3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-25 13:53:40 +01:00

gf: new tail fitting

This commit is contained in:
Hartmut Hafermann 2014-02-03 21:51:40 +01:00 committed by Olivier Parcollet
parent 31ae772892
commit 65ed3a8dc2
2 changed files with 241 additions and 0 deletions

View File

@ -0,0 +1,77 @@
#//define TRIQS_ARRAYS_ENFORCE_BOUNDCHECK
#include <triqs/gfs.hpp>
#include <triqs/gfs/local/fit_tail.hpp>
using triqs::arrays::make_shape;
using namespace triqs::gfs;
using triqs::gfs::local::tail;
#define TEST(X) std::cout << BOOST_PP_STRINGIZE((X)) << " ---> "<< (X) <<std::endl<<std::endl;
int main() {
double precision=10e-9;
triqs::clef::placeholder<0> iom_;
double beta =10;
int N=100;
auto gw = gf<imfreq>{{beta, Fermion, N}, {1, 1}};
triqs::arrays::array<double,1> c(3);
triqs::clef::placeholder<1> i_;
c(i_) << (2*i_+1);
int size=0; //means we don't know any moments
int order_min=1; //means that the first moment in the final tail will be the first moment
auto known_moments = tail(make_shape(1,1), size, order_min); //length is 0, first moment to fit is order_min
gw(iom_) << c(0)/iom_ + c(1)/iom_/iom_ + c(2)/iom_/iom_/iom_;
//show tail
// std::cout<< "before fitting:" <<std::endl;
// for(auto &i : gw.singularity().data()) std::cout << i << std::endl;
//erase tail
for(auto &i : gw.singularity().data()) i = 0.0;
size_t wn_min=50; //frequency to start the fit
size_t wn_max=90; //final fitting frequency (included)
int n_moments=3; //number of moments in the final tail (including known ones)
//restore tail
set_tail_from_fit(gw, known_moments, n_moments, wn_min, wn_max);
// std::cout<< "after fitting:" <<std::endl;
// for(auto &i : gw.singularity().data()) std::cout << i << std::endl;
for(size_t i=0; i<first_dim(c); i++){
double diff = std::abs( c(i) - gw.singularity().data()(i,0,0) );
//std::cout<< "diff: " << diff <<std::endl;
if (diff > precision) TRIQS_RUNTIME_ERROR<<" fit_tail error : diff="<<diff<<"\n";
}
//erase tail
for(auto &i : gw.singularity().data()) i = 0.0;
//now with a known moment
size=1; //means that we know one moment
order_min=1; //means that the first moment in the final tail will be the first moment
known_moments = tail(make_shape(1,1), size, order_min); //length is 0, first moment to fit is order_min
known_moments(1)=1.;//set the first moment
set_tail_from_fit(gw, known_moments, n_moments, wn_min, wn_max, true);//true replace the gf data in the fitting range by the tail values
for(size_t i=0; i<first_dim(c); i++){
double diff = std::abs( c(i) - gw.singularity().data()(i,0,0) );
//std::cout<< "diff: " << diff <<std::endl;
if (diff > precision) TRIQS_RUNTIME_ERROR<<" fit_tail error : diff="<<diff<<"\n";
}
}

View File

@ -0,0 +1,164 @@
/*******************************************************************************
*
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
*
* Copyright (C) 2012 by H. Hafermann, O. Parcollet
*
* TRIQS is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#ifndef TRIQS_GF_LOCAL_FIT_TAIL_H
#define TRIQS_GF_LOCAL_FIT_TAIL_H
#include <triqs/gfs/imfreq.hpp>
#include <triqs/gfs/block.hpp>
#include <triqs/gfs/local/tail.hpp>
#include <triqs/arrays/blas_lapack/gelss.hpp>
#include <triqs/python_tools/cython_proxy.hpp>
namespace triqs {
namespace gfs {
namespace local {
using triqs::gfs::imfreq;
using triqs::gfs::block_index;
using triqs::gfs::block_index;
namespace tgl = triqs::gfs::local;
// routine for fitting the tail (singularity) of a Matsubara Green's function
// this is a *linear* least squares problem (with non-linear basis functions)
// which is solved by singular value decomposition of the design matrix
// the routine fits the real part (even moments) and the imaginary part
//(odd moments) separately, since this is more stable
// input:
// the input gf<imfreq> Green's function: gf
// the known moments in the form of a tail(_view): known_moments
// the TOTAL number of desired moments (including the known ones): n_moments
// the index of the first and last frequency to fit (the last one is included): wn_min, wn_max
// output: returns the tail obtained by fitting
tail fit_tail_impl(gf<imfreq> &gf, const tail_view known_moments, int n_moments, int wn_min, int wn_max) {
tail res(get_target_shape(gf), n_moments, known_moments.order_min());
if (known_moments.size())
for (int i = known_moments.order_min(); i <= known_moments.order_max(); i++) res(i) = known_moments(i);
// if known_moments.size()==0, the lowest order to be obtained from the fit is determined by order_min in known_moments
// if known_moments.size()==0, the lowest order is the one following order_max in known_moments
const double beta = gf.mesh().domain().beta;
int n_unknown_moments = n_moments - known_moments.size();
if (n_unknown_moments < 1) return known_moments;
// get the number of even unknown moments: it is n_unknown_moments/2+1 if the first
// moment is even and n_moments is odd; n_unknown_moments/2 otherwise
int omin = known_moments.size() == 0 ? known_moments.order_min() : known_moments.order_max() + 1; // smallest unknown moment
int omin_even = omin % 2 == 0 ? omin : omin + 1;
int omin_odd = omin % 2 != 0 ? omin : omin + 1;
int size_even = n_unknown_moments / 2;
if (n_unknown_moments % 2 != 0 && omin % 2 == 0) size_even += 1;
int size_odd = n_unknown_moments - size_even;
int size1 = wn_max - wn_min + 1;
// size2 is the number of moments
arrays::matrix<double, 2> A(size1, std::max(size_even, size_odd), FORTRAN_LAYOUT);
arrays::matrix<double, 2> B(size1, 1, FORTRAN_LAYOUT);
arrays::vector<double> S(std::max(size_even, size_odd));
const double rcond = 0.0;
int rank;
for (size_t i = 0; i < get_target_shape(gf)[0]; i++) {
for (size_t j = 0; j < get_target_shape(gf)[1]; j++) {
// fit the odd moments
// S.resize(size_odd);
// A.resize(size1,size_odd); //when resizing, gelss segfaults
for (int k = 0; k < size1; k++) {
auto n = wn_min + k;
auto iw = std::complex<double>(0.0, (2 * n + 1) * M_PI / beta);
B(k, 0) = imag(gf.data()(n, i, j));
// subtract known tail if present
if (known_moments.size() > 0)
B(k, 0) -= imag(slice_target(known_moments, arrays::range(i, i + 1), arrays::range(j, j + 1)).evaluate(iw)(0, 0));
for (int l = 0; l < size_odd; l++) {
int order = omin_odd + 2 * l;
A(k, l) = imag(pow(iw, -1.0 * order)); // set design matrix for odd moments
}
}
arrays::lapack::gelss(A, B, S, rcond, rank);
for (int m = 0; m < size_odd; m++) {
res(omin_odd + 2 * m)(i, j) = B(m, 0);
}
// fit the even moments
// S.resize(size_even);
// A.resize(size1,size_even); //when resizing, gelss segfaults
for (int k = 0; k < size1; k++) {
auto n = wn_min + k;
auto iw = std::complex<double>(0.0, (2 * n + 1) * M_PI / beta);
B(k, 0) = real(gf.data()(n, i, j));
// subtract known tail if present
if (known_moments.size() > 0)
B(k, 0) -= real(slice_target(known_moments, arrays::range(i, i + 1), arrays::range(j, j + 1)).evaluate(iw)(0, 0));
for (int l = 0; l < size_even; l++) {
int order = omin_even + 2 * l;
A(k, l) = real(pow(iw, -1.0 * order)); // set design matrix for odd moments
}
}
arrays::lapack::gelss(A, B, S, rcond, rank);
for (int m = 0; m < size_even; m++) {
res(omin_even + 2 * m)(i, j) = B(m, 0);
}
}
}
return res; // return tail
}
void set_tail_from_fit(gf<imfreq> &gf, tail_view known_moments, int n_moments, size_t wn_min, size_t wn_max,
bool replace_by_fit = false) {
if (get_target_shape(gf) != known_moments.shape()) TRIQS_RUNTIME_ERROR << "shape of tail does not match shape of gf";
gf.singularity() = fit_tail_impl(gf, known_moments, n_moments, wn_min, wn_max);
if (replace_by_fit) { // replace data in the fitting range by the values from the fitted tail
size_t i = 0;
for (auto iw : gf.mesh()) { // (arrays::range(wn_min,wn_max+1)) {
if ((i >= wn_min) && (i <= wn_max)) gf[iw] = gf.singularity().evaluate(iw);
i++;
}
}
}
void set_tail_from_fit(gf<block_index, gf<imfreq>> &block_gf, tail_view known_moments, int n_moments, size_t wn_min,
size_t wn_max, bool replace_by_fit = false) {
// for(auto &gf : block_gf) set_tail_from_fit(gf, known_moments, n_moments, wn_min, wn_max, replace_by_fit);
for (size_t i = 0; i < block_gf.mesh().size(); i++)
set_tail_from_fit(block_gf[i], known_moments, n_moments, wn_min, wn_max, replace_by_fit);
}
}
}
} // namespace
#endif