3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-22 04:13:47 +01:00

Variable name changes for clarity and consistency

This commit is contained in:
Priyanka Seth 2014-11-14 09:43:28 +01:00
parent 0114562baa
commit 6708788ed7
5 changed files with 272 additions and 270 deletions

View File

@ -8,6 +8,15 @@ Substitutions:
* read_symmetry_input -> convert_symmetry_input
* Symm_corr -> symmcorr
internal substitutions:
Symm_par --> symmpar
sig -> bname
names_to_ind -> spin_names_to_ind
n_spin_blocks_gf -> n_spin_blocks
block_names -> spin_block_names
a_list -> block_ind_list
a,al -> block,inner
**********
* changed default h5 subgroup names

View File

@ -49,8 +49,6 @@ class SumkLDA:
self.symmpar_data = symmpar_data
self.bands_data = bands_data
self.lda_output = lda_output
self.block_names = [ ['up','down'], ['ud'] ]
self.n_spin_blocks_gf = [2,1]
self.G_upfold = None
self.h_field = h_field
@ -64,42 +62,44 @@ class SumkLDA:
self.h_field=0.0
mpi.report("For SO, the external magnetic field is not implemented, setting it to 0!")
# FIXME -- REMOVE THIS, WRITE DATA IN CONVERTER
# determine the number of inequivalent correlated shells (self.n_inequiv_corr_shells)
# and related maps (self.shellmap, self.invshellmap)
self.inequiv_shells(self.corr_shells)
# field to convert block_names to indices
self.names_to_ind = [{}, {}]
for ibl in range(2):
for inm in range(self.n_spin_blocks_gf[ibl]):
self.names_to_ind[ibl][self.block_names[ibl][inm]] = inm * self.SP
self.spin_block_names = [ ['up','down'], ['ud'] ]
self.n_spin_blocks = [2,1]
# convert spin_block_names to indices -- if spin polarized, differentiate up and down blocks
self.spin_names_to_ind = [{}, {}]
for iso in range(2): # SO = 0 or 1
for ibl in range(self.n_spin_blocks[iso]):
self.spin_names_to_ind[iso][self.spin_block_names[iso][ibl]] = ibl * self.SP
# GF structure used for the local things in the k sums
# Most general form allowing for all hybridisation, i.e. largest blocks possible
self.gf_struct_corr = [ [ (al, range( self.corr_shells[i][3])) for al in self.block_names[self.corr_shells[i][4]] ]
self.gf_struct_corr = [ [ (b, range( self.corr_shells[i][3])) for b in self.spin_block_names[self.corr_shells[i][4]] ]
for i in xrange(self.n_corr_shells) ]
#-----
# If these quantities are not in HDF, set them up and save into HDF
# If these quantities are not in HDF, set them up
optional_things = ['gf_struct_solver','map_inv','map','chemical_potential','dc_imp','dc_energ','deg_shells']
self.subgroup_present, self.value_read = self.read_input_from_hdf(subgrp = self.lda_output, things_to_read = [],
optional_things = optional_things)
if (not self.subgroup_present) or (not self.value_read['gf_struct_solver']):
# No gf_struct was stored in HDF, so first set a standard one:
self.gf_struct_solver = [ dict([ (al, range(self.corr_shells[self.invshellmap[i]][3]) )
for al in self.block_names[self.corr_shells[self.invshellmap[i]][4]] ])
self.gf_struct_solver = [ dict([ (b, range(self.corr_shells[self.invshellmap[i]][3]) )
for b in self.spin_block_names[self.corr_shells[self.invshellmap[i]][4]] ])
for i in range(self.n_inequiv_corr_shells)
]
self.map = [ {} for i in xrange(self.n_inequiv_corr_shells) ]
self.map_inv = [ {} for i in xrange(self.n_inequiv_corr_shells) ]
for i in xrange(self.n_inequiv_corr_shells):
for al in self.block_names[self.corr_shells[self.invshellmap[i]][4]]:
self.map[i][al] = [al for j in range( self.corr_shells[self.invshellmap[i]][3] ) ]
self.map_inv[i][al] = al
for b in self.spin_block_names[self.corr_shells[self.invshellmap[i]][4]]:
self.map[i][b] = [b for j in range( self.corr_shells[self.invshellmap[i]][3] ) ]
self.map_inv[i][b] = b
if (not self.subgroup_present) or (not self.value_read['dc_imp']):
# init the double counting:
self.__init_dc()
self.__init_dc() # initialise the double counting
if (not self.subgroup_present) or (not self.value_read['chemical_potential']):
self.chemical_potential = mu
@ -113,9 +113,9 @@ class SumkLDA:
self.symmcorr = Symmetry(hdf_file,subgroup=self.symmcorr_data)
# Analyse the block structure and determine the smallest blocs, if desired
if (use_lda_blocks): dm=self.analyse_BS()
if (use_lda_blocks): dm=self.analyse_block_structure()
# Now save things again to HDF5:
# Now save new things to HDF5:
# FIXME WHAT HAPPENS TO h_field? INPUT TO __INIT__? ADD TO OPTIONAL_THINGS?
things_to_save=['chemical_potential','dc_imp','dc_energ','h_field']
self.save(things_to_save)
@ -130,7 +130,7 @@ class SumkLDA:
"""
value_read = True
# init variables on all nodes to ensure mpi broadcast works at the end
# initialise variables on all nodes to ensure mpi broadcast works at the end
for it in things_to_read: setattr(self,it,0)
for it in optional_things: setattr(self,it,0)
@ -147,7 +147,7 @@ class SumkLDA:
value_read = False
if (value_read and (len(optional_things)>0)):
# if necessary things worked, now read optional things:
# if successfully read necessary items, read optional things:
value_read = {}
for it in optional_things:
if it in ar[subgrp]:
@ -172,7 +172,7 @@ class SumkLDA:
def save(self,things_to_save):
"""Saves some quantities into an HDF5 arxiv"""
"""Saves some quantities into an HDF5 archive"""
if not (mpi.is_master_node()): return # do nothing on nodes
ar = HDFArchive(self.hdf_file,'a')
@ -188,11 +188,11 @@ class SumkLDA:
# CORE FUNCTIONS
################
def downfold(self,ik,icrsh,sig,gf_to_downfold,gf_inp):
def downfold(self,ik,icrsh,bname,gf_to_downfold,gf_inp):
"""Downfolding a block of the Greens function"""
gf_downfolded = gf_inp.copy()
isp = self.names_to_ind[self.SO][sig] # get spin index for proj. matrices
isp = self.spin_names_to_ind[self.SO][bname] # get spin index for proj. matrices
dim = self.corr_shells[icrsh][3]
n_orb = self.n_orbitals[ik,isp]
projmat = self.proj_mat[ik,isp,icrsh,0:dim,0:n_orb]
@ -202,11 +202,11 @@ class SumkLDA:
return gf_downfolded
def upfold(self,ik,icrsh,sig,gf_to_upfold,gf_inp):
def upfold(self,ik,icrsh,bname,gf_to_upfold,gf_inp):
"""Upfolding a block of the Greens function"""
gf_upfolded = gf_inp.copy()
isp = self.names_to_ind[self.SO][sig] # get spin index for proj. matrices
isp = self.spin_names_to_ind[self.SO][bname] # get spin index for proj. matrices
dim = self.corr_shells[icrsh][3]
n_orb = self.n_orbitals[ik,isp]
projmat = self.proj_mat[ik,isp,icrsh,0:dim,0:n_orb]
@ -247,8 +247,8 @@ class SumkLDA:
"""Calculates the lattice Green function from the LDA hopping and the self energy at k-point number ik
and chemical potential mu."""
ntoi = self.names_to_ind[self.SO]
bln = self.block_names[self.SO]
ntoi = self.spin_names_to_ind[self.SO]
bln = self.spin_block_names[self.SO]
if (not hasattr(self,"Sigma_imp")): with_Sigma=False
@ -261,27 +261,27 @@ class SumkLDA:
if self.G_upfold is None: # yes if not G_upfold provided
set_up_G_upfold = True
else: # yes if inconsistencies present in existing G_upfold
GFsize = [ gf.N1 for sig,gf in self.G_upfold]
unchangedsize = all( [ self.n_orbitals[ik,ntoi[bln[ib]]]==GFsize[ib]
for ib in range(self.n_spin_blocks_gf[self.SO]) ] )
GFsize = [ gf.N1 for bname,gf in self.G_upfold]
unchangedsize = all( [ self.n_orbitals[ik,ntoi[bln[ibl]]]==GFsize[ibl]
for ibl in range(self.n_spin_blocks[self.SO]) ] )
if ( (not unchangedsize) or (self.G_upfold.mesh.beta != beta) ): set_up_G_upfold = True
# Set up G_upfold
if set_up_G_upfold:
BS = [ range(self.n_orbitals[ik,ntoi[ib]]) for ib in bln ]
gf_struct = [ (bln[ib], BS[ib]) for ib in range(self.n_spin_blocks_gf[self.SO]) ]
a_list = [a for a,al in gf_struct]
block_structure = [ range(self.n_orbitals[ik,ntoi[b]]) for b in bln ]
gf_struct = [ (bln[ibl], block_structure[ibl]) for ibl in range(self.n_spin_blocks[self.SO]) ]
block_ind_list = [block for block,inner in gf_struct]
if (with_Sigma):
glist = lambda : [ GfImFreq(indices = al, mesh = self.Sigma_imp[0].mesh) for a,al in gf_struct]
glist = lambda : [ GfImFreq(indices = inner, mesh = self.Sigma_imp[0].mesh) for block,inner in gf_struct]
else:
glist = lambda : [ GfImFreq(indices = al, beta = beta) for a,al in gf_struct]
self.G_upfold = BlockGf(name_list = a_list, block_list = glist(),make_copies=False)
glist = lambda : [ GfImFreq(indices = inner, beta = beta) for block,inner in gf_struct]
self.G_upfold = BlockGf(name_list = block_ind_list, block_list = glist(),make_copies=False)
self.G_upfold.zero()
self.G_upfold << iOmega_n
idmat = [numpy.identity(self.n_orbitals[ik,ntoi[bl]],numpy.complex_) for bl in bln]
M = copy.deepcopy(idmat)
for ibl in range(self.n_spin_blocks_gf[self.SO]):
for ibl in range(self.n_spin_blocks[self.SO]):
ind = ntoi[bln[ibl]]
n_orb = self.n_orbitals[ik,ind]
M[ibl] = self.hopping[ik,ind,0:n_orb,0:n_orb] - (idmat[ibl]*mu) - (idmat[ibl] * self.h_field * (1-2*ibl))
@ -289,7 +289,7 @@ class SumkLDA:
if (with_Sigma):
for icrsh in xrange(self.n_corr_shells):
for sig,gf in self.G_upfold: gf -= self.upfold(ik,icrsh,sig,stmp[icrsh][sig],gf)
for bname,gf in self.G_upfold: gf -= self.upfold(ik,icrsh,bname,stmp[icrsh][bname],gf)
self.G_upfold.invert()
@ -301,27 +301,27 @@ class SumkLDA:
def simple_point_dens_mat(self):
ntoi = self.names_to_ind[self.SO]
bln = self.block_names[self.SO]
ntoi = self.spin_names_to_ind[self.SO]
bln = self.spin_block_names[self.SO]
MMat = [numpy.zeros( [self.n_orbitals[0,ntoi[bl]],self.n_orbitals[0,ntoi[bl]]], numpy.complex_) for bl in bln]
dens_mat = [ {} for icrsh in xrange(self.n_corr_shells)]
for icrsh in xrange(self.n_corr_shells):
for bl in self.block_names[self.corr_shells[icrsh][4]]:
for bl in self.spin_block_names[self.corr_shells[icrsh][4]]:
dens_mat[icrsh][bl] = numpy.zeros([self.corr_shells[icrsh][3],self.corr_shells[icrsh][3]], numpy.complex_)
ikarray=numpy.array(range(self.n_k))
for ik in mpi.slice_array(ikarray):
unchangedsize = all( [ self.n_orbitals[ik,ntoi[bln[ib]]]==len(MMat[ib])
for ib in range(self.n_spin_blocks_gf[self.SO]) ] )
unchangedsize = all( [ self.n_orbitals[ik,ntoi[bln[ibl]]]==len(MMat[ibl])
for ibl in range(self.n_spin_blocks[self.SO]) ] )
if (not unchangedsize):
MMat = [numpy.zeros( [self.n_orbitals[ik,ntoi[bl]],self.n_orbitals[ik,ntoi[bl]]], numpy.complex_) for bl in bln]
for ibl,bl in enumerate(bln):
for ibl, bl in enumerate(bln):
ind = ntoi[bl]
for inu in range(self.n_orbitals[ik,ind]):
if ( (self.hopping[ik,ind,inu,inu]-self.h_field*(1-2*ibl)) < 0.0): # ONLY WORKS FOR DIAGONAL HOPPING MATRIX (TRUE IN WIEN2K)
@ -331,22 +331,20 @@ class SumkLDA:
for icrsh in range(self.n_corr_shells):
for ibn,bn in enumerate(self.block_names[self.corr_shells[icrsh][4]]):
isp = self.names_to_ind[self.corr_shells[icrsh][4]][bn]
for ibl, bn in enumerate(self.spin_block_names[self.corr_shells[icrsh][4]]):
isp = self.spin_names_to_ind[self.corr_shells[icrsh][4]][bn]
dim = self.corr_shells[icrsh][3]
n_orb = self.n_orbitals[ik,isp]
#print ik, bn, isp
dens_mat[icrsh][bn] += self.bz_weights[ik] * numpy.dot( numpy.dot(self.proj_mat[ik,isp,icrsh,0:dim,0:n_orb],MMat[ibn]) ,
self.proj_mat[ik,isp,icrsh,0:dim,0:n_orb].transpose().conjugate() )
projmat = self.proj_mat[ik,isp,icrsh,0:dim,0:n_orb]
dens_mat[icrsh][bn] += self.bz_weights[ik] * numpy.dot( numpy.dot(projmat,MMat[ibl]) ,
projmat.transpose().conjugate() )
# get data from nodes:
for icrsh in range(self.n_corr_shells):
for sig in dens_mat[icrsh]:
dens_mat[icrsh][sig] = mpi.all_reduce(mpi.world,dens_mat[icrsh][sig],lambda x,y : x+y)
for bname in dens_mat[icrsh]:
dens_mat[icrsh][bname] = mpi.all_reduce(mpi.world,dens_mat[icrsh][bname],lambda x,y : x+y)
mpi.barrier()
if (self.symm_op!=0): dens_mat = self.symmcorr.symmetrize(dens_mat)
# Rotate to local coordinate system:
@ -357,7 +355,6 @@ class SumkLDA:
dens_mat[icrsh][bn] = numpy.dot( numpy.dot(self.rot_mat[icrsh].conjugate().transpose(),dens_mat[icrsh][bn]) ,
self.rot_mat[icrsh])
return dens_mat
# calculate upfolded gf, then density matrix -- no assumptions on structure (ie diagonal or not)
@ -366,7 +363,7 @@ class SumkLDA:
dens_mat = [ {} for icrsh in xrange(self.n_corr_shells)]
for icrsh in xrange(self.n_corr_shells):
for bl in self.block_names[self.corr_shells[icrsh][4]]:
for bl in self.spin_block_names[self.corr_shells[icrsh][4]]:
dens_mat[icrsh][bl] = numpy.zeros([self.corr_shells[icrsh][3],self.corr_shells[icrsh][3]], numpy.complex_)
ikarray=numpy.array(range(self.n_k))
@ -376,24 +373,23 @@ class SumkLDA:
G_upfold = self.lattice_gf_matsubara(ik=ik, beta=beta, mu=self.chemical_potential)
G_upfold *= self.bz_weights[ik]
dm = G_upfold.density()
MMat = [dm[bl] for bl in self.block_names[self.SO]]
MMat = [dm[bl] for bl in self.spin_block_names[self.SO]]
for icrsh in range(self.n_corr_shells):
for ibn,bn in enumerate(self.block_names[self.corr_shells[icrsh][4]]):
isp = self.names_to_ind[self.corr_shells[icrsh][4]][bn]
for ibl, bn in enumerate(self.spin_block_names[self.corr_shells[icrsh][4]]):
isp = self.spin_names_to_ind[self.corr_shells[icrsh][4]][bn]
dim = self.corr_shells[icrsh][3]
n_orb = self.n_orbitals[ik,isp]
#print ik, bn, isp
dens_mat[icrsh][bn] += numpy.dot( numpy.dot(self.proj_mat[ik,isp,icrsh,0:dim,0:n_orb],MMat[ibn]),
self.proj_mat[ik,isp,icrsh,0:dim,0:n_orb].transpose().conjugate() )
projmat = self.proj_mat[ik,isp,icrsh,0:dim,0:n_orb]
dens_mat[icrsh][bn] += numpy.dot( numpy.dot(projmat,MMat[ibl]),
projmat.transpose().conjugate() )
# get data from nodes:
for icrsh in range(self.n_corr_shells):
for sig in dens_mat[icrsh]:
dens_mat[icrsh][sig] = mpi.all_reduce(mpi.world,dens_mat[icrsh][sig],lambda x,y : x+y)
for bname in dens_mat[icrsh]:
dens_mat[icrsh][bname] = mpi.all_reduce(mpi.world,dens_mat[icrsh][bname],lambda x,y : x+y)
mpi.barrier()
if (self.symm_op!=0): dens_mat = self.symmcorr.symmetrize(dens_mat)
# Rotate to local coordinate system:
@ -408,7 +404,7 @@ class SumkLDA:
def analyse_BS(self, threshold = 0.00001, include_shells = None, dm = None):
def analyse_block_structure(self, threshold = 0.00001, include_shells = None, dm = None):
""" Determines the Green function block structure from simple point integration."""
if dm is None: dm = self.simple_point_dens_mat()
@ -421,9 +417,9 @@ class SumkLDA:
self.gf_struct_solver[ish] = {}
gf_struct_temp = []
a_list = [a for a,al in self.gf_struct_corr[self.invshellmap[ish]] ]
for a in a_list:
dm = dens_mat[ish][a]
block_ind_list = [block for block,inner in self.gf_struct_corr[self.invshellmap[ish]] ]
for block in block_ind_list:
dm = dens_mat[ish][block]
dmbool = (abs(dm) > threshold) # gives an index list of entries larger that threshold
offdiag = []
@ -448,16 +444,16 @@ class SumkLDA:
for i in range(NBlocs):
blocs[i].sort()
self.gf_struct_solver[ish].update( [('%s_%s'%(a,i),range(len(blocs[i])))] )
gf_struct_temp.append( ('%s_%s'%(a,i),blocs[i]) )
self.gf_struct_solver[ish].update( [('%s_%s'%(block,i),range(len(blocs[i])))] )
gf_struct_temp.append( ('%s_%s'%(block,i),blocs[i]) )
# map is the mapping of the blocs from the SK blocs to the CTQMC blocs:
self.map[ish][a] = range(len(dmbool))
self.map[ish][block] = range(len(dmbool))
for ibl in range(NBlocs):
for j in range(len(blocs[ibl])):
self.map[ish][a][blocs[ibl][j]] = '%s_%s'%(a,ibl)
self.map_inv[ish]['%s_%s'%(a,ibl)] = a
self.map[ish][block][blocs[ibl][j]] = '%s_%s'%(block,ibl)
self.map_inv[ish]['%s_%s'%(block,ibl)] = block
# now calculate degeneracies of orbitals:
@ -512,7 +508,7 @@ class SumkLDA:
# define matrices for inequivalent shells:
eff_atlevels = [ {} for ish in range(self.n_inequiv_corr_shells) ]
for ish in range(self.n_inequiv_corr_shells):
for bn in self.block_names[self.corr_shells[self.invshellmap[ish]][4]]:
for bn in self.spin_block_names[self.corr_shells[self.invshellmap[ish]][4]]:
eff_atlevels[ish][bn] = numpy.identity(self.corr_shells[self.invshellmap[ish]][3], numpy.complex_)
# Chemical Potential:
@ -530,20 +526,21 @@ class SumkLDA:
# calculate the sum over k. Does not depend on mu, so do it only once:
self.Hsumk = [ {} for ish in range(self.n_corr_shells) ]
for icrsh in range(self.n_corr_shells):
for bn in self.block_names[self.corr_shells[icrsh][4]]:
for bn in self.spin_block_names[self.corr_shells[icrsh][4]]:
dim = self.corr_shells[icrsh][3] #*(1+self.corr_shells[icrsh][4])
self.Hsumk[icrsh][bn] = numpy.zeros([dim,dim],numpy.complex_)
for icrsh in range(self.n_corr_shells):
dim = self.corr_shells[icrsh][3]
for ibn, bn in enumerate(self.block_names[self.corr_shells[icrsh][4]]):
isp = self.names_to_ind[self.corr_shells[icrsh][4]][bn]
for ibl, bn in enumerate(self.spin_block_names[self.corr_shells[icrsh][4]]):
isp = self.spin_names_to_ind[self.corr_shells[icrsh][4]][bn]
for ik in xrange(self.n_k):
n_orb = self.n_orbitals[ik,isp]
MMat = numpy.identity(n_orb, numpy.complex_)
MMat = self.hopping[ik,isp,0:n_orb,0:n_orb] - (1-2*ibn) * self.h_field * MMat
self.Hsumk[icrsh][bn] += self.bz_weights[ik] * numpy.dot( numpy.dot(self.proj_mat[ik,isp,icrsh,0:dim,0:n_orb],MMat),
self.proj_mat[ik,isp,icrsh,0:dim,0:n_orb].conjugate().transpose() )
MMat = self.hopping[ik,isp,0:n_orb,0:n_orb] - (1-2*ibl) * self.h_field * MMat
projmat = self.proj_mat[ik,isp,icrsh,0:dim,0:n_orb]
self.Hsumk[icrsh][bn] += self.bz_weights[ik] * numpy.dot( numpy.dot(projmat,MMat),
projmat.conjugate().transpose() )
# symmetrisation:
if (self.symm_op!=0): self.Hsumk = self.symmcorr.symmetrize(self.Hsumk)
@ -604,24 +601,24 @@ class SumkLDA:
blname = self.gf_struct_corr[icrsh][j][0]
Ncr[blname] = 0.0
for a,al in self.gf_struct_solver[iorb].iteritems():
bl = self.map_inv[iorb][a]
Ncr[bl] += dens_mat[a].real.trace()
for block,inner in self.gf_struct_solver[iorb].iteritems():
bl = self.map_inv[iorb][block]
Ncr[bl] += dens_mat[block].real.trace()
M = self.corr_shells[icrsh][3]
Ncrtot = 0.0
a_list = [a for a,al in self.gf_struct_corr[icrsh]]
for bl in a_list:
block_ind_list = [block for block,inner in self.gf_struct_corr[icrsh]]
for bl in block_ind_list:
Ncrtot += Ncr[bl]
# average the densities if there is no SP:
if (self.SP==0):
for bl in a_list:
Ncr[bl] = Ncrtot / len(a_list)
for bl in block_ind_list:
Ncr[bl] = Ncrtot / len(block_ind_list)
# correction for SO: we have only one block in this case, but in DC we need N/2
elif (self.SP==1 and self.SO==1):
for bl in a_list:
for bl in block_ind_list:
Ncr[bl] = Ncrtot / 2.0
if (use_val is None):
@ -629,7 +626,7 @@ class SumkLDA:
if (use_dc_formula==0): # FLL
self.dc_energ[icrsh] = U_interact / 2.0 * Ncrtot * (Ncrtot-1.0)
for bl in a_list:
for bl in block_ind_list:
Uav = U_interact*(Ncrtot-0.5) - J_hund*(Ncr[bl] - 0.5)
self.dc_imp[icrsh][bl] *= Uav
self.dc_energ[icrsh] -= J_hund / 2.0 * (Ncr[bl]) * (Ncr[bl]-1.0)
@ -638,7 +635,7 @@ class SumkLDA:
elif (use_dc_formula==1): # Held's formula, with U_interact the interorbital onsite interaction
self.dc_energ[icrsh] = (U_interact + (M-1)*(U_interact-2.0*J_hund) + (M-1)*(U_interact-3.0*J_hund))/(2*M-1) / 2.0 * Ncrtot * (Ncrtot-1.0)
for bl in a_list:
for bl in block_ind_list:
Uav =(U_interact + (M-1)*(U_interact-2.0*J_hund) + (M-1)*(U_interact-3.0*J_hund))/(2*M-1) * (Ncrtot-0.5)
self.dc_imp[icrsh][bl] *= Uav
mpi.report("DC for shell %(icrsh)i and block %(bl)s = %(Uav)f"%locals())
@ -646,7 +643,7 @@ class SumkLDA:
elif (use_dc_formula==2): # AMF
self.dc_energ[icrsh] = 0.5 * U_interact * Ncrtot * Ncrtot
for bl in a_list:
for bl in block_ind_list:
Uav = U_interact*(Ncrtot - Ncr[bl]/M) - J_hund * (Ncr[bl] - Ncr[bl]/M)
self.dc_imp[icrsh][bl] *= Uav
self.dc_energ[icrsh] -= (U_interact + (M-1)*J_hund)/M * 0.5 * Ncr[bl] * Ncr[bl]
@ -657,8 +654,8 @@ class SumkLDA:
else:
a_list = [a for a,al in self.gf_struct_corr[icrsh]]
for bl in a_list:
block_ind_list = [block for block,inner in self.gf_struct_corr[icrsh]]
for bl in block_ind_list:
self.dc_imp[icrsh][bl] *= use_val
self.dc_energ[icrsh] = use_val * Ncrtot
@ -676,13 +673,13 @@ class SumkLDA:
assert len(Sigma_imp)==self.n_inequiv_corr_shells, "give exactly one Sigma for each inequivalent corr. shell!"
# init self.Sigma_imp:
if all(type(g) == GfImFreq for name,g in Sigma_imp[0]):
if all(type(gf) == GfImFreq for bname,gf in Sigma_imp[0]):
# Imaginary frequency Sigma:
self.Sigma_imp = [ BlockGf( name_block_generator = [ (a,GfImFreq(indices = al, mesh = Sigma_imp[0].mesh)) for a,al in self.gf_struct_corr[i] ],
self.Sigma_imp = [ BlockGf( name_block_generator = [ (block,GfImFreq(indices = inner, mesh = Sigma_imp[0].mesh)) for block,inner in self.gf_struct_corr[i] ],
make_copies = False) for i in xrange(self.n_corr_shells) ]
elif all(type(g) == GfReFreq for name,g in Sigma_imp[0]):
elif all(type(gf) == GfReFreq for bname,gf in Sigma_imp[0]):
# Real frequency Sigma:
self.Sigma_imp = [ BlockGf( name_block_generator = [ (a,GfReFreq(indices = al, mesh = Sigma_imp[0].mesh)) for a,al in self.gf_struct_corr[i] ],
self.Sigma_imp = [ BlockGf( name_block_generator = [ (block,GfReFreq(indices = inner, mesh = Sigma_imp[0].mesh)) for block,inner in self.gf_struct_corr[i] ],
make_copies = False) for i in xrange(self.n_corr_shells) ]
else:
raise ValueError, "This type of Sigma is not handled."
@ -697,26 +694,26 @@ class SumkLDA:
for blname in self.map[s]:
cnt[blname] = 0
for a,al in self.gf_struct_solver[s].iteritems():
blname = self.map_inv[s][a]
map_ind[a] = range(len(al))
for i in al:
map_ind[a][i] = cnt[blname]
for block,inner in self.gf_struct_solver[s].iteritems():
blname = self.map_inv[s][block]
map_ind[block] = range(len(inner))
for i in inner:
map_ind[block][i] = cnt[blname]
cnt[blname]+=1
for bl, orblist in self.gf_struct_solver[s].iteritems():
for i in range(len(orblist)):
for j in range(len(orblist)):
ind1 = orblist[i]
ind2 = orblist[j]
ind1_imp = map_ind[bl][ind1]
ind2_imp = map_ind[bl][ind2]
self.Sigma_imp[icrsh][self.map_inv[s][bl]][ind1_imp,ind2_imp] << Sigma_imp[s][bl][ind1,ind2]
for block,inner in self.gf_struct_solver[s].iteritems():
for i in range(len(inner)):
for j in range(len(inner)):
ind1 = inner[i]
ind2 = inner[j]
ind1_imp = map_ind[block][ind1]
ind2_imp = map_ind[block][ind2]
self.Sigma_imp[icrsh][self.map_inv[s][block]][ind1_imp,ind2_imp] << Sigma_imp[s][block][ind1,ind2]
# rotation from local to global coordinate system:
if (self.use_rotations):
for icrsh in xrange(self.n_corr_shells):
for sig,gf in self.Sigma_imp[icrsh]: self.Sigma_imp[icrsh][sig] << self.rotloc(icrsh,gf,direction='toGlobal')
for bname,gf in self.Sigma_imp[icrsh]: self.Sigma_imp[icrsh][bname] << self.rotloc(icrsh,gf,direction='toGlobal')
@ -726,10 +723,10 @@ class SumkLDA:
# Be careful: Sigma_imp is already in the global coordinate system!!
sres = [s.copy() for s in self.Sigma_imp]
for icrsh in xrange(self.n_corr_shells):
for bl,gf in sres[icrsh]:
for bname,gf in sres[icrsh]:
# Transform dc_imp to global coordinate system
dccont = numpy.dot(self.rot_mat[icrsh],numpy.dot(self.dc_imp[icrsh][bl],self.rot_mat[icrsh].conjugate().transpose()))
sres[icrsh][bl] -= dccont
dccont = numpy.dot(self.rot_mat[icrsh],numpy.dot(self.dc_imp[icrsh][bname],self.rot_mat[icrsh].conjugate().transpose()))
sres[icrsh][bname] -= dccont
return sres # list of self energies corrected by DC
@ -741,36 +738,6 @@ class SumkLDA:
self.chemical_potential = mu
def inequiv_shells(self,lst):
"""
The number of inequivalent shells is calculated from lst, and a mapping is given as
map(i_corr_shells) = i_inequiv_corr_shells
invmap(i_inequiv_corr_shells) = i_corr_shells
in order to put the Self energies to all equivalent shells, and for extracting Gloc
"""
tmp = []
self.shellmap = [0 for i in range(len(lst))]
self.invshellmap = [0]
self.n_inequiv_corr_shells = 1
tmp.append( lst[0][1:3] )
if (len(lst)>1):
for i in range(len(lst)-1):
fnd = False
for j in range(self.n_inequiv_corr_shells):
if (tmp[j]==lst[i+1][1:3]):
fnd = True
self.shellmap[i+1] = j
if (fnd==False):
self.shellmap[i+1] = self.n_inequiv_corr_shells
self.n_inequiv_corr_shells += 1
tmp.append( lst[i+1][1:3] )
self.invshellmap.append(i+1)
def total_density(self, mu):
"""
Calculates the total charge for the energy window for a given mu. Since in general n_orbitals depends on k,
@ -839,7 +806,7 @@ class SumkLDA:
for icrsh in xrange(self.n_corr_shells):
tmp = Gloc[icrsh].copy() # init temporary storage
for sig,gf in tmp: tmp[sig] << self.downfold(ik,icrsh,sig,S[sig],gf)
for bname,gf in tmp: tmp[bname] << self.downfold(ik,icrsh,bname,S[bname],gf)
Gloc[icrsh] += tmp
#collect data from mpi:
@ -855,10 +822,10 @@ class SumkLDA:
# Gloc is rotated to the local coordinate system:
if (self.use_rotations):
for icrsh in xrange(self.n_corr_shells):
for sig,gf in Gloc[icrsh]: Gloc[icrsh][sig] << self.rotloc(icrsh,gf,direction='toLocal')
for bname,gf in Gloc[icrsh]: Gloc[icrsh][bname] << self.rotloc(icrsh,gf,direction='toLocal')
# transform to CTQMC blocks:
Glocret = [ BlockGf( name_block_generator = [ (a,GfImFreq(indices = al, mesh = Gloc[0].mesh)) for a,al in self.gf_struct_solver[i].iteritems() ],
Glocret = [ BlockGf( name_block_generator = [ (block,GfImFreq(indices = inner, mesh = Gloc[0].mesh)) for block,inner in self.gf_struct_solver[i].iteritems() ],
make_copies = False) for i in xrange(self.n_inequiv_corr_shells) ]
for ish in xrange(self.n_inequiv_corr_shells):
@ -868,21 +835,21 @@ class SumkLDA:
for blname in self.map[ish]:
cnt[blname] = 0
for a,al in self.gf_struct_solver[ish].iteritems():
blname = self.map_inv[ish][a]
map_ind[a] = range(len(al))
for i in al:
map_ind[a][i] = cnt[blname]
for block,inner in self.gf_struct_solver[ish].iteritems():
blname = self.map_inv[ish][block]
map_ind[block] = range(len(inner))
for i in inner:
map_ind[block][i] = cnt[blname]
cnt[blname]+=1
for bl, orblist in self.gf_struct_solver[ish].iteritems():
for i in range(len(orblist)):
for j in range(len(orblist)):
ind1 = orblist[i]
ind2 = orblist[j]
ind1_imp = map_ind[bl][ind1]
ind2_imp = map_ind[bl][ind2]
Glocret[ish][bl][ind1,ind2] << Gloc[self.invshellmap[ish]][self.map_inv[ish][bl]][ind1_imp,ind2_imp]
for block,inner in self.gf_struct_solver[ish].iteritems():
for i in range(len(inner)):
for j in range(len(inner)):
ind1 = inner[i]
ind2 = inner[j]
ind1_imp = map_ind[block][ind1]
ind2_imp = map_ind[block][ind2]
Glocret[ish][block][ind1,ind2] << Gloc[self.invshellmap[ish]][self.map_inv[ish][block]][ind1_imp,ind2_imp]
# return only the inequivalent shells:
@ -894,31 +861,31 @@ class SumkLDA:
assert (type(filename)==StringType), "filename has to be a string!"
ntoi = self.names_to_ind[self.SO]
bln = self.block_names[self.SO]
ntoi = self.spin_names_to_ind[self.SO]
bln = self.spin_block_names[self.SO]
# Set up deltaN:
deltaN = {}
for ib in bln:
deltaN[ib] = [ numpy.zeros( [self.n_orbitals[ik,ntoi[ib]],self.n_orbitals[ik,ntoi[ib]]], numpy.complex_) for ik in range(self.n_k)]
for b in bln:
deltaN[b] = [ numpy.zeros( [self.n_orbitals[ik,ntoi[b]],self.n_orbitals[ik,ntoi[b]]], numpy.complex_) for ik in range(self.n_k)]
ikarray=numpy.array(range(self.n_k))
dens = {}
for ib in bln:
dens[ib] = 0.0
for b in bln:
dens[b] = 0.0
for ik in mpi.slice_array(ikarray):
S = self.lattice_gf_matsubara(ik=ik,mu=self.chemical_potential)
for sig,g in S:
deltaN[sig][ik] = S[sig].density()
dens[sig] += self.bz_weights[ik] * S[sig].total_density()
for bname,gf in S:
deltaN[bname][ik] = S[bname].density()
dens[bname] += self.bz_weights[ik] * S[bname].total_density()
#put mpi Barrier:
for sig in deltaN:
for bname in deltaN:
for ik in range(self.n_k):
deltaN[sig][ik] = mpi.all_reduce(mpi.world,deltaN[sig][ik],lambda x,y : x+y)
dens[sig] = mpi.all_reduce(mpi.world,dens[sig],lambda x,y : x+y)
deltaN[bname][ik] = mpi.all_reduce(mpi.world,deltaN[bname][ik],lambda x,y : x+y)
dens[bname] = mpi.all_reduce(mpi.world,dens[bname],lambda x,y : x+y)
mpi.barrier()
# now save to file:
@ -967,7 +934,6 @@ class SumkLDA:
return deltaN, dens
################
# FIXME LEAVE UNDOCUMENTED
################
@ -1038,7 +1004,8 @@ class SumkLDA:
for ish in range(self.n_corr_shells):
dim = self.corr_shells[ish][3]
n_orb = self.n_orbitals[ik,0]
dens_mat[ish][:,:] += numpy.dot(self.proj_mat[ik,0,ish,0:dim,0:n_orb],self.proj_mat[ik,0,ish,0:dim,0:n_orb].transpose().conjugate()) * self.bz_weights[ik]
projmat = self.proj_mat[ik,0,ish,0:dim,0:n_orb]
dens_mat[ish][:,:] += numpy.dot(projmat, projmat.transpose().conjugate()) * self.bz_weights[ik]
if (self.symm_op!=0): dens_mat = self.symmcorr.symmetrize(dens_mat)
@ -1078,3 +1045,35 @@ class SumkLDA:
if atomlst[i+1]>atomlst[i]: atoms += 1
return atoms
##############################
# DUPLICATED, NEED TO REMOVE #
##############################
def inequiv_shells(self,lst):
"""
The number of inequivalent shells is calculated from lst, and a mapping is given as
map(i_corr_shells) = i_inequiv_corr_shells
invmap(i_inequiv_corr_shells) = i_corr_shells
in order to put the Self energies to all equivalent shells, and for extracting Gloc
"""
tmp = []
self.shellmap = [0 for i in range(len(lst))]
self.invshellmap = [0]
self.n_inequiv_corr_shells = 1
tmp.append( lst[0][1:3] )
if (len(lst)>1):
for i in range(len(lst)-1):
fnd = False
for j in range(self.n_inequiv_corr_shells):
if (tmp[j]==lst[i+1][1:3]):
fnd = True
self.shellmap[i+1] = j
if (fnd==False):
self.shellmap[i+1] = self.n_inequiv_corr_shells
self.n_inequiv_corr_shells += 1
tmp.append( lst[i+1][1:3] )
self.invshellmap.append(i+1)

View File

@ -41,11 +41,11 @@ class SumkLDATools(SumkLDA):
symmpar_data=symmpar_data, bands_data=bands_data)
def downfold_pc(self,ik,ir,ish,sig,gf_to_downfold,gf_inp):
def downfold_pc(self,ik,ir,ish,bname,gf_to_downfold,gf_inp):
"""Downfolding a block of the Greens function"""
gf_downfolded = gf_inp.copy()
isp = self.names_to_ind[self.SO][sig] # get spin index for proj. matrices
isp = self.spin_names_to_ind[self.SO][bname] # get spin index for proj. matrices
dim = self.shells[ish][3]
n_orb = self.n_orbitals[ik,isp]
L=self.proj_mat_pc[ik,isp,ish,ir,0:dim,0:n_orb]
@ -85,48 +85,48 @@ class SumkLDATools(SumkLDA):
"""Calculates the lattice Green function on the real frequency axis. If self energy is
present and with_Sigma=True, the mesh is taken from Sigma. Otherwise, the mesh has to be given."""
ntoi = self.names_to_ind[self.SO]
bln = self.block_names[self.SO]
ntoi = self.spin_names_to_ind[self.SO]
bln = self.spin_block_names[self.SO]
if (not hasattr(self,"Sigma_imp")): with_Sigma=False
if (with_Sigma):
assert all(type(g) == GfReFreq for name,g in self.Sigma_imp[0]), "Real frequency Sigma needed for lattice_gf_realfreq!"
assert all(type(gf) == GfReFreq for bname,gf in self.Sigma_imp[0]), "Real frequency Sigma needed for lattice_gf_realfreq!"
stmp = self.add_dc()
else:
assert (not (mesh is None)),"Without Sigma, give the mesh=(om_min,om_max,n_points) for lattice_gf_realfreq!"
if (self.G_upfold_refreq is None):
# first setting up of G_upfold_refreq
BS = [ range(self.n_orbitals[ik,ntoi[ib]]) for ib in bln ]
gf_struct = [ (bln[ib], BS[ib]) for ib in range(self.n_spin_blocks_gf[self.SO]) ]
a_list = [a for a,al in gf_struct]
block_structure = [ range(self.n_orbitals[ik,ntoi[b]]) for b in bln ]
gf_struct = [ (bln[ibl], block_structure[ibl]) for ibl in range(self.n_spin_blocks[self.SO]) ]
block_ind_list = [block for block,inner in gf_struct]
if (with_Sigma):
glist = lambda : [ GfReFreq(indices = al, mesh =self.Sigma_imp[0].mesh) for a,al in gf_struct]
glist = lambda : [ GfReFreq(indices = inner, mesh =self.Sigma_imp[0].mesh) for block,inner in gf_struct]
else:
glist = lambda : [ GfReFreq(indices = al, window=(mesh[0],mesh[1]),n_points=mesh[2]) for a,al in gf_struct]
self.G_upfold_refreq = BlockGf(name_list = a_list, block_list = glist(),make_copies=False)
glist = lambda : [ GfReFreq(indices = inner, window=(mesh[0],mesh[1]),n_points=mesh[2]) for block,inner in gf_struct]
self.G_upfold_refreq = BlockGf(name_list = block_ind_list, block_list = glist(),make_copies=False)
self.G_upfold_refreq.zero()
GFsize = [ gf.N1 for sig,gf in self.G_upfold_refreq]
unchangedsize = all( [ self.n_orbitals[ik,ntoi[bln[ib]]]==GFsize[ib]
for ib in range(self.n_spin_blocks_gf[self.SO]) ] )
GFsize = [ gf.N1 for bname,gf in self.G_upfold_refreq]
unchangedsize = all( [ self.n_orbitals[ik,ntoi[bln[ibl]]]==GFsize[ibl]
for ibl in range(self.n_spin_blocks[self.SO]) ] )
if (not unchangedsize):
BS = [ range(self.n_orbitals[ik,ntoi[ib]]) for ib in bln ]
gf_struct = [ (bln[ib], BS[ib]) for ib in range(self.n_spin_blocks_gf[self.SO]) ]
a_list = [a for a,al in gf_struct]
block_structure = [ range(self.n_orbitals[ik,ntoi[b]]) for b in bln ]
gf_struct = [ (bln[ibl], block_structure[ibl]) for ibl in range(self.n_spin_blocks[self.SO]) ]
block_ind_list = [block for block,inner in gf_struct]
if (with_Sigma):
glist = lambda : [ GfReFreq(indices = al, mesh =self.Sigma_imp[0].mesh) for a,al in gf_struct]
glist = lambda : [ GfReFreq(indices = inner, mesh =self.Sigma_imp[0].mesh) for block,inner in gf_struct]
else:
glist = lambda : [ GfReFreq(indices = al, window=(mesh[0],mesh[1]),n_points=mesh[2]) for a,al in gf_struct]
self.G_upfold_refreq = BlockGf(name_list = a_list, block_list = glist(),make_copies=False)
glist = lambda : [ GfReFreq(indices = inner, window=(mesh[0],mesh[1]),n_points=mesh[2]) for block,inner in gf_struct]
self.G_upfold_refreq = BlockGf(name_list = block_ind_list, block_list = glist(),make_copies=False)
self.G_upfold_refreq.zero()
idmat = [numpy.identity(self.n_orbitals[ik,ntoi[bl]],numpy.complex_) for bl in bln]
idmat = [numpy.identity(self.n_orbitals[ik,ntoi[b]],numpy.complex_) for b in bln]
self.G_upfold_refreq << Omega + 1j*broadening
M = copy.deepcopy(idmat)
for ibl in range(self.n_spin_blocks_gf[self.SO]):
for ibl in range(self.n_spin_blocks[self.SO]):
ind = ntoi[bln[ibl]]
n_orb = self.n_orbitals[ik,ind]
M[ibl] = self.hopping[ik,ind,0:n_orb,0:n_orb] - (idmat[ibl]*mu) - (idmat[ibl] * self.h_field * (1-2*ibl))
@ -135,7 +135,7 @@ class SumkLDATools(SumkLDA):
if (with_Sigma):
tmp = self.G_upfold_refreq.copy() # init temporary storage
for icrsh in xrange(self.n_corr_shells):
for sig,gf in tmp: tmp[sig] << self.upfold(ik,icrsh,sig,stmp[icrsh][sig],gf)
for bname,gf in tmp: tmp[bname] << self.upfold(ik,icrsh,bname,stmp[icrsh][bname],gf)
self.G_upfold_refreq -= tmp # adding to the upfolded GF
self.G_upfold_refreq.invert()
@ -152,13 +152,13 @@ class SumkLDATools(SumkLDA):
for i in range(n_om): om_mesh[i] = om_min + delta_om * i
DOS = {}
for bn in self.block_names[self.SO]:
for bn in self.spin_block_names[self.SO]:
DOS[bn] = numpy.zeros([n_om],numpy.float_)
DOSproj = [ {} for icrsh in range(self.n_inequiv_corr_shells) ]
DOSproj_orb = [ {} for icrsh in range(self.n_inequiv_corr_shells) ]
for icrsh in range(self.n_inequiv_corr_shells):
for bn in self.block_names[self.corr_shells[self.invshellmap[icrsh]][4]]:
for bn in self.spin_block_names[self.corr_shells[self.invshellmap[icrsh]][4]]:
dl = self.corr_shells[self.invshellmap[icrsh]][3]
DOSproj[icrsh][bn] = numpy.zeros([n_om],numpy.float_)
DOSproj_orb[icrsh][bn] = numpy.zeros([n_om,dl,dl],numpy.float_)
@ -166,9 +166,9 @@ class SumkLDATools(SumkLDA):
# init:
Gloc = []
for icrsh in range(self.n_corr_shells):
b_list = [a for a,al in self.gf_struct_corr[icrsh]]
#glist = lambda : [ GfReFreq(indices = al, beta = beta, mesh_array = mesh) for a,al in self.gf_struct_corr[icrsh]]
glist = lambda : [ GfReFreq(indices = al, window = (om_min,om_max), n_points = n_om) for a,al in self.gf_struct_corr[icrsh]]
b_list = [block for block,inner in self.gf_struct_corr[icrsh]]
#glist = lambda : [ GfReFreq(indices = inner, beta = beta, mesh_array = mesh) for block,inner in self.gf_struct_corr[icrsh]]
glist = lambda : [ GfReFreq(indices = inner, window = (om_min,om_max), n_points = n_om) for block,inner in self.gf_struct_corr[icrsh]]
Gloc.append(BlockGf(name_list = b_list, block_list = glist(),make_copies=False))
for icrsh in xrange(self.n_corr_shells): Gloc[icrsh].zero() # initialize to zero
@ -179,13 +179,13 @@ class SumkLDATools(SumkLDA):
# non-projected DOS
for iom in range(n_om):
for sig,gf in G_upfold:
for bname,gf in G_upfold:
asd = gf.data[iom,:,:].imag.trace()/(-3.1415926535)
DOS[sig][iom] += asd
DOS[bname][iom] += asd
for icrsh in xrange(self.n_corr_shells):
tmp = Gloc[icrsh].copy()
for sig,gf in tmp: tmp[sig] << self.downfold(ik,icrsh,sig,G_upfold[sig],gf) # downfolding G
for bname,gf in tmp: tmp[bname] << self.downfold(ik,icrsh,bname,G_upfold[bname],gf) # downfolding G
Gloc[icrsh] += tmp
@ -194,18 +194,18 @@ class SumkLDATools(SumkLDA):
if (self.use_rotations):
for icrsh in xrange(self.n_corr_shells):
for sig,gf in Gloc[icrsh]: Gloc[icrsh][sig] << self.rotloc(icrsh,gf,direction='toLocal')
for bname,gf in Gloc[icrsh]: Gloc[icrsh][bname] << self.rotloc(icrsh,gf,direction='toLocal')
# Gloc can now also be used to look at orbitally resolved quantities
for ish in range(self.n_inequiv_corr_shells):
for sig,gf in Gloc[self.invshellmap[ish]]: # loop over spins
for iom in range(n_om): DOSproj[ish][sig][iom] += gf.data[iom,:,:].imag.trace()/(-3.1415926535)
for bname,gf in Gloc[self.invshellmap[ish]]: # loop over spins
for iom in range(n_om): DOSproj[ish][bname][iom] += gf.data[iom,:,:].imag.trace()/(-3.1415926535)
DOSproj_orb[ish][sig][:,:,:] += gf.data[:,:,:].imag/(-3.1415926535)
DOSproj_orb[ish][bname][:,:,:] += gf.data[:,:,:].imag/(-3.1415926535)
# output:
if (mpi.is_master_node()):
for bn in self.block_names[self.SO]:
for bn in self.spin_block_names[self.SO]:
f=open('DOS%s.dat'%bn, 'w')
for i in range(n_om): f.write("%s %s\n"%(om_mesh[i],DOS[bn][i]))
f.close()
@ -241,16 +241,14 @@ class SumkLDATools(SumkLDA):
assert hasattr(self,"Sigma_imp"), "Set Sigma First!!"
#things_to_read = ['Dens_Mat_below','N_parproj','Proj_Mat_pc','rotmat_all']
#value_read = self.read_input_from_HDF(SubGrp=self.parproj_data, things_to_read=things_to_read)
value_read = self.read_parproj_input_from_hdf()
if not value_read: return value_read
if self.symm_op: self.Symm_par = Symmetry(self.hdf_file,subgroup=self.symmpar_data)
if self.symm_op: self.symmpar = Symmetry(self.hdf_file,subgroup=self.symmpar_data)
mu = self.chemical_potential
gf_struct_proj = [ [ (al, range(self.shells[i][3])) for al in self.block_names[self.SO] ] for i in xrange(self.n_shells) ]
Gproj = [BlockGf(name_block_generator = [ (a,GfReFreq(indices = al, mesh = self.Sigma_imp[0].mesh)) for a,al in gf_struct_proj[ish] ], make_copies = False )
gf_struct_proj = [ [ (b, range(self.shells[i][3])) for b in self.spin_block_names[self.SO] ] for i in xrange(self.n_shells) ]
Gproj = [BlockGf(name_block_generator = [ (block,GfReFreq(indices = inner, mesh = self.Sigma_imp[0].mesh)) for block,inner in gf_struct_proj[ish] ], make_copies = False )
for ish in xrange(self.n_shells)]
for ish in range(self.n_shells): Gproj[ish].zero()
@ -258,13 +256,13 @@ class SumkLDATools(SumkLDA):
n_om = len(Msh)
DOS = {}
for bn in self.block_names[self.SO]:
for bn in self.spin_block_names[self.SO]:
DOS[bn] = numpy.zeros([n_om],numpy.float_)
DOSproj = [ {} for ish in range(self.n_shells) ]
DOSproj_orb = [ {} for ish in range(self.n_shells) ]
for ish in range(self.n_shells):
for bn in self.block_names[self.SO]:
for bn in self.spin_block_names[self.SO]:
dl = self.shells[ish][3]
DOSproj[ish][bn] = numpy.zeros([n_om],numpy.float_)
DOSproj_orb[ish][bn] = numpy.zeros([n_om,dl,dl],numpy.float_)
@ -278,38 +276,38 @@ class SumkLDATools(SumkLDA):
# non-projected DOS
for iom in range(n_om):
for sig,gf in S: DOS[sig][iom] += gf.data[iom,:,:].imag.trace()/(-3.1415926535)
for bname,gf in S: DOS[bname][iom] += gf.data[iom,:,:].imag.trace()/(-3.1415926535)
#projected DOS:
for ish in xrange(self.n_shells):
tmp = Gproj[ish].copy()
for ir in xrange(self.n_parproj[ish]):
for sig,gf in tmp: tmp[sig] << self.downfold_pc(ik,ir,ish,sig,S[sig],gf)
for bname,gf in tmp: tmp[bname] << self.downfold_pc(ik,ir,ish,bname,S[bname],gf)
Gproj[ish] += tmp
# collect data from mpi:
for sig in DOS:
DOS[sig] = mpi.all_reduce(mpi.world,DOS[sig],lambda x,y : x+y)
for bname in DOS:
DOS[bname] = mpi.all_reduce(mpi.world,DOS[bname],lambda x,y : x+y)
for ish in xrange(self.n_shells):
Gproj[ish] << mpi.all_reduce(mpi.world,Gproj[ish],lambda x,y : x+y)
mpi.barrier()
if (self.symm_op!=0): Gproj = self.Symm_par.symmetrize(Gproj)
if (self.symm_op!=0): Gproj = self.symmpar.symmetrize(Gproj)
# rotation to local coord. system:
if (self.use_rotations):
for ish in xrange(self.n_shells):
for sig,gf in Gproj[ish]: Gproj[ish][sig] << self.rotloc_all(ish,gf,direction='toLocal')
for bname,gf in Gproj[ish]: Gproj[ish][bname] << self.rotloc_all(ish,gf,direction='toLocal')
for ish in range(self.n_shells):
for sig,gf in Gproj[ish]:
for iom in range(n_om): DOSproj[ish][sig][iom] += gf.data[iom,:,:].imag.trace()/(-3.1415926535)
DOSproj_orb[ish][sig][:,:,:] += gf.data[:,:,:].imag / (-3.1415926535)
for bname,gf in Gproj[ish]:
for iom in range(n_om): DOSproj[ish][bname][iom] += gf.data[iom,:,:].imag.trace()/(-3.1415926535)
DOSproj_orb[ish][bname][:,:,:] += gf.data[:,:,:].imag / (-3.1415926535)
if (mpi.is_master_node()):
# output to files
for bn in self.block_names[self.SO]:
for bn in self.spin_block_names[self.SO]:
f=open('./DOScorr%s.dat'%bn, 'w')
for i in range(n_om): f.write("%s %s\n"%(Msh[i],DOS[bn][i]))
f.close()
@ -369,7 +367,7 @@ class SumkLDATools(SumkLDA):
# calculate A(k,w):
mu = self.chemical_potential
bln = self.block_names[self.SO]
bln = self.spin_block_names[self.SO]
# init DOS:
M = [x.real for x in self.Sigma_imp[0].mesh]
@ -384,20 +382,20 @@ class SumkLDATools(SumkLDA):
if (ishell is None):
Akw = {}
for ibn in bln: Akw[ibn] = numpy.zeros([self.n_k, n_om ],numpy.float_)
for b in bln: Akw[b] = numpy.zeros([self.n_k, n_om ],numpy.float_)
else:
Akw = {}
for ibn in bln: Akw[ibn] = numpy.zeros([self.shells[ishell][3],self.n_k, n_om ],numpy.float_)
for b in bln: Akw[b] = numpy.zeros([self.shells[ishell][3],self.n_k, n_om ],numpy.float_)
if fermi_surface:
om_minplot = -2.0*broadening
om_maxplot = 2.0*broadening
Akw = {}
for ibn in bln: Akw[ibn] = numpy.zeros([self.n_k,1],numpy.float_)
for b in bln: Akw[b] = numpy.zeros([self.n_k,1],numpy.float_)
if not (ishell is None):
GFStruct_proj = [ (al, range(self.shells[ishell][3])) for al in bln ]
Gproj = BlockGf(name_block_generator = [ (a,GfReFreq(indices = al, mesh = self.Sigma_imp[0].mesh)) for a,al in GFStruct_proj ], make_copies = False)
GFStruct_proj = [ (b, range(self.shells[ishell][3])) for b in bln ]
Gproj = BlockGf(name_block_generator = [ (block,GfReFreq(indices = inner, mesh = self.Sigma_imp[0].mesh)) for block,inner in GFStruct_proj ], make_copies = False)
Gproj.zero()
for ik in xrange(self.n_k):
@ -408,10 +406,10 @@ class SumkLDATools(SumkLDA):
for iom in range(n_om):
if (M[iom]>om_minplot) and (M[iom]<om_maxplot):
if fermi_surface:
for sig,gf in S: Akw[sig][ik,0] += gf.data[iom,:,:].imag.trace()/(-3.1415926535) * (M[1]-M[0])
for bname,gf in S: Akw[bname][ik,0] += gf.data[iom,:,:].imag.trace()/(-3.1415926535) * (M[1]-M[0])
else:
for sig,gf in S: Akw[sig][ik,iom] += gf.data[iom,:,:].imag.trace()/(-3.1415926535)
Akw[sig][ik,iom] += ik*shift # shift Akw for plotting in xmgrace -- REMOVE
for bname,gf in S: Akw[bname][ik,iom] += gf.data[iom,:,:].imag.trace()/(-3.1415926535)
Akw[bname][ik,iom] += ik*shift # shift Akw for plotting in xmgrace -- REMOVE
else:
@ -419,14 +417,14 @@ class SumkLDATools(SumkLDA):
Gproj.zero()
tmp = Gproj.copy()
for ir in xrange(self.n_parproj[ishell]):
for sig,gf in tmp: tmp[sig] << self.downfold_pc(ik,ir,ishell,sig,S[sig],gf)
for bname,gf in tmp: tmp[bname] << self.downfold_pc(ik,ir,ishell,bname,S[bname],gf)
Gproj += tmp
# FIXME NEED TO READ IN ROTMAT_ALL FROM PARPROJ SUBGROUP, REPLACE ROTLOC WITH ROTLOC_ALL
# TO BE FIXED:
# rotate to local frame
#if (self.use_rotations):
# for sig,gf in Gproj: Gproj[sig] << self.rotloc(0,gf,direction='toLocal')
# for bname,gf in Gproj: Gproj[bname] << self.rotloc(0,gf,direction='toLocal')
for iom in range(n_om):
if (M[iom]>om_minplot) and (M[iom]<om_maxplot):
@ -501,27 +499,24 @@ class SumkLDATools(SumkLDA):
"""Calculates the orbitally-resolved density matrix for all the orbitals considered in the input.
The theta-projectors are used, hence case.parproj data is necessary"""
#things_to_read = ['Dens_Mat_below','N_parproj','Proj_Mat_pc','rotmat_all']
#value_read = self.read_input_from_HDF(SubGrp=self.parproj_data,things_to_read=things_to_read)
value_read = self.read_parproj_input_from_hdf()
if not value_read: return value_read
if self.symm_op: self.Symm_par = Symmetry(self.hdf_file,subgroup=self.symmpar_data)
if self.symm_op: self.symmpar = Symmetry(self.hdf_file,subgroup=self.symmpar_data)
# Density matrix in the window
bln = self.block_names[self.SO]
ntoi = self.names_to_ind[self.SO]
bln = self.spin_block_names[self.SO]
ntoi = self.spin_names_to_ind[self.SO]
self.dens_mat_window = [ [numpy.zeros([self.shells[ish][3],self.shells[ish][3]],numpy.complex_) for ish in range(self.n_shells)]
for isp in range(len(bln)) ] # init the density matrix
mu = self.chemical_potential
GFStruct_proj = [ [ (al, range(self.shells[i][3])) for al in bln ] for i in xrange(self.n_shells) ]
GFStruct_proj = [ [ (b, range(self.shells[i][3])) for b in bln ] for i in xrange(self.n_shells) ]
if hasattr(self,"Sigma_imp"):
Gproj = [BlockGf(name_block_generator = [ (a,GfImFreq(indices = al, mesh = self.Sigma_imp[0].mesh)) for a,al in GFStruct_proj[ish] ], make_copies = False)
Gproj = [BlockGf(name_block_generator = [ (block,GfImFreq(indices = inner, mesh = self.Sigma_imp[0].mesh)) for block,inner in GFStruct_proj[ish] ], make_copies = False)
for ish in xrange(self.n_shells)]
beta = self.Sigma_imp[0].mesh.beta
else:
Gproj = [BlockGf(name_block_generator = [ (a,GfImFreq(indices = al, beta = beta)) for a,al in GFStruct_proj[ish] ], make_copies = False)
Gproj = [BlockGf(name_block_generator = [ (block,GfImFreq(indices = inner, beta = beta)) for block,inner in GFStruct_proj[ish] ], make_copies = False)
for ish in xrange(self.n_shells)]
for ish in xrange(self.n_shells): Gproj[ish].zero()
@ -535,7 +530,7 @@ class SumkLDATools(SumkLDA):
for ish in xrange(self.n_shells):
tmp = Gproj[ish].copy()
for ir in xrange(self.n_parproj[ish]):
for sig,gf in tmp: tmp[sig] << self.downfold_pc(ik,ir,ish,sig,S[sig],gf)
for bname,gf in tmp: tmp[bname] << self.downfold_pc(ik,ir,ish,bname,S[bname],gf)
Gproj[ish] += tmp
#collect data from mpi:
@ -545,17 +540,17 @@ class SumkLDATools(SumkLDA):
# Symmetrisation:
if (self.symm_op!=0): Gproj = self.Symm_par.symmetrize(Gproj)
if (self.symm_op!=0): Gproj = self.symmpar.symmetrize(Gproj)
for ish in xrange(self.n_shells):
# Rotation to local:
if (self.use_rotations):
for sig,gf in Gproj[ish]: Gproj[ish][sig] << self.rotloc_all(ish,gf,direction='toLocal')
for bname,gf in Gproj[ish]: Gproj[ish][bname] << self.rotloc_all(ish,gf,direction='toLocal')
isp = 0
for sig,gf in Gproj[ish]: #dmg.append(Gproj[ish].density()[sig])
self.dens_mat_window[isp][ish] = Gproj[ish].density()[sig]
for bname,gf in Gproj[ish]: #dmg.append(Gproj[ish].density()[bname])
self.dens_mat_window[isp][ish] = Gproj[ish].density()[bname]
isp+=1
# add Density matrices to get the total:

View File

@ -109,7 +109,7 @@ class Symmetry:
tmp = obj[iorb].copy()
if (self.time_inv[in_s]): tmp << tmp.transpose()
for sig,gf in tmp: tmp[sig].from_L_G_R(self.mat[in_s][iorb],tmp[sig],self.mat[in_s][iorb].conjugate().transpose())
for bname,gf in tmp: tmp[bname].from_L_G_R(self.mat[in_s][iorb],tmp[bname],self.mat[in_s][iorb].conjugate().transpose())
tmp *= 1.0/self.n_s
symm_obj[jorb] += tmp
@ -143,7 +143,7 @@ class Symmetry:
# if (isinstance(symm_obj[0],BlockGf)):
# tmp = symm_obj[iorb].copy()
# tmp << tmp.transpose()
# for sig,gf in tmp: tmp[sig].from_L_G_R(self.mat_tinv[iorb],tmp[sig],self.mat_tinv[iorb].transpose().conjugate())
# for bname,gf in tmp: tmp[bname].from_L_G_R(self.mat_tinv[iorb],tmp[bname],self.mat_tinv[iorb].transpose().conjugate())
# symm_obj[iorb] += tmp
# symm_obj[iorb] /= 2.0
#

View File

@ -73,30 +73,29 @@ class TransBasis:
'''Rotates a given GF into the new basis.'''
# build a full GF
gfrotated = BlockGf( name_block_generator = [ (a,GfImFreq(indices = al, mesh = gf_to_rot.mesh)) for a,al in self.SK.gf_struct_corr[0] ], make_copies = False)
gfrotated = BlockGf( name_block_generator = [ (block,GfImFreq(indices = inner, mesh = gf_to_rot.mesh)) for block,inner in self.SK.gf_struct_corr[0] ], make_copies = False)
# transform the CTQMC blocks to the full matrix:
s = self.SK.shellmap[0] # s is the index of the inequivalent shell corresponding to icrsh
for bl, orblist in self.gf_struct_solver[s].iteritems():
for i in range(len(orblist)):
for j in range(len(orblist)):
ind1 = orblist[i]
ind2 = orblist[j]
gfrotated[self.SK.map_inv[s][bl]][ind1,ind2] << gf_to_rot[bl][ind1,ind2]
for block, inner in self.gf_struct_solver[s].iteritems():
for i in range(len(inner)):
for j in range(len(inner)):
ind1 = inner[i]
ind2 = inner[j]
gfrotated[self.SK.map_inv[s][block]][ind1,ind2] << gf_to_rot[block][ind1,ind2]
# Rotate using the matrix w
for sig,bn in gfrotated:
gfrotated[sig].from_L_G_R(self.w.transpose().conjugate(),gfrotated[sig],self.w)
for bname,gf in gfrotated:
gfrotated[bname].from_L_G_R(self.w.transpose().conjugate(),gfrotated[bname],self.w)
gfreturn = gf_to_rot.copy()
# Put back into CTQMC basis:
for bl, orblist in self.gf_struct_solver[s].iteritems():
for i in range(len(orblist)):
for j in range(len(orblist)):
ind1 = orblist[i]
ind2 = orblist[j]
gfreturn[bl][ind1,ind2] << gfrotated[self.SK.map_inv[0][bl]][ind1,ind2]
for block, inner in self.gf_struct_solver[s].iteritems():
for i in range(len(inner)):
for j in range(len(inner)):
ind1 = inner[i]
ind2 = inner[j]
gfreturn[block][ind1,ind2] << gfrotated[self.SK.map_inv[0][block]][ind1,ind2]
return gfreturn