dft_dmft_cthyb.py
Normal file
149
doc/guide/images_scripts/dft_dmft_cthyb.py
Normal file
@ -0,0 +1,149 @@
|
||||
import pytriqs.utility.mpi as mpi
|
||||
from pytriqs.operators.util import *
|
||||
from pytriqs.archive import HDFArchive
|
||||
from pytriqs.applications.impurity_solvers.cthyb import *
|
||||
from pytriqs.gf.local import *
|
||||
from pytriqs.applications.dft.sumk_dft import *
|
||||
from pytriqs.applications.dft.converters.wien2k_converter import *
|
||||
|
||||
dft_filename='SrVO3'
|
||||
U = U.0
|
||||
J = 0.65
|
||||
beta = 40
|
||||
loops = 10 # Number of DMFT sc-loops
|
||||
sigma_mix = 1.0 # Mixing factor of Sigma after solution of the AIM
|
||||
delta_mix = 1.0 # Mixing factor of Delta as input for the AIM
|
||||
dc_type = 1 # DC type: 0 FLL, 1 Held, 2 AMF
|
||||
use_blocks = True # use bloc structure from DFT input
|
||||
prec_mu = 0.0001
|
||||
h_field = 0.0
|
||||
|
||||
# Solver parameters
|
||||
p = {}
|
||||
p["max_time"] = -1
|
||||
p["length_cycle"] = 50
|
||||
p["n_warmup_cycles"] = 50
|
||||
p["n_cycles"] = 5000
|
||||
|
||||
Converter = Wien2kConverter(filename=dft_filename, repacking=True)
|
||||
Converter.convert_dft_input()
|
||||
mpi.barrier()
|
||||
|
||||
previous_runs = 0
|
||||
previous_present = False
|
||||
if mpi.is_master_node():
|
||||
f = HDFArchive(dft_filename+'.h5','a')
|
||||
if 'dmft_output' in f:
|
||||
ar = f['dmft_output']
|
||||
if 'iterations' in ar:
|
||||
previous_present = True
|
||||
previous_runs = ar['iterations']
|
||||
else:
|
||||
f.create_group('dmft_output')
|
||||
del f
|
||||
previous_runs = mpi.bcast(previous_runs)
|
||||
previous_present = mpi.bcast(previous_present)
|
||||
|
||||
SK=SumkDFT(hdf_file=dft_filename+'.h5',use_dft_blocks=use_blocks,h_field=h_field)
|
||||
|
||||
n_orb = SK.corr_shells[0]['dim']
|
||||
l = SK.corr_shells[0]['l']
|
||||
spin_names = ["up","down"]
|
||||
orb_names = [i for i in range(n_orb)]
|
||||
|
||||
# Use GF structure determined by DFT blocks
|
||||
gf_struct = SK.gf_struct_solver[0]
|
||||
|
||||
# Construct U matrix for density-density calculations
|
||||
Umat, Upmat = U_matrix_kanamori(n_orb=n_orb, U_int=U, J_hund=J)
|
||||
|
||||
# Construct density-density Hamiltonian and solver
|
||||
h_int = h_int_density(spin_names, orb_names, map_operator_structure=SK.sumk_to_solver[0], U=Umat, Uprime=Upmat, H_dump="H.txt")
|
||||
S = Solver(beta=beta, gf_struct=gf_struct)
|
||||
|
||||
if previous_present:
|
||||
chemical_potential = 0
|
||||
dc_imp = 0
|
||||
dc_energ = 0
|
||||
if mpi.is_master_node():
|
||||
S.Sigma_iw << HDFArchive(dft_filename+'.h5','a')['dmft_output']['Sigma_iw']
|
||||
chemical_potential,dc_imp,dc_energ = SK.load(['chemical_potential','dc_imp','dc_energ'])
|
||||
S.Sigma_iw << mpi.bcast(S.Sigma_iw)
|
||||
chemical_potential = mpi.bcast(chemical_potential)
|
||||
dc_imp = mpi.bcast(dc_imp)
|
||||
dc_energ = mpi.bcast(dc_energ)
|
||||
SK.set_mu(chemical_potential)
|
||||
SK.set_dc(dc_imp,dc_energ)
|
||||
|
||||
for iteration_number in range(1,loops+1):
|
||||
if mpi.is_master_node(): print "Iteration = ", iteration_number
|
||||
|
||||
SK.symm_deg_gf(S.Sigma_iw,orb=0) # symmetrise Sigma
|
||||
SK.put_Sigma(Sigma_imp = [ S.Sigma_iw ]) # put Sigma into the SumK class
|
||||
chemical_potential = SK.calc_mu( precision = prec_mu ) # find the chemical potential for given density
|
||||
S.G_iw << SK.extract_G_loc()[0] # calc the local Green function
|
||||
mpi.report("Total charge of Gloc : %.6f"%S.G_iw.total_density())
|
||||
|
||||
# Init the DC term and the real part of Sigma, if no previous runs found:
|
||||
if (iteration_number==1 and previous_present==False):
|
||||
dm = S.G_iw.density()
|
||||
SK.calc_dc(dm, U_interact = U, J_hund = J, orb = 0, use_dc_formula = dc_type)
|
||||
S.Sigma_iw << SK.dc_imp[0]['up'][0,0]
|
||||
|
||||
# Calculate new G0_iw to input into the solver:
|
||||
if mpi.is_master_node():
|
||||
# We can do a mixing of Delta in order to stabilize the DMFT iterations:
|
||||
S.G0_iw << S.Sigma_iw + inverse(S.G_iw)
|
||||
ar = HDFArchive(dft_filename+'.h5','a')['dmft_output']
|
||||
if (iteration_number>1 or previous_present):
|
||||
mpi.report("Mixing input Delta with factor %s"%delta_mix)
|
||||
Delta = (delta_mix * delta(S.G0_iw)) + (1.0-delta_mix) * ar['Delta_iw']
|
||||
S.G0_iw << S.G0_iw + delta(S.G0_iw) - Delta
|
||||
ar['Delta_iw'] = delta(S.G0_iw)
|
||||
S.G0_iw << inverse(S.G0_iw)
|
||||
del ar
|
||||
|
||||
S.G0_iw << mpi.bcast(S.G0_iw)
|
||||
|
||||
# Solve the impurity problem:
|
||||
S.solve(h_int=h_int, **p)
|
||||
|
||||
# Solved. Now do post-processing:
|
||||
mpi.report("Total charge of impurity problem : %.6f"%S.G_iw.total_density())
|
||||
|
||||
# Now mix Sigma and G with factor sigma_mix, if wanted:
|
||||
if (iteration_number>1 or previous_present):
|
||||
if mpi.is_master_node():
|
||||
ar = HDFArchive(dft_filename+'.h5','a')['dmft_output']
|
||||
mpi.report("Mixing Sigma and G with factor %s"%sigma_mix)
|
||||
S.Sigma_iw << sigma_mix * S.Sigma_iw + (1.0-sigma_mix) * ar['Sigma_iw']
|
||||
S.G_iw << sigma_mix * S.G_iw + (1.0-sigma_mix) * ar['G_iw']
|
||||
del ar
|
||||
S.G_iw << mpi.bcast(S.G_iw)
|
||||
S.Sigma_iw << mpi.bcast(S.Sigma_iw)
|
||||
|
||||
# Write the final Sigma and G to the hdf5 archive:
|
||||
if mpi.is_master_node():
|
||||
ar = HDFArchive(dft_filename+'.h5','a')['dmft_output']
|
||||
if previous_runs: iteration_number += previous_runs
|
||||
ar['iterations'] = iteration_number
|
||||
ar['G_tau'] = S.G_tau
|
||||
ar['G_iw'] = S.G_iw
|
||||
ar['Sigma_iw'] = S.Sigma_iw
|
||||
ar['G0-%s'%(iteration_number)] = S.G0_iw
|
||||
ar['G-%s'%(iteration_number)] = S.G_iw
|
||||
ar['Sigma-%s'%(iteration_number)] = S.Sigma_iw
|
||||
del ar
|
||||
|
||||
# Set the new double counting:
|
||||
dm = S.G_iw.density() # compute the density matrix of the impurity problem
|
||||
SK.calc_dc(dm, U_interact = U, J_hund = J, orb = 0, use_dc_formula = dc_type)
|
||||
|
||||
# Save stuff into the dft_output group of hdf5 archive in case of rerun:
|
||||
SK.save(['chemical_potential','dc_imp','dc_energ'])
|
||||
|
||||
if mpi.is_master_node():
|
||||
ar = HDFArchive("dftdmft.h5",'w')
|
||||
ar["G_tau"] = S.G_tau
|
||||
ar["G_iw"] = S.G_iw
|
||||
ar["Sigma_iw"] = S.Sigma_iw
|
149
doc/guide/images_scripts/dft_dmft_cthyb_slater.py
Normal file
149
doc/guide/images_scripts/dft_dmft_cthyb_slater.py
Normal file
@ -0,0 +1,149 @@
|
||||
import pytriqs.utility.mpi as mpi
|
||||
from pytriqs.operators.util import *
|
||||
from pytriqs.archive import HDFArchive
|
||||
from pytriqs.applications.impurity_solvers.cthyb import *
|
||||
from pytriqs.gf.local import *
|
||||
from pytriqs.applications.dft.sumk_dft import *
|
||||
from pytriqs.applications.dft.converters.wien2k_converter import *
|
||||
|
||||
dft_filename='Gd_fcc'
|
||||
U = 9.6
|
||||
J = 0.8
|
||||
beta = 40
|
||||
loops = 10 # Number of DMFT sc-loops
|
||||
sigma_mix = 1.0 # Mixing factor of Sigma after solution of the AIM
|
||||
delta_mix = 1.0 # Mixing factor of Delta as input for the AIM
|
||||
dc_type = 0 # DC type: 0 FLL, 1 Held, 2 AMF
|
||||
use_blocks = True # use bloc structure from DFT input
|
||||
prec_mu = 0.0001
|
||||
h_field = 0.0
|
||||
|
||||
# Solver parameters
|
||||
p = {}
|
||||
p["max_time"] = -1
|
||||
p["length_cycle"] = 50
|
||||
p["n_warmup_cycles"] = 50
|
||||
p["n_cycles"] = 5000
|
||||
|
||||
Converter = Wien2kConverter(filename=dft_filename, repacking=True)
|
||||
Converter.convert_dft_input()
|
||||
mpi.barrier()
|
||||
|
||||
previous_runs = 0
|
||||
previous_present = False
|
||||
if mpi.is_master_node():
|
||||
f = HDFArchive(dft_filename+'.h5','a')
|
||||
if 'dmft_output' in f:
|
||||
ar = f['dmft_output']
|
||||
if 'iterations' in ar:
|
||||
previous_present = True
|
||||
previous_runs = ar['iterations']
|
||||
else:
|
||||
f.create_group('dmft_output')
|
||||
del f
|
||||
previous_runs = mpi.bcast(previous_runs)
|
||||
previous_present = mpi.bcast(previous_present)
|
||||
|
||||
SK=SumkDFT(hdf_file=dft_filename+'.h5',use_dft_blocks=use_blocks,h_field=h_field)
|
||||
|
||||
n_orb = SK.corr_shells[0]['dim']
|
||||
l = SK.corr_shells[0]['l']
|
||||
spin_names = ["up","down"]
|
||||
orb_names = [i for i in range(n_orb)]
|
||||
|
||||
# Use GF structure determined by DFT blocks
|
||||
gf_struct = SK.gf_struct_solver[0]
|
||||
|
||||
# Construct Slater U matrix
|
||||
Umat = U_matrix(n_orb=n_orb, U_int=U, J_hund=J, basis='cubic',)
|
||||
|
||||
# Construct Hamiltonian and solver
|
||||
h_int = h_int_slater(spin_names, orb_names, map_operator_structure=SK.sumk_to_solver[0], U_matrix=Umat)
|
||||
S = Solver(beta=beta, gf_struct=gf_struct)
|
||||
|
||||
if previous_present:
|
||||
chemical_potential = 0
|
||||
dc_imp = 0
|
||||
dc_energ = 0
|
||||
if mpi.is_master_node():
|
||||
S.Sigma_iw << HDFArchive(dft_filename+'.h5','a')['dmft_output']['Sigma_iw']
|
||||
chemical_potential,dc_imp,dc_energ = SK.load(['chemical_potential','dc_imp','dc_energ'])
|
||||
S.Sigma_iw << mpi.bcast(S.Sigma_iw)
|
||||
chemical_potential = mpi.bcast(chemical_potential)
|
||||
dc_imp = mpi.bcast(dc_imp)
|
||||
dc_energ = mpi.bcast(dc_energ)
|
||||
SK.set_mu(chemical_potential)
|
||||
SK.set_dc(dc_imp,dc_energ)
|
||||
|
||||
for iteration_number in range(1,loops+1):
|
||||
if mpi.is_master_node(): print "Iteration = ", iteration_number
|
||||
|
||||
SK.symm_deg_gf(S.Sigma_iw,orb=0) # symmetrise Sigma
|
||||
SK.put_Sigma(Sigma_imp = [ S.Sigma_iw ]) # put Sigma into the SumK class
|
||||
chemical_potential = SK.calc_mu( precision = prec_mu ) # find the chemical potential for given density
|
||||
S.G_iw << SK.extract_G_loc()[0] # calc the local Green function
|
||||
mpi.report("Total charge of Gloc : %.6f"%S.G_iw.total_density())
|
||||
|
||||
# Init the DC term and the real part of Sigma, if no previous runs found:
|
||||
if (iteration_number==1 and previous_present==False):
|
||||
dm = S.G_iw.density()
|
||||
SK.calc_dc(dm, U_interact = U, J_hund = J, orb = 0, use_dc_formula = dc_type)
|
||||
S.Sigma_iw << SK.dc_imp[0]['up'][0,0]
|
||||
|
||||
# Calculate new G0_iw to input into the solver:
|
||||
if mpi.is_master_node():
|
||||
# We can do a mixing of Delta in order to stabilize the DMFT iterations:
|
||||
S.G0_iw << S.Sigma_iw + inverse(S.G_iw)
|
||||
ar = HDFArchive(dft_filename+'.h5','a')['dmft_output']
|
||||
if (iteration_number>1 or previous_present):
|
||||
mpi.report("Mixing input Delta with factor %s"%delta_mix)
|
||||
Delta = (delta_mix * delta(S.G0_iw)) + (1.0-delta_mix) * ar['Delta_iw']
|
||||
S.G0_iw << S.G0_iw + delta(S.G0_iw) - Delta
|
||||
ar['Delta_iw'] = delta(S.G0_iw)
|
||||
S.G0_iw << inverse(S.G0_iw)
|
||||
del ar
|
||||
|
||||
S.G0_iw << mpi.bcast(S.G0_iw)
|
||||
|
||||
# Solve the impurity problem:
|
||||
S.solve(h_int=h_int, **p)
|
||||
|
||||
# Solved. Now do post-processing:
|
||||
mpi.report("Total charge of impurity problem : %.6f"%S.G_iw.total_density())
|
||||
|
||||
# Now mix Sigma and G with factor sigma_mix, if wanted:
|
||||
if (iteration_number>1 or previous_present):
|
||||
if mpi.is_master_node():
|
||||
ar = HDFArchive(dft_filename+'.h5','a')['dmft_output']
|
||||
mpi.report("Mixing Sigma and G with factor %s"%sigma_mix)
|
||||
S.Sigma_iw << sigma_mix * S.Sigma_iw + (1.0-sigma_mix) * ar['Sigma_iw']
|
||||
S.G_iw << sigma_mix * S.G_iw + (1.0-sigma_mix) * ar['G_iw']
|
||||
del ar
|
||||
S.G_iw << mpi.bcast(S.G_iw)
|
||||
S.Sigma_iw << mpi.bcast(S.Sigma_iw)
|
||||
|
||||
# Write the final Sigma and G to the hdf5 archive:
|
||||
if mpi.is_master_node():
|
||||
ar = HDFArchive(dft_filename+'.h5','a')['dmft_output']
|
||||
if previous_runs: iteration_number += previous_runs
|
||||
ar['iterations'] = iteration_number
|
||||
ar['G_tau'] = S.G_tau
|
||||
ar['G_iw'] = S.G_iw
|
||||
ar['Sigma_iw'] = S.Sigma_iw
|
||||
ar['G0-%s'%(iteration_number)] = S.G0_iw
|
||||
ar['G-%s'%(iteration_number)] = S.G_iw
|
||||
ar['Sigma-%s'%(iteration_number)] = S.Sigma_iw
|
||||
del ar
|
||||
|
||||
# Set the new double counting:
|
||||
dm = S.G_iw.density() # compute the density matrix of the impurity problem
|
||||
SK.calc_dc(dm, U_interact = U, J_hund = J, orb = 0, use_dc_formula = dc_type)
|
||||
|
||||
# Save stuff into the dft_output group of hdf5 archive in case of rerun:
|
||||
SK.save(['chemical_potential','dc_imp','dc_energ'])
|
||||
|
||||
if mpi.is_master_node():
|
||||
ar = HDFArchive("dftdmft.h5",'w')
|
||||
ar["G_tau"] = S.G_tau
|
||||
ar["G_iw"] = S.G_iw
|
||||
ar["Sigma_iw"] = S.Sigma_iw
|
Loading…
Reference in New Issue
Block a user