mirror of
https://github.com/triqs/dft_tools
synced 2024-12-02 18:48:31 +01:00
analyze_block_structure_from_gf test
This commit is contained in:
parent
25218746f4
commit
69aa894586
@ -2,10 +2,10 @@
|
||||
FILE(GLOB all_h5_files RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} *.h5)
|
||||
file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/${all_h5_files} DESTINATION ${CMAKE_CURRENT_BINARY_DIR})
|
||||
# Copy other files
|
||||
FILE(COPY SrVO3.pmat SrVO3.struct SrVO3.outputs SrVO3.oubwin SrVO3.ctqmcout SrVO3.symqmc SrVO3.sympar SrVO3.parproj hk_convert_hamiltonian.hk LaVO3-Pnma_hr.dat LaVO3-Pnma.inp DESTINATION ${CMAKE_CURRENT_BINARY_DIR})
|
||||
FILE(COPY SrVO3.pmat SrVO3.struct SrVO3.outputs SrVO3.oubwin SrVO3.ctqmcout SrVO3.symqmc SrVO3.sympar SrVO3.parproj SrIrO3_rot.h5 hk_convert_hamiltonian.hk LaVO3-Pnma_hr.dat LaVO3-Pnma.inp DESTINATION ${CMAKE_CURRENT_BINARY_DIR})
|
||||
|
||||
# List all tests
|
||||
set(all_tests wien2k_convert hk_convert w90_convert sumkdft_basic srvo3_Gloc srvo3_transp sigma_from_file blockstructure)
|
||||
set(all_tests wien2k_convert hk_convert w90_convert sumkdft_basic srvo3_Gloc srvo3_transp sigma_from_file blockstructure analyze_block_structure_from_gf)
|
||||
|
||||
foreach(t ${all_tests})
|
||||
add_test(NAME ${t} COMMAND python ${CMAKE_CURRENT_SOURCE_DIR}/${t}.py)
|
||||
|
BIN
test/SrIrO3_rot.h5
Normal file
BIN
test/SrIrO3_rot.h5
Normal file
Binary file not shown.
179
test/analyze_block_structure_from_gf.py
Normal file
179
test/analyze_block_structure_from_gf.py
Normal file
@ -0,0 +1,179 @@
|
||||
from pytriqs.gf import *
|
||||
from sumk_dft import SumkDFT, conjugate_in_tau
|
||||
from scipy.linalg import expm
|
||||
import numpy as np
|
||||
from pytriqs.utility.comparison_tests import assert_gfs_are_close, assert_arrays_are_close
|
||||
from pytriqs.archive import *
|
||||
import itertools
|
||||
|
||||
# The full test checks all different possible combinations of conjugated
|
||||
# blocks. This takes a few minutes. For a quick test, just checking one
|
||||
# random value suffices.
|
||||
# (this parameter affects the second test)
|
||||
full_test = False
|
||||
|
||||
#######################################################################
|
||||
# First test #
|
||||
# where we check the analyse_block_structure_from_gf function #
|
||||
# for the SrIrO3_rot.h5 file #
|
||||
#######################################################################
|
||||
|
||||
beta = 40
|
||||
SK = SumkDFT(hdf_file = 'SrIrO3_rot.h5')
|
||||
Sigma = SK.block_structure.create_gf(beta=beta)
|
||||
SK.put_Sigma([Sigma])
|
||||
G = SK.extract_G_loc()
|
||||
|
||||
# the original block structure
|
||||
block_structure1 = SK.block_structure.copy()
|
||||
|
||||
G_new = SK.analyse_block_structure_from_gf(G)
|
||||
|
||||
# the new block structure
|
||||
block_structure2 = SK.block_structure.copy()
|
||||
|
||||
with HDFArchive('analyze_block_structure_from_gf.out.h5','w') as ar:
|
||||
ar['bs1'] = block_structure1
|
||||
ar['bs2'] = block_structure2
|
||||
|
||||
# check whether the block structure is the same as in the reference
|
||||
with HDFArchive('analyze_block_structure_from_gf.out.h5','r') as ar,\
|
||||
HDFArchive('analyze_block_structure_from_gf.ref.h5','r') as ar2:
|
||||
assert ar['bs1'] == ar2['bs1'], 'bs1 not equal'
|
||||
a1 = ar['bs2']
|
||||
a2 = ar2['bs2']
|
||||
assert a1==block_structure2, "writing/reading block structure incorrect"
|
||||
# we set the deg_shells to None because the transformation matrices
|
||||
# have a phase freedom and will, therefore, not be equal in general
|
||||
a1.deg_shells = None
|
||||
a2.deg_shells = None
|
||||
assert a1==a2, 'bs2 not equal'
|
||||
|
||||
# check if deg shells are correct
|
||||
assert len(SK.deg_shells[0])==1, "wrong number of equivalent groups"
|
||||
|
||||
# check if the Green's functions that are found to be equal in the
|
||||
# routine are indeed equal
|
||||
for d in SK.deg_shells[0]:
|
||||
assert len(d)==2, "wrong number of shells in equivalent group"
|
||||
# the convention is that for every degenerate shell, the transformation
|
||||
# matrix v and the conjugate bool is saved
|
||||
# then,
|
||||
# maybe_conjugate1( v1^dagger G1 v1 ) = maybe_conjugate2( v2^dagger G2 v2 )
|
||||
# therefore, to test, we calculate
|
||||
# maybe_conjugate( v^dagger G v )
|
||||
# for all degenerate shells and check that they are all equal
|
||||
normalized_gfs = []
|
||||
for key in d:
|
||||
normalized_gf = G_new[0][key].copy()
|
||||
normalized_gf.from_L_G_R(d[key][0].conjugate().transpose(), G_new[0][key], d[key][0])
|
||||
if d[key][1]:
|
||||
conjugate_in_tau(normalized_gf, in_place=True)
|
||||
normalized_gfs.append(normalized_gf)
|
||||
for i in range(len(normalized_gfs)):
|
||||
for j in range(i+1,len(normalized_gfs)):
|
||||
assert_arrays_are_close(normalized_gfs[i].data, normalized_gfs[j].data, 1.e-5)
|
||||
# the tails have to be compared using a relative error
|
||||
for o in range(normalized_gfs[i].tail.order_min,normalized_gfs[i].tail.order_max+1):
|
||||
if np.abs(normalized_gfs[i].tail[o][0,0]) < 1.e-10:
|
||||
continue
|
||||
assert np.max(np.abs((normalized_gfs[i].tail[o]-normalized_gfs[j].tail[o])/(normalized_gfs[i].tail[o][0,0]))) < 1.e-5, \
|
||||
"tails are different"
|
||||
|
||||
#######################################################################
|
||||
# Second test #
|
||||
# where a Green's function is constructed from a random model #
|
||||
# and the analyse_block_structure_from_gf function is tested for that #
|
||||
# model #
|
||||
#######################################################################
|
||||
|
||||
# helper function to get random Hermitian matrix
|
||||
def get_random_hermitian(dim):
|
||||
herm = np.random.rand(dim,dim)+1.0j*np.random.rand(dim,dim)
|
||||
herm = herm + herm.conjugate().transpose()
|
||||
return herm
|
||||
|
||||
# helper function to get random unitary matrix
|
||||
def get_random_transformation(dim):
|
||||
herm = get_random_hermitian(dim)
|
||||
T = expm(1.0j*herm)
|
||||
return T
|
||||
|
||||
# we will conjugate the Green's function blocks according to the entries
|
||||
# of conjugate_values
|
||||
# for each of the 5 blocks that will be constructed, there is an entry
|
||||
# True or False that says whether it will be conjugated
|
||||
if full_test:
|
||||
# in the full test we check all combinations
|
||||
conjugate_values = list(itertools.product([False, True], repeat=5))
|
||||
else:
|
||||
# in the quick test we check a random combination
|
||||
conjugate_values = [np.random.rand(5)>0.5]
|
||||
|
||||
for conjugate in conjugate_values:
|
||||
# construct a random block-diagonal Hloc
|
||||
Hloc = np.zeros((10,10), dtype=np.complex_)
|
||||
# the Hloc of the first three 2x2 blocks is equal
|
||||
Hloc0 = get_random_hermitian(2)
|
||||
Hloc[:2,:2] = Hloc0
|
||||
Hloc[2:4,2:4] = Hloc0
|
||||
Hloc[4:6,4:6] = Hloc0
|
||||
# the Hloc of the last two 2x2 blocks is equal
|
||||
Hloc1 = get_random_hermitian(2)
|
||||
Hloc[6:8,6:8] = Hloc1
|
||||
Hloc[8:,8:] = Hloc1
|
||||
# construct the hybridization delta
|
||||
# this is equal for all 2x2 blocks
|
||||
V = get_random_hermitian(2) # the hopping elements from impurity to bath
|
||||
b1 = np.random.rand() # the bath energy of the first bath level
|
||||
b2 = np.random.rand() # the bath energy of the second bath level
|
||||
delta = G[0]['ud'][:2,:2].copy()
|
||||
delta[0,0] << (V[0,0]*V[0,0].conjugate()*inverse(Omega-b1)+V[0,1]*V[0,1].conjugate()*inverse(Omega-b2))/2.0
|
||||
delta[0,1] << (V[0,0]*V[1,0].conjugate()*inverse(Omega-b1)+V[0,1]*V[1,1].conjugate()*inverse(Omega-b2))/2.0
|
||||
delta[1,0] << (V[1,0]*V[0,0].conjugate()*inverse(Omega-b1)+V[1,1]*V[0,1].conjugate()*inverse(Omega-b2))/2.0
|
||||
delta[1,1] << (V[1,0]*V[1,0].conjugate()*inverse(Omega-b1)+V[1,1]*V[1,1].conjugate()*inverse(Omega-b2))/2.0
|
||||
# construct G
|
||||
G[0].zero()
|
||||
for i in range(0,10,2):
|
||||
G[0]['ud'][i:i+2,i:i+2] << inverse(Omega-delta)
|
||||
G[0]['ud'] << inverse(inverse(G[0]['ud']) - Hloc)
|
||||
|
||||
# transform each block using a random transformation matrix
|
||||
for i in range(0,10,2):
|
||||
T = get_random_transformation(2)
|
||||
G[0]['ud'][i:i+2,i:i+2].from_L_G_R(T, G[0]['ud'][i:i+2,i:i+2], T.conjugate().transpose())
|
||||
# if that block shall be conjugated, go ahead and do it
|
||||
if conjugate[i//2]:
|
||||
conjugate_in_tau(G[0]['ud'][i:i+2,i:i+2], in_place=True)
|
||||
|
||||
# analyse the block structure
|
||||
G_new = SK.analyse_block_structure_from_gf(G)
|
||||
|
||||
assert len(SK.deg_shells[0]) == 2, "wrong number of equivalent groups found"
|
||||
assert sorted([len(d) for d in SK.deg_shells[0]]) == [2,3], "wrong number of members in the equivalent groups found"
|
||||
for d in SK.deg_shells[0]:
|
||||
if len(d)==2:
|
||||
assert 'ud_3' in d, "shell ud_3 missing"
|
||||
assert 'ud_4' in d, "shell ud_4 missing"
|
||||
if len(d)==3:
|
||||
assert 'ud_0' in d, "shell ud_0 missing"
|
||||
assert 'ud_1' in d, "shell ud_1 missing"
|
||||
assert 'ud_2' in d, "shell ud_2 missing"
|
||||
|
||||
# the convention is that for every degenerate shell, the transformation
|
||||
# matrix v and the conjugate bool is saved
|
||||
# then,
|
||||
# maybe_conjugate1( v1^dagger G1 v1 ) = maybe_conjugate2( v2^dagger G2 v2 )
|
||||
# therefore, to test, we calculate
|
||||
# maybe_conjugate( v^dagger G v )
|
||||
# for all degenerate shells and check that they are all equal
|
||||
normalized_gfs = []
|
||||
for key in d:
|
||||
normalized_gf = G_new[0][key].copy()
|
||||
normalized_gf.from_L_G_R(d[key][0].conjugate().transpose(), G_new[0][key], d[key][0])
|
||||
if d[key][1]:
|
||||
conjugate_in_tau(normalized_gf, in_place=True)
|
||||
normalized_gfs.append(normalized_gf)
|
||||
for i in range(len(normalized_gfs)):
|
||||
for j in range(i+1,len(normalized_gfs)):
|
||||
assert_gfs_are_close(normalized_gfs[i], normalized_gfs[j])
|
BIN
test/analyze_block_structure_from_gf.ref.h5
Normal file
BIN
test/analyze_block_structure_from_gf.ref.h5
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user