3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-21 11:53:41 +01:00

Added input of Fermi weights, cleaned-up the code

This commit is contained in:
Oleg E. Peil 2015-11-19 16:32:50 +01:00
parent f544825684
commit 63de4f68a8

View File

@ -29,7 +29,6 @@ try:
import simplejson as json
except ImportError:
import json
#from plotools import ProjectorGroup, ProjectorShell
class VaspConverter(ConverterTools):
"""
@ -211,6 +210,7 @@ class VaspConverter(ConverterTools):
# raise NotImplementedError("Noncollinear calculations are not implemented")
# else:
hopping = numpy.zeros([n_k, n_spin_blocs, nb_max, nb_max], numpy.complex_)
f_weights = numpy.zeros([n_k, n_spin_blocs, nb_max], numpy.complex_)
band_window = [numpy.zeros((n_k, 2), dtype=int) for isp in xrange(n_spin_blocs)]
n_orbitals = numpy.zeros([n_k, n_spin_blocs], numpy.int)
@ -222,6 +222,7 @@ class VaspConverter(ConverterTools):
n_orbitals[ik, isp] = nb
for ib in xrange(nb):
hopping[ik, isp, ib, ib] = rf.next()
f_weights[ik, isp, ib] = rf.next()
# Projectors
# print n_orbitals
@ -263,126 +264,6 @@ class VaspConverter(ConverterTools):
rf.close()
#
# try:
# energy_unit = R.next() # read the energy convertion factor
# n_k = int(R.next()) # read the number of k points
# k_dep_projection = 1
# SP = int(R.next()) # flag for spin-polarised calculation
# SO = int(R.next()) # flag for spin-orbit calculation
# charge_below = R.next() # total charge below energy window
# density_required = R.next() # total density required, for setting the chemical potential
# symm_op = 1 # Use symmetry groups for the k-sum
#
# # the information on the non-correlated shells is not important here, maybe skip:
# n_shells = int(R.next()) # number of shells (e.g. Fe d, As p, O p) in the unit cell,
# # corresponds to index R in formulas
# # now read the information about the shells (atom, sort, l, dim):
# shell_entries = ['atom', 'sort', 'l', 'dim']
# shells = [ {name: int(val) for name, val in zip(shell_entries, R)} for ish in range(n_shells) ]
#
# n_corr_shells = int(R.next()) # number of corr. shells (e.g. Fe d, Ce f) in the unit cell,
# # corresponds to index R in formulas
# # now read the information about the shells (atom, sort, l, dim, SO flag, irep):
# corr_shell_entries = ['atom', 'sort', 'l', 'dim', 'SO', 'irep']
# corr_shells = [ {name: int(val) for name, val in zip(corr_shell_entries, R)} for icrsh in range(n_corr_shells) ]
#
# # determine the number of inequivalent correlated shells and maps, needed for further reading
# n_inequiv_shells, corr_to_inequiv, inequiv_to_corr = ConverterTools.det_shell_equivalence(self,corr_shells)
#
# use_rotations = 1
# rot_mat = [numpy.identity(corr_shells[icrsh]['dim'],numpy.complex_) for icrsh in range(n_corr_shells)]
#
# # read the matrices
# rot_mat_time_inv = [0 for i in range(n_corr_shells)]
#
# for icrsh in range(n_corr_shells):
# for i in range(corr_shells[icrsh]['dim']): # read real part:
# for j in range(corr_shells[icrsh]['dim']):
# rot_mat[icrsh][i,j] = R.next()
# for i in range(corr_shells[icrsh]['dim']): # read imaginary part:
# for j in range(corr_shells[icrsh]['dim']):
# rot_mat[icrsh][i,j] += 1j * R.next()
#
# if (SP==1): # read time inversion flag:
# rot_mat_time_inv[icrsh] = int(R.next())
#
# # Read here the info for the transformation of the basis:
# n_reps = [1 for i in range(n_inequiv_shells)]
# dim_reps = [0 for i in range(n_inequiv_shells)]
# T = []
# for ish in range(n_inequiv_shells):
# n_reps[ish] = int(R.next()) # number of representatives ("subsets"), e.g. t2g and eg
# dim_reps[ish] = [int(R.next()) for i in range(n_reps[ish])] # dimensions of the subsets
#
# # The transformation matrix:
# # is of dimension 2l+1 without SO, and 2*(2l+1) with SO!
# ll = 2*corr_shells[inequiv_to_corr[ish]]['l']+1
# lmax = ll * (corr_shells[inequiv_to_corr[ish]]['SO'] + 1)
# T.append(numpy.zeros([lmax,lmax],numpy.complex_))
#
# # now read it from file:
# for i in range(lmax):
# for j in range(lmax):
# T[ish][i,j] = R.next()
# for i in range(lmax):
# for j in range(lmax):
# T[ish][i,j] += 1j * R.next()
#
# # Spin blocks to be read:
# n_spin_blocs = SP + 1 - SO
#
# # read the list of n_orbitals for all k points
# n_orbitals = numpy.zeros([n_k,n_spin_blocs],numpy.int)
# for isp in range(n_spin_blocs):
# for ik in range(n_k):
# n_orbitals[ik,isp] = int(R.next())
#
# # Initialise the projectors:
# proj_mat = numpy.zeros([n_k,n_spin_blocs,n_corr_shells,max([crsh['dim'] for crsh in corr_shells]),max(n_orbitals)],numpy.complex_)
#
# # Read the projectors from the file:
# for ik in range(n_k):
# for icrsh in range(n_corr_shells):
# n_orb = corr_shells[icrsh]['dim']
# # first Real part for BOTH spins, due to conventions in dmftproj:
# for isp in range(n_spin_blocs):
# for i in range(n_orb):
# for j in range(n_orbitals[ik][isp]):
# proj_mat[ik,isp,icrsh,i,j] = R.next()
# # now Imag part:
# for isp in range(n_spin_blocs):
# for i in range(n_orb):
# for j in range(n_orbitals[ik][isp]):
# proj_mat[ik,isp,icrsh,i,j] += 1j * R.next()
#
# # now define the arrays for weights and hopping ...
# bz_weights = numpy.ones([n_k],numpy.float_)/ float(n_k) # w(k_index), default normalisation
# hopping = numpy.zeros([n_k,n_spin_blocs,max(n_orbitals),max(n_orbitals)],numpy.complex_)
#
# # weights in the file
# for ik in range(n_k) : bz_weights[ik] = R.next()
#
# # if the sum over spins is in the weights, take it out again!!
# sm = sum(bz_weights)
# bz_weights[:] /= sm
#
# # Grab the H
# # we use now the convention of a DIAGONAL Hamiltonian -- convention for Wien2K.
# for isp in range(n_spin_blocs):
# for ik in range(n_k) :
# n_orb = n_orbitals[ik,isp]
# for i in range(n_orb):
# hopping[ik,isp,i,i] = R.next() * energy_unit
#
# # keep some things that we need for reading parproj:
# things_to_set = ['n_shells','shells','n_corr_shells','corr_shells','n_spin_blocs','n_orbitals','n_k','SO','SP','energy_unit']
# for it in things_to_set: setattr(self,it,locals()[it])
# except StopIteration : # a more explicit error if the file is corrupted.
# raise "Wien2k_converter : reading file %s failed!"%filename
#
# R.close()
# # Reading done!
# Save it to the HDF:
ar = HDFArchive(self.hdf_file,'a')
@ -402,164 +283,6 @@ class VaspConverter(ConverterTools):
# misc_subgrp=self.misc_subgrp,SO=self.SO,SP=self.SP,n_k=self.n_k)
def convert_parproj_input(self):
"""
Reads the input for the partial charges projectors from case.parproj, and stores it in the symmpar_subgrp
group in the HDF5.
"""
if not (mpi.is_master_node()): return
mpi.report("Reading input from %s..."%self.parproj_file)
dens_mat_below = [ [numpy.zeros([self.shells[ish]['dim'],self.shells[ish]['dim']],numpy.complex_) for ish in range(self.n_shells)]
for isp in range(self.n_spin_blocs) ]
R = ConverterTools.read_fortran_file(self,self.parproj_file,self.fortran_to_replace)
n_parproj = [int(R.next()) for i in range(self.n_shells)]
n_parproj = numpy.array(n_parproj)
# Initialise P, here a double list of matrices:
proj_mat_all = numpy.zeros([self.n_k,self.n_spin_blocs,self.n_shells,max(n_parproj),max([sh['dim'] for sh in self.shells]),max(self.n_orbitals)],numpy.complex_)
rot_mat_all = [numpy.identity(self.shells[ish]['dim'],numpy.complex_) for ish in range(self.n_shells)]
rot_mat_all_time_inv = [0 for i in range(self.n_shells)]
for ish in range(self.n_shells):
# read first the projectors for this orbital:
for ik in range(self.n_k):
for ir in range(n_parproj[ish]):
for isp in range(self.n_spin_blocs):
for i in range(self.shells[ish]['dim']): # read real part:
for j in range(self.n_orbitals[ik][isp]):
proj_mat_all[ik,isp,ish,ir,i,j] = R.next()
for isp in range(self.n_spin_blocs):
for i in range(self.shells[ish]['dim']): # read imaginary part:
for j in range(self.n_orbitals[ik][isp]):
proj_mat_all[ik,isp,ish,ir,i,j] += 1j * R.next()
# now read the Density Matrix for this orbital below the energy window:
for isp in range(self.n_spin_blocs):
for i in range(self.shells[ish]['dim']): # read real part:
for j in range(self.shells[ish]['dim']):
dens_mat_below[isp][ish][i,j] = R.next()
for isp in range(self.n_spin_blocs):
for i in range(self.shells[ish]['dim']): # read imaginary part:
for j in range(self.shells[ish]['dim']):
dens_mat_below[isp][ish][i,j] += 1j * R.next()
if (self.SP==0): dens_mat_below[isp][ish] /= 2.0
# Global -> local rotation matrix for this shell:
for i in range(self.shells[ish]['dim']): # read real part:
for j in range(self.shells[ish]['dim']):
rot_mat_all[ish][i,j] = R.next()
for i in range(self.shells[ish]['dim']): # read imaginary part:
for j in range(self.shells[ish]['dim']):
rot_mat_all[ish][i,j] += 1j * R.next()
if (self.SP):
rot_mat_all_time_inv[ish] = int(R.next())
R.close()
# Reading done!
# Save it to the HDF:
ar = HDFArchive(self.hdf_file,'a')
if not (self.parproj_subgrp in ar): ar.create_group(self.parproj_subgrp)
# The subgroup containing the data. If it does not exist, it is created. If it exists, the data is overwritten!
things_to_save = ['dens_mat_below','n_parproj','proj_mat_all','rot_mat_all','rot_mat_all_time_inv']
for it in things_to_save: ar[self.parproj_subgrp][it] = locals()[it]
del ar
# Symmetries are used, so now convert symmetry information for *all* orbitals:
self.convert_symmetry_input(orbits=self.shells,symm_file=self.symmpar_file,symm_subgrp=self.symmpar_subgrp,SO=self.SO,SP=self.SP)
def convert_bands_input(self):
"""
Converts the input for momentum resolved spectral functions, and stores it in bands_subgrp in the
HDF5.
"""
if not (mpi.is_master_node()): return
mpi.report("Reading bands input from %s..."%self.band_file)
R = ConverterTools.read_fortran_file(self,self.band_file,self.fortran_to_replace)
try:
n_k = int(R.next())
# read the list of n_orbitals for all k points
n_orbitals = numpy.zeros([n_k,self.n_spin_blocs],numpy.int)
for isp in range(self.n_spin_blocs):
for ik in range(n_k):
n_orbitals[ik,isp] = int(R.next())
# Initialise the projectors:
proj_mat = numpy.zeros([n_k,self.n_spin_blocs,self.n_corr_shells,max([crsh['dim'] for crsh in self.corr_shells]),max(n_orbitals)],numpy.complex_)
# Read the projectors from the file:
for ik in range(n_k):
for icrsh in range(self.n_corr_shells):
n_orb = self.corr_shells[icrsh]['dim']
# first Real part for BOTH spins, due to conventions in dmftproj:
for isp in range(self.n_spin_blocs):
for i in range(n_orb):
for j in range(n_orbitals[ik,isp]):
proj_mat[ik,isp,icrsh,i,j] = R.next()
# now Imag part:
for isp in range(self.n_spin_blocs):
for i in range(n_orb):
for j in range(n_orbitals[ik,isp]):
proj_mat[ik,isp,icrsh,i,j] += 1j * R.next()
hopping = numpy.zeros([n_k,self.n_spin_blocs,max(n_orbitals),max(n_orbitals)],numpy.complex_)
# Grab the H
# we use now the convention of a DIAGONAL Hamiltonian!!!!
for isp in range(self.n_spin_blocs):
for ik in range(n_k) :
n_orb = n_orbitals[ik,isp]
for i in range(n_orb):
hopping[ik,isp,i,i] = R.next() * self.energy_unit
# now read the partial projectors:
n_parproj = [int(R.next()) for i in range(self.n_shells)]
n_parproj = numpy.array(n_parproj)
# Initialise P, here a double list of matrices:
proj_mat_all = numpy.zeros([n_k,self.n_spin_blocs,self.n_shells,max(n_parproj),max([sh['dim'] for sh in self.shells]),max(n_orbitals)],numpy.complex_)
for ish in range(self.n_shells):
for ik in range(n_k):
for ir in range(n_parproj[ish]):
for isp in range(self.n_spin_blocs):
for i in range(self.shells[ish]['dim']): # read real part:
for j in range(n_orbitals[ik,isp]):
proj_mat_all[ik,isp,ish,ir,i,j] = R.next()
for i in range(self.shells[ish]['dim']): # read imaginary part:
for j in range(n_orbitals[ik,isp]):
proj_mat_all[ik,isp,ish,ir,i,j] += 1j * R.next()
except StopIteration : # a more explicit error if the file is corrupted.
raise "Wien2k_converter : reading file band_file failed!"
R.close()
# Reading done!
# Save it to the HDF:
ar = HDFArchive(self.hdf_file,'a')
if not (self.bands_subgrp in ar): ar.create_group(self.bands_subgrp)
# The subgroup containing the data. If it does not exist, it is created. If it exists, the data is overwritten!
things_to_save = ['n_k','n_orbitals','proj_mat','hopping','n_parproj','proj_mat_all']
for it in things_to_save: ar[self.bands_subgrp][it] = locals()[it]
del ar
def convert_misc_input(self, bandwin_file, struct_file, outputs_file, misc_subgrp, SO, SP, n_k):
"""
Reads input for the band window from bandwin_file, which is case.oubwin,
@ -657,71 +380,6 @@ class VaspConverter(ConverterTools):
del ar
def convert_transport_input(self):
"""
Reads the input files necessary for transport calculations
and stores the data in the HDFfile
"""
if not (mpi.is_master_node()): return
# Check if SP, SO and n_k are already in h5
ar = HDFArchive(self.hdf_file, 'a')
if not (self.dft_subgrp in ar): raise IOError, "convert_transport_input: No %s subgroup in hdf file found! Call convert_dmft_input first." %self.dft_subgrp
SP = ar[self.dft_subgrp]['SP']
SO = ar[self.dft_subgrp]['SO']
n_k = ar[self.dft_subgrp]['n_k']
del ar
# Read relevant data from .pmat/up/dn files
###########################################
# band_window_optics: Contains the index of the lowest and highest band within the
# band window (used by optics) for each k-point.
# velocities_k: velocity (momentum) matrix elements between all bands in band_window_optics
# and each k-point.
if (SP == 0 or SO == 1):
files = [self.pmat_file]
elif SP == 1:
files = [self.pmat_file+'up', self.pmat_file+'dn']
else: # SO and SP can't both be 1
assert 0, "convert_transport_input: Reading velocity file error! Check SP and SO!"
velocities_k = [[] for f in files]
band_window_optics = []
for isp, f in enumerate(files):
if not os.path.exists(f) : raise IOError, "convert_transport_input: File %s does not exist" %f
mpi.report("Reading input from %s..."%f)
R = ConverterTools.read_fortran_file(self, f, {'D':'E','(':'',')':'',',':' '})
band_window_optics_isp = []
for ik in xrange(n_k):
R.next()
nu1 = int(R.next())
nu2 = int(R.next())
band_window_optics_isp.append((nu1, nu2))
n_bands = nu2 - nu1 + 1
for _ in range(4): R.next()
if n_bands <= 0:
velocity_xyz = numpy.zeros((1, 1, 3), dtype = complex)
else:
velocity_xyz = numpy.zeros((n_bands, n_bands, 3), dtype = complex)
for nu_i in range(n_bands):
for nu_j in range(nu_i, n_bands):
for i in range(3):
velocity_xyz[nu_i][nu_j][i] = R.next() + R.next()*1j
if (nu_i != nu_j): velocity_xyz[nu_j][nu_i][i] = velocity_xyz[nu_i][nu_j][i].conjugate()
velocities_k[isp].append(velocity_xyz)
band_window_optics.append(numpy.array(band_window_optics_isp))
R.close() # Reading done!
# Put data to HDF5 file
ar = HDFArchive(self.hdf_file, 'a')
if not (self.transp_subgrp in ar): ar.create_group(self.transp_subgrp)
# The subgroup containing the data. If it does not exist, it is created. If it exists, the data is overwritten!!!
things_to_save = ['band_window_optics', 'velocities_k']
for it in things_to_save: ar[self.transp_subgrp][it] = locals()[it]
del ar
def convert_symmetry_input(self, ctrl_head, orbits, symm_subgrp):
"""
Reads input for the symmetrisations from symm_file, which is case.sympar or case.symqmc.
@ -738,48 +396,6 @@ class VaspConverter(ConverterTools):
time_inv = [0]
mat = [numpy.identity(1)]
mat_tinv = [numpy.identity(1)]
# if not (mpi.is_master_node()): return
# mpi.report("Reading input from %s..."%symm_file)
#
# n_orbits = len(orbits)
#
# R = ConverterTools.read_fortran_file(self,symm_file,self.fortran_to_replace)
#
# try:
# n_symm = int(R.next()) # Number of symmetry operations
# n_atoms = int(R.next()) # number of atoms involved
# perm = [ [int(R.next()) for i in range(n_atoms)] for j in range(n_symm) ] # list of permutations of the atoms
# if SP:
# time_inv = [ int(R.next()) for j in range(n_symm) ] # time inversion for SO coupling
# else:
# time_inv = [ 0 for j in range(n_symm) ]
#
# # Now read matrices:
# mat = []
# for i_symm in range(n_symm):
#
# mat.append( [ numpy.zeros([orbits[orb]['dim'], orbits[orb]['dim']],numpy.complex_) for orb in range(n_orbits) ] )
# for orb in range(n_orbits):
# for i in range(orbits[orb]['dim']):
# for j in range(orbits[orb]['dim']):
# mat[i_symm][orb][i,j] = R.next() # real part
# for i in range(orbits[orb]['dim']):
# for j in range(orbits[orb]['dim']):
# mat[i_symm][orb][i,j] += 1j * R.next() # imaginary part
#
# mat_tinv = [numpy.identity(orbits[orb]['dim'],numpy.complex_)
# for orb in range(n_orbits)]
#
# if ((SO==0) and (SP==0)):
# # here we need an additional time inversion operation, so read it:
# for orb in range(n_orbits):
# for i in range(orbits[orb]['dim']):
# for j in range(orbits[orb]['dim']):
# mat_tinv[orb][i,j] = R.next() # real part
# for i in range(orbits[orb]['dim']):
# for j in range(orbits[orb]['dim']):
# mat_tinv[orb][i,j] += 1j * R.next() # imaginary part
# Save it to the HDF:
ar=HDFArchive(self.hdf_file,'a')