mirror of
https://github.com/triqs/dft_tools
synced 2024-12-21 11:53:41 +01:00
Added input of Fermi weights, cleaned-up the code
This commit is contained in:
parent
f544825684
commit
63de4f68a8
@ -29,7 +29,6 @@ try:
|
||||
import simplejson as json
|
||||
except ImportError:
|
||||
import json
|
||||
#from plotools import ProjectorGroup, ProjectorShell
|
||||
|
||||
class VaspConverter(ConverterTools):
|
||||
"""
|
||||
@ -211,6 +210,7 @@ class VaspConverter(ConverterTools):
|
||||
# raise NotImplementedError("Noncollinear calculations are not implemented")
|
||||
# else:
|
||||
hopping = numpy.zeros([n_k, n_spin_blocs, nb_max, nb_max], numpy.complex_)
|
||||
f_weights = numpy.zeros([n_k, n_spin_blocs, nb_max], numpy.complex_)
|
||||
band_window = [numpy.zeros((n_k, 2), dtype=int) for isp in xrange(n_spin_blocs)]
|
||||
n_orbitals = numpy.zeros([n_k, n_spin_blocs], numpy.int)
|
||||
|
||||
@ -222,6 +222,7 @@ class VaspConverter(ConverterTools):
|
||||
n_orbitals[ik, isp] = nb
|
||||
for ib in xrange(nb):
|
||||
hopping[ik, isp, ib, ib] = rf.next()
|
||||
f_weights[ik, isp, ib] = rf.next()
|
||||
|
||||
# Projectors
|
||||
# print n_orbitals
|
||||
@ -263,126 +264,6 @@ class VaspConverter(ConverterTools):
|
||||
|
||||
rf.close()
|
||||
|
||||
#
|
||||
# try:
|
||||
# energy_unit = R.next() # read the energy convertion factor
|
||||
# n_k = int(R.next()) # read the number of k points
|
||||
# k_dep_projection = 1
|
||||
# SP = int(R.next()) # flag for spin-polarised calculation
|
||||
# SO = int(R.next()) # flag for spin-orbit calculation
|
||||
# charge_below = R.next() # total charge below energy window
|
||||
# density_required = R.next() # total density required, for setting the chemical potential
|
||||
# symm_op = 1 # Use symmetry groups for the k-sum
|
||||
#
|
||||
# # the information on the non-correlated shells is not important here, maybe skip:
|
||||
# n_shells = int(R.next()) # number of shells (e.g. Fe d, As p, O p) in the unit cell,
|
||||
# # corresponds to index R in formulas
|
||||
# # now read the information about the shells (atom, sort, l, dim):
|
||||
# shell_entries = ['atom', 'sort', 'l', 'dim']
|
||||
# shells = [ {name: int(val) for name, val in zip(shell_entries, R)} for ish in range(n_shells) ]
|
||||
#
|
||||
# n_corr_shells = int(R.next()) # number of corr. shells (e.g. Fe d, Ce f) in the unit cell,
|
||||
# # corresponds to index R in formulas
|
||||
# # now read the information about the shells (atom, sort, l, dim, SO flag, irep):
|
||||
# corr_shell_entries = ['atom', 'sort', 'l', 'dim', 'SO', 'irep']
|
||||
# corr_shells = [ {name: int(val) for name, val in zip(corr_shell_entries, R)} for icrsh in range(n_corr_shells) ]
|
||||
#
|
||||
# # determine the number of inequivalent correlated shells and maps, needed for further reading
|
||||
# n_inequiv_shells, corr_to_inequiv, inequiv_to_corr = ConverterTools.det_shell_equivalence(self,corr_shells)
|
||||
#
|
||||
# use_rotations = 1
|
||||
# rot_mat = [numpy.identity(corr_shells[icrsh]['dim'],numpy.complex_) for icrsh in range(n_corr_shells)]
|
||||
#
|
||||
# # read the matrices
|
||||
# rot_mat_time_inv = [0 for i in range(n_corr_shells)]
|
||||
#
|
||||
# for icrsh in range(n_corr_shells):
|
||||
# for i in range(corr_shells[icrsh]['dim']): # read real part:
|
||||
# for j in range(corr_shells[icrsh]['dim']):
|
||||
# rot_mat[icrsh][i,j] = R.next()
|
||||
# for i in range(corr_shells[icrsh]['dim']): # read imaginary part:
|
||||
# for j in range(corr_shells[icrsh]['dim']):
|
||||
# rot_mat[icrsh][i,j] += 1j * R.next()
|
||||
#
|
||||
# if (SP==1): # read time inversion flag:
|
||||
# rot_mat_time_inv[icrsh] = int(R.next())
|
||||
#
|
||||
# # Read here the info for the transformation of the basis:
|
||||
# n_reps = [1 for i in range(n_inequiv_shells)]
|
||||
# dim_reps = [0 for i in range(n_inequiv_shells)]
|
||||
# T = []
|
||||
# for ish in range(n_inequiv_shells):
|
||||
# n_reps[ish] = int(R.next()) # number of representatives ("subsets"), e.g. t2g and eg
|
||||
# dim_reps[ish] = [int(R.next()) for i in range(n_reps[ish])] # dimensions of the subsets
|
||||
#
|
||||
# # The transformation matrix:
|
||||
# # is of dimension 2l+1 without SO, and 2*(2l+1) with SO!
|
||||
# ll = 2*corr_shells[inequiv_to_corr[ish]]['l']+1
|
||||
# lmax = ll * (corr_shells[inequiv_to_corr[ish]]['SO'] + 1)
|
||||
# T.append(numpy.zeros([lmax,lmax],numpy.complex_))
|
||||
#
|
||||
# # now read it from file:
|
||||
# for i in range(lmax):
|
||||
# for j in range(lmax):
|
||||
# T[ish][i,j] = R.next()
|
||||
# for i in range(lmax):
|
||||
# for j in range(lmax):
|
||||
# T[ish][i,j] += 1j * R.next()
|
||||
#
|
||||
# # Spin blocks to be read:
|
||||
# n_spin_blocs = SP + 1 - SO
|
||||
#
|
||||
# # read the list of n_orbitals for all k points
|
||||
# n_orbitals = numpy.zeros([n_k,n_spin_blocs],numpy.int)
|
||||
# for isp in range(n_spin_blocs):
|
||||
# for ik in range(n_k):
|
||||
# n_orbitals[ik,isp] = int(R.next())
|
||||
#
|
||||
# # Initialise the projectors:
|
||||
# proj_mat = numpy.zeros([n_k,n_spin_blocs,n_corr_shells,max([crsh['dim'] for crsh in corr_shells]),max(n_orbitals)],numpy.complex_)
|
||||
#
|
||||
# # Read the projectors from the file:
|
||||
# for ik in range(n_k):
|
||||
# for icrsh in range(n_corr_shells):
|
||||
# n_orb = corr_shells[icrsh]['dim']
|
||||
# # first Real part for BOTH spins, due to conventions in dmftproj:
|
||||
# for isp in range(n_spin_blocs):
|
||||
# for i in range(n_orb):
|
||||
# for j in range(n_orbitals[ik][isp]):
|
||||
# proj_mat[ik,isp,icrsh,i,j] = R.next()
|
||||
# # now Imag part:
|
||||
# for isp in range(n_spin_blocs):
|
||||
# for i in range(n_orb):
|
||||
# for j in range(n_orbitals[ik][isp]):
|
||||
# proj_mat[ik,isp,icrsh,i,j] += 1j * R.next()
|
||||
#
|
||||
# # now define the arrays for weights and hopping ...
|
||||
# bz_weights = numpy.ones([n_k],numpy.float_)/ float(n_k) # w(k_index), default normalisation
|
||||
# hopping = numpy.zeros([n_k,n_spin_blocs,max(n_orbitals),max(n_orbitals)],numpy.complex_)
|
||||
#
|
||||
# # weights in the file
|
||||
# for ik in range(n_k) : bz_weights[ik] = R.next()
|
||||
#
|
||||
# # if the sum over spins is in the weights, take it out again!!
|
||||
# sm = sum(bz_weights)
|
||||
# bz_weights[:] /= sm
|
||||
#
|
||||
# # Grab the H
|
||||
# # we use now the convention of a DIAGONAL Hamiltonian -- convention for Wien2K.
|
||||
# for isp in range(n_spin_blocs):
|
||||
# for ik in range(n_k) :
|
||||
# n_orb = n_orbitals[ik,isp]
|
||||
# for i in range(n_orb):
|
||||
# hopping[ik,isp,i,i] = R.next() * energy_unit
|
||||
#
|
||||
# # keep some things that we need for reading parproj:
|
||||
# things_to_set = ['n_shells','shells','n_corr_shells','corr_shells','n_spin_blocs','n_orbitals','n_k','SO','SP','energy_unit']
|
||||
# for it in things_to_set: setattr(self,it,locals()[it])
|
||||
# except StopIteration : # a more explicit error if the file is corrupted.
|
||||
# raise "Wien2k_converter : reading file %s failed!"%filename
|
||||
#
|
||||
# R.close()
|
||||
# # Reading done!
|
||||
|
||||
# Save it to the HDF:
|
||||
ar = HDFArchive(self.hdf_file,'a')
|
||||
@ -402,164 +283,6 @@ class VaspConverter(ConverterTools):
|
||||
# misc_subgrp=self.misc_subgrp,SO=self.SO,SP=self.SP,n_k=self.n_k)
|
||||
|
||||
|
||||
def convert_parproj_input(self):
|
||||
"""
|
||||
Reads the input for the partial charges projectors from case.parproj, and stores it in the symmpar_subgrp
|
||||
group in the HDF5.
|
||||
"""
|
||||
|
||||
if not (mpi.is_master_node()): return
|
||||
mpi.report("Reading input from %s..."%self.parproj_file)
|
||||
|
||||
dens_mat_below = [ [numpy.zeros([self.shells[ish]['dim'],self.shells[ish]['dim']],numpy.complex_) for ish in range(self.n_shells)]
|
||||
for isp in range(self.n_spin_blocs) ]
|
||||
|
||||
R = ConverterTools.read_fortran_file(self,self.parproj_file,self.fortran_to_replace)
|
||||
|
||||
n_parproj = [int(R.next()) for i in range(self.n_shells)]
|
||||
n_parproj = numpy.array(n_parproj)
|
||||
|
||||
# Initialise P, here a double list of matrices:
|
||||
proj_mat_all = numpy.zeros([self.n_k,self.n_spin_blocs,self.n_shells,max(n_parproj),max([sh['dim'] for sh in self.shells]),max(self.n_orbitals)],numpy.complex_)
|
||||
|
||||
rot_mat_all = [numpy.identity(self.shells[ish]['dim'],numpy.complex_) for ish in range(self.n_shells)]
|
||||
rot_mat_all_time_inv = [0 for i in range(self.n_shells)]
|
||||
|
||||
for ish in range(self.n_shells):
|
||||
# read first the projectors for this orbital:
|
||||
for ik in range(self.n_k):
|
||||
for ir in range(n_parproj[ish]):
|
||||
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for i in range(self.shells[ish]['dim']): # read real part:
|
||||
for j in range(self.n_orbitals[ik][isp]):
|
||||
proj_mat_all[ik,isp,ish,ir,i,j] = R.next()
|
||||
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for i in range(self.shells[ish]['dim']): # read imaginary part:
|
||||
for j in range(self.n_orbitals[ik][isp]):
|
||||
proj_mat_all[ik,isp,ish,ir,i,j] += 1j * R.next()
|
||||
|
||||
|
||||
# now read the Density Matrix for this orbital below the energy window:
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for i in range(self.shells[ish]['dim']): # read real part:
|
||||
for j in range(self.shells[ish]['dim']):
|
||||
dens_mat_below[isp][ish][i,j] = R.next()
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for i in range(self.shells[ish]['dim']): # read imaginary part:
|
||||
for j in range(self.shells[ish]['dim']):
|
||||
dens_mat_below[isp][ish][i,j] += 1j * R.next()
|
||||
if (self.SP==0): dens_mat_below[isp][ish] /= 2.0
|
||||
|
||||
# Global -> local rotation matrix for this shell:
|
||||
for i in range(self.shells[ish]['dim']): # read real part:
|
||||
for j in range(self.shells[ish]['dim']):
|
||||
rot_mat_all[ish][i,j] = R.next()
|
||||
for i in range(self.shells[ish]['dim']): # read imaginary part:
|
||||
for j in range(self.shells[ish]['dim']):
|
||||
rot_mat_all[ish][i,j] += 1j * R.next()
|
||||
|
||||
if (self.SP):
|
||||
rot_mat_all_time_inv[ish] = int(R.next())
|
||||
|
||||
R.close()
|
||||
# Reading done!
|
||||
|
||||
# Save it to the HDF:
|
||||
ar = HDFArchive(self.hdf_file,'a')
|
||||
if not (self.parproj_subgrp in ar): ar.create_group(self.parproj_subgrp)
|
||||
# The subgroup containing the data. If it does not exist, it is created. If it exists, the data is overwritten!
|
||||
things_to_save = ['dens_mat_below','n_parproj','proj_mat_all','rot_mat_all','rot_mat_all_time_inv']
|
||||
for it in things_to_save: ar[self.parproj_subgrp][it] = locals()[it]
|
||||
del ar
|
||||
|
||||
# Symmetries are used, so now convert symmetry information for *all* orbitals:
|
||||
self.convert_symmetry_input(orbits=self.shells,symm_file=self.symmpar_file,symm_subgrp=self.symmpar_subgrp,SO=self.SO,SP=self.SP)
|
||||
|
||||
|
||||
def convert_bands_input(self):
|
||||
"""
|
||||
Converts the input for momentum resolved spectral functions, and stores it in bands_subgrp in the
|
||||
HDF5.
|
||||
"""
|
||||
|
||||
if not (mpi.is_master_node()): return
|
||||
mpi.report("Reading bands input from %s..."%self.band_file)
|
||||
|
||||
R = ConverterTools.read_fortran_file(self,self.band_file,self.fortran_to_replace)
|
||||
try:
|
||||
n_k = int(R.next())
|
||||
|
||||
# read the list of n_orbitals for all k points
|
||||
n_orbitals = numpy.zeros([n_k,self.n_spin_blocs],numpy.int)
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for ik in range(n_k):
|
||||
n_orbitals[ik,isp] = int(R.next())
|
||||
|
||||
# Initialise the projectors:
|
||||
proj_mat = numpy.zeros([n_k,self.n_spin_blocs,self.n_corr_shells,max([crsh['dim'] for crsh in self.corr_shells]),max(n_orbitals)],numpy.complex_)
|
||||
|
||||
# Read the projectors from the file:
|
||||
for ik in range(n_k):
|
||||
for icrsh in range(self.n_corr_shells):
|
||||
n_orb = self.corr_shells[icrsh]['dim']
|
||||
# first Real part for BOTH spins, due to conventions in dmftproj:
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for i in range(n_orb):
|
||||
for j in range(n_orbitals[ik,isp]):
|
||||
proj_mat[ik,isp,icrsh,i,j] = R.next()
|
||||
# now Imag part:
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for i in range(n_orb):
|
||||
for j in range(n_orbitals[ik,isp]):
|
||||
proj_mat[ik,isp,icrsh,i,j] += 1j * R.next()
|
||||
|
||||
hopping = numpy.zeros([n_k,self.n_spin_blocs,max(n_orbitals),max(n_orbitals)],numpy.complex_)
|
||||
|
||||
# Grab the H
|
||||
# we use now the convention of a DIAGONAL Hamiltonian!!!!
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for ik in range(n_k) :
|
||||
n_orb = n_orbitals[ik,isp]
|
||||
for i in range(n_orb):
|
||||
hopping[ik,isp,i,i] = R.next() * self.energy_unit
|
||||
|
||||
# now read the partial projectors:
|
||||
n_parproj = [int(R.next()) for i in range(self.n_shells)]
|
||||
n_parproj = numpy.array(n_parproj)
|
||||
|
||||
# Initialise P, here a double list of matrices:
|
||||
proj_mat_all = numpy.zeros([n_k,self.n_spin_blocs,self.n_shells,max(n_parproj),max([sh['dim'] for sh in self.shells]),max(n_orbitals)],numpy.complex_)
|
||||
|
||||
for ish in range(self.n_shells):
|
||||
for ik in range(n_k):
|
||||
for ir in range(n_parproj[ish]):
|
||||
for isp in range(self.n_spin_blocs):
|
||||
|
||||
for i in range(self.shells[ish]['dim']): # read real part:
|
||||
for j in range(n_orbitals[ik,isp]):
|
||||
proj_mat_all[ik,isp,ish,ir,i,j] = R.next()
|
||||
|
||||
for i in range(self.shells[ish]['dim']): # read imaginary part:
|
||||
for j in range(n_orbitals[ik,isp]):
|
||||
proj_mat_all[ik,isp,ish,ir,i,j] += 1j * R.next()
|
||||
|
||||
except StopIteration : # a more explicit error if the file is corrupted.
|
||||
raise "Wien2k_converter : reading file band_file failed!"
|
||||
|
||||
R.close()
|
||||
# Reading done!
|
||||
|
||||
# Save it to the HDF:
|
||||
ar = HDFArchive(self.hdf_file,'a')
|
||||
if not (self.bands_subgrp in ar): ar.create_group(self.bands_subgrp)
|
||||
# The subgroup containing the data. If it does not exist, it is created. If it exists, the data is overwritten!
|
||||
things_to_save = ['n_k','n_orbitals','proj_mat','hopping','n_parproj','proj_mat_all']
|
||||
for it in things_to_save: ar[self.bands_subgrp][it] = locals()[it]
|
||||
del ar
|
||||
|
||||
|
||||
def convert_misc_input(self, bandwin_file, struct_file, outputs_file, misc_subgrp, SO, SP, n_k):
|
||||
"""
|
||||
Reads input for the band window from bandwin_file, which is case.oubwin,
|
||||
@ -657,71 +380,6 @@ class VaspConverter(ConverterTools):
|
||||
del ar
|
||||
|
||||
|
||||
def convert_transport_input(self):
|
||||
"""
|
||||
Reads the input files necessary for transport calculations
|
||||
and stores the data in the HDFfile
|
||||
"""
|
||||
if not (mpi.is_master_node()): return
|
||||
|
||||
# Check if SP, SO and n_k are already in h5
|
||||
ar = HDFArchive(self.hdf_file, 'a')
|
||||
if not (self.dft_subgrp in ar): raise IOError, "convert_transport_input: No %s subgroup in hdf file found! Call convert_dmft_input first." %self.dft_subgrp
|
||||
SP = ar[self.dft_subgrp]['SP']
|
||||
SO = ar[self.dft_subgrp]['SO']
|
||||
n_k = ar[self.dft_subgrp]['n_k']
|
||||
del ar
|
||||
|
||||
# Read relevant data from .pmat/up/dn files
|
||||
###########################################
|
||||
# band_window_optics: Contains the index of the lowest and highest band within the
|
||||
# band window (used by optics) for each k-point.
|
||||
# velocities_k: velocity (momentum) matrix elements between all bands in band_window_optics
|
||||
# and each k-point.
|
||||
|
||||
if (SP == 0 or SO == 1):
|
||||
files = [self.pmat_file]
|
||||
elif SP == 1:
|
||||
files = [self.pmat_file+'up', self.pmat_file+'dn']
|
||||
else: # SO and SP can't both be 1
|
||||
assert 0, "convert_transport_input: Reading velocity file error! Check SP and SO!"
|
||||
|
||||
velocities_k = [[] for f in files]
|
||||
band_window_optics = []
|
||||
for isp, f in enumerate(files):
|
||||
if not os.path.exists(f) : raise IOError, "convert_transport_input: File %s does not exist" %f
|
||||
mpi.report("Reading input from %s..."%f)
|
||||
|
||||
R = ConverterTools.read_fortran_file(self, f, {'D':'E','(':'',')':'',',':' '})
|
||||
band_window_optics_isp = []
|
||||
for ik in xrange(n_k):
|
||||
R.next()
|
||||
nu1 = int(R.next())
|
||||
nu2 = int(R.next())
|
||||
band_window_optics_isp.append((nu1, nu2))
|
||||
n_bands = nu2 - nu1 + 1
|
||||
for _ in range(4): R.next()
|
||||
if n_bands <= 0:
|
||||
velocity_xyz = numpy.zeros((1, 1, 3), dtype = complex)
|
||||
else:
|
||||
velocity_xyz = numpy.zeros((n_bands, n_bands, 3), dtype = complex)
|
||||
for nu_i in range(n_bands):
|
||||
for nu_j in range(nu_i, n_bands):
|
||||
for i in range(3):
|
||||
velocity_xyz[nu_i][nu_j][i] = R.next() + R.next()*1j
|
||||
if (nu_i != nu_j): velocity_xyz[nu_j][nu_i][i] = velocity_xyz[nu_i][nu_j][i].conjugate()
|
||||
velocities_k[isp].append(velocity_xyz)
|
||||
band_window_optics.append(numpy.array(band_window_optics_isp))
|
||||
R.close() # Reading done!
|
||||
|
||||
# Put data to HDF5 file
|
||||
ar = HDFArchive(self.hdf_file, 'a')
|
||||
if not (self.transp_subgrp in ar): ar.create_group(self.transp_subgrp)
|
||||
# The subgroup containing the data. If it does not exist, it is created. If it exists, the data is overwritten!!!
|
||||
things_to_save = ['band_window_optics', 'velocities_k']
|
||||
for it in things_to_save: ar[self.transp_subgrp][it] = locals()[it]
|
||||
del ar
|
||||
|
||||
def convert_symmetry_input(self, ctrl_head, orbits, symm_subgrp):
|
||||
"""
|
||||
Reads input for the symmetrisations from symm_file, which is case.sympar or case.symqmc.
|
||||
@ -738,48 +396,6 @@ class VaspConverter(ConverterTools):
|
||||
time_inv = [0]
|
||||
mat = [numpy.identity(1)]
|
||||
mat_tinv = [numpy.identity(1)]
|
||||
# if not (mpi.is_master_node()): return
|
||||
# mpi.report("Reading input from %s..."%symm_file)
|
||||
#
|
||||
# n_orbits = len(orbits)
|
||||
#
|
||||
# R = ConverterTools.read_fortran_file(self,symm_file,self.fortran_to_replace)
|
||||
#
|
||||
# try:
|
||||
# n_symm = int(R.next()) # Number of symmetry operations
|
||||
# n_atoms = int(R.next()) # number of atoms involved
|
||||
# perm = [ [int(R.next()) for i in range(n_atoms)] for j in range(n_symm) ] # list of permutations of the atoms
|
||||
# if SP:
|
||||
# time_inv = [ int(R.next()) for j in range(n_symm) ] # time inversion for SO coupling
|
||||
# else:
|
||||
# time_inv = [ 0 for j in range(n_symm) ]
|
||||
#
|
||||
# # Now read matrices:
|
||||
# mat = []
|
||||
# for i_symm in range(n_symm):
|
||||
#
|
||||
# mat.append( [ numpy.zeros([orbits[orb]['dim'], orbits[orb]['dim']],numpy.complex_) for orb in range(n_orbits) ] )
|
||||
# for orb in range(n_orbits):
|
||||
# for i in range(orbits[orb]['dim']):
|
||||
# for j in range(orbits[orb]['dim']):
|
||||
# mat[i_symm][orb][i,j] = R.next() # real part
|
||||
# for i in range(orbits[orb]['dim']):
|
||||
# for j in range(orbits[orb]['dim']):
|
||||
# mat[i_symm][orb][i,j] += 1j * R.next() # imaginary part
|
||||
#
|
||||
# mat_tinv = [numpy.identity(orbits[orb]['dim'],numpy.complex_)
|
||||
# for orb in range(n_orbits)]
|
||||
#
|
||||
# if ((SO==0) and (SP==0)):
|
||||
# # here we need an additional time inversion operation, so read it:
|
||||
# for orb in range(n_orbits):
|
||||
# for i in range(orbits[orb]['dim']):
|
||||
# for j in range(orbits[orb]['dim']):
|
||||
# mat_tinv[orb][i,j] = R.next() # real part
|
||||
# for i in range(orbits[orb]['dim']):
|
||||
# for j in range(orbits[orb]['dim']):
|
||||
# mat_tinv[orb][i,j] += 1j * R.next() # imaginary part
|
||||
|
||||
|
||||
# Save it to the HDF:
|
||||
ar=HDFArchive(self.hdf_file,'a')
|
||||
|
Loading…
Reference in New Issue
Block a user