3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-12 14:08:24 +01:00

gf. Clean code, rereading for doc

- no major change. Code cleaning + clang-format.
This commit is contained in:
Olivier Parcollet 2013-10-22 21:28:25 +02:00
parent 2fc4f1cd09
commit 603e397e16
2 changed files with 260 additions and 225 deletions

View File

@ -33,8 +33,6 @@ namespace triqs { namespace gfs {
using utility::factory; using utility::factory;
using arrays::make_shape; using arrays::make_shape;
template <typename T> long get_shape(std::vector<T> const &x) { return x.size(); }
// the gf mesh // the gf mesh
template <typename Variable, typename Opt = void> struct gf_mesh; template <typename Variable, typename Opt = void> struct gf_mesh;
@ -70,77 +68,16 @@ namespace triqs { namespace gfs {
// this is used to specialize this part of the code to array of dim 3 (matrix gf), dim 1 (scalar gf) and vector (e.g. block gf, ...) // this is used to specialize this part of the code to array of dim 3 (matrix gf), dim 1 (scalar gf) and vector (e.g. block gf, ...)
template<typename Variable, typename Target, typename Opt, typename Enable = void> struct data_proxy; template<typename Variable, typename Target, typename Opt, typename Enable = void> struct data_proxy;
// This trait contains functions to read/write in hdf5 files. Can be specialized for some case (Cf block) // Traits to read/write in hdf5 files. Can be specialized for some case (Cf block). Defined below
template <typename Variable, typename Target, typename Opt> struct h5_name; // value is a const char * template <typename Variable, typename Target, typename Opt> struct h5_name; // value is a const char
template <typename Variable, typename Target, typename Opt> struct h5_rw;
template<typename Variable, typename Opt> struct h5_name<Variable,scalar_valued,Opt> { static std::string invoke(){ return h5_name<Variable,matrix_valued,Opt>::invoke() + "_s";}}; // factories regroup all factories (constructors..) for all types of gf. Defaults implemented below.
// the h5 write and read of gf members, so that we can specialize it e.g. for block gf
template <typename Variable, typename Target, typename Opt> struct h5_rw {
static void write (h5::group gr, gf_const_view<Variable,Target,Opt> g) {
h5_write(gr,"data",g._data);
h5_write(gr,"singularity",g._singularity);
h5_write(gr,"mesh",g._mesh);
h5_write(gr,"symmetry",g._symmetry);
}
template<bool B>
static void read (h5::group gr, gf_impl<Variable,Target,Opt,B,false> & g) {
h5_read(gr,"data",g._data);
h5_read(gr,"singularity",g._singularity);
h5_read(gr,"mesh",g._mesh);
h5_read(gr,"symmetry",g._symmetry);
}
};
// factories regroup all factories (constructors..) for all types of gf.
template <typename Variable, typename Target, typename Opt> struct factories; template <typename Variable, typename Target, typename Opt> struct factories;
template<int R, typename Var, typename Opt> struct factories<Var,tensor_valued<R>,Opt> {
typedef gf<Var,tensor_valued<R>,Opt> gf_t;
typedef tqa::mini_vector<size_t,R> target_shape_t;
typedef typename gf_t::mesh_t mesh_t;
static typename gf_t::data_t make_data(mesh_t const & m, target_shape_t shape) {
typename gf_t::data_t A(shape.front_append(m.size()));
A() =0;
return A;
}
static typename gf_t::singularity_t make_singularity(mesh_t const & m, target_shape_t shape) { return typename gf_t::singularity_t(shape); }
};
template<typename Var, typename Opt> struct factories<Var,matrix_valued,Opt> {
typedef gf<Var,matrix_valued,Opt> gf_t;
typedef tqa::mini_vector<size_t,2> target_shape_t;
typedef typename gf_t::mesh_t mesh_t;
static typename gf_t::data_t make_data(mesh_t const & m, target_shape_t shape) {
typename gf_t::data_t A(shape.front_append(m.size()));
A() =0;
return A;
}
static typename gf_t::singularity_t make_singularity(mesh_t const & m, target_shape_t shape) { return typename gf_t::singularity_t(shape); }
};
template<typename Var, typename Opt> struct factories<Var,scalar_valued,Opt> {
typedef gf<Var,scalar_valued,Opt> gf_t;
struct target_shape_t {};
typedef typename gf_t::mesh_t mesh_t;
static typename gf_t::data_t make_data(mesh_t const & m, target_shape_t shape) {
typename gf_t::data_t A(m.size());
A() =0;
return A;
}
static typename gf_t::singularity_t make_singularity(mesh_t const & m, target_shape_t shape) { return typename gf_t::singularity_t {1,1} ; }
};
} // gfs_implementation } // gfs_implementation
// OBSOLETE : kept for backward compatibility only. Do not document.
// make_gf and make_gf_view forward any args to them // make_gf and make_gf_view forward any args to them
template <typename Variable, typename Target=matrix_valued, typename Opt=void, typename ... U> template <typename Variable, typename Target=matrix_valued, typename Opt=void, typename ... U>
gf<Variable,Target,Opt> make_gf(gf_mesh<Variable,Opt> m, U && ... x) gf<Variable,Target,Opt> make_gf(gf_mesh<Variable,Opt> m, U && ... x)
@ -155,15 +92,18 @@ namespace triqs { namespace gfs {
// The trait that "marks" the Green function // The trait that "marks" the Green function
TRIQS_DEFINE_CONCEPT_AND_ASSOCIATED_TRAIT(ImmutableGreenFunction); TRIQS_DEFINE_CONCEPT_AND_ASSOCIATED_TRAIT(ImmutableGreenFunction);
template<typename G> template <typename G> auto get_gf_data_shape(G const &g) DECL_AND_RETURN(g.get_data_shape());
auto get_gf_data_shape(G const & g) DECL_AND_RETURN(g.get_data_shape());
// ---------------------- implementation -------------------------------- // ---------------------- implementation --------------------------------
// overload get_shape for a vector to simplify code below in gf block case.
template <typename T> long get_shape(std::vector<T> const &x) { return x.size(); }
/// A common implementation class for gf and gf_view. They will only redefine contructor and = ... /// A common implementation class for gf and gf_view. They will only redefine contructor and = ...
template<typename Variable, typename Target, typename Opt, bool IsView, bool IsConst> class gf_impl : template <typename Variable, typename Target, typename Opt, bool IsView, bool IsConst>
TRIQS_CONCEPT_TAG_NAME(ImmutableGreenFunction){ class gf_impl : TRIQS_CONCEPT_TAG_NAME(ImmutableGreenFunction) {
static_assert(!( !IsView && IsConst), "Internal error"); static_assert(!(!IsView && IsConst), "Internal error");
public : public :
typedef gf_view<Variable,Target,Opt> mutable_view_type; typedef gf_view<Variable,Target,Opt> mutable_view_type;
typedef gf_const_view<Variable,Target,Opt> const_view_type; typedef gf_const_view<Variable,Target,Opt> const_view_type;
@ -215,72 +155,84 @@ namespace triqs { namespace gfs {
// all protected but one, this is an implementation class, see gf/gf_view later for public one // all protected but one, this is an implementation class, see gf/gf_view later for public one
gf_impl() {} // all arrays of zero size (empty) gf_impl() {} // all arrays of zero size (empty)
public : //everyone can make a copy (for clef lib in particular, this one needs to be public) public : //everyone can make a copy and a move (for clef lib in particular, this one needs to be public)
gf_impl(gf_impl const &x)
gf_impl(gf_impl const & x) : _mesh(x.mesh()), _data(factory<data_t>(x.data())), : _mesh(x.mesh()),
_singularity(factory<singularity_t>(x.singularity())), _symmetry(x.symmetry()), _evaluator(x._evaluator){} _data(factory<data_t>(x.data())),
_singularity(factory<singularity_t>(x.singularity())),
_symmetry(x.symmetry()),
_evaluator(x._evaluator) {}
gf_impl(gf_impl &&) = default; gf_impl(gf_impl &&) = default;
protected: protected:
template <typename G>
gf_impl(G &&x, bool) // bool to disambiguate
: _mesh(x.mesh()),
_data(factory<data_t>(x.data())),
_singularity(factory<singularity_t>(x.singularity())),
_symmetry(x.symmetry()),
_evaluator(x.get_evaluator()) {}
template<typename G> template <typename M, typename D, typename S, typename SY, typename EV>
gf_impl(G && x, bool): _mesh(x.mesh()), _data(factory<data_t>(x.data())), gf_impl(M &&m, D &&dat, S &&sing, SY &&sy, EV &&ev)
_singularity(factory<singularity_t>(x.singularity())), _symmetry(x.symmetry()), _evaluator(x.get_evaluator()){} : _mesh(std::forward<M>(m)),
_data(std::forward<D>(dat)),
template<typename M, typename D, typename S, typename SY, typename EV> _singularity(std::forward<S>(sing)),
gf_impl(M && m, D && dat, S && sing, SY && sy, EV && ev) : _symmetry(std::forward<SY>(sy)),
_mesh(std::forward<M>(m)), _data(std::forward<D>(dat)), _singularity(std::forward<S>(sing)),_symmetry(std::forward<SY>(sy)), _evaluator(std::forward<EV>(ev)){} _evaluator(std::forward<EV>(ev)) {}
void operator = (gf_impl const & rhs) = delete; // done in derived class. void operator = (gf_impl const & rhs) = delete; // done in derived class.
void swap_impl (gf_impl & b) noexcept { void swap_impl (gf_impl & b) noexcept {
using std::swap; using std::swap;
swap(this->_mesh, b._mesh); swap(this->_data, b._data); swap (this->_singularity,b._singularity); swap(this->_symmetry,b._symmetry); swap(this->_evaluator,b._evaluator); swap(this->_mesh, b._mesh);
swap(this->_data, b._data);
swap(this->_singularity, b._singularity);
swap(this->_symmetry, b._symmetry);
swap(this->_evaluator, b._evaluator);
} }
public: public:
// ------------- All the call operators ----------------------------- // ------------- All the call operators -----------------------------
// First, a simple () returns a view, like for an array... // First, a simple () returns a view, like for an array...
const_view_type operator()() const { return *this;} const_view_type operator()() const { return *this; }
view_type operator()() { return *this; } view_type operator()() { return *this; }
/// Calls are (perfectly) forwarded to the evaluator::operator(), except mesh_point_t and when /// Calls are (perfectly) forwarded to the evaluator::operator(), except mesh_point_t and when
/// there is at least one lazy argument ... /// there is at least one lazy argument ...
template<typename Arg0, typename... Args > // match any argument list, picking out the first type : () is not permitted template <typename... Args> // match any argument list, picking out the first type : () is not permitted
typename std::add_const< typename std::add_const<typename boost::lazy_disable_if_c< // disable the template if one the following conditions it true
typename boost::lazy_disable_if< // disable the template if one the following conditions it true (sizeof...(Args) == 0) || clef::is_any_lazy<Args...>::value ||
boost::mpl::or_< // starting condition [OR] ((sizeof...(Args) != evaluator_t::arity) && (evaluator_t::arity != -1)) // if -1 : no check
clef::is_any_lazy<Arg0, Args...> // One of Args is a lazy expression ,
, boost::mpl::bool_<(sizeof...(Args)!= evaluator_t::arity -1 ) && (evaluator_t::arity !=-1)> // if -1 : no check std::result_of<evaluator_t(gf_impl *, Args...)> // what is the result type of call
>, // end of OR >::type // end of lazy_disable_if
std::result_of<evaluator_t(gf_impl*,Arg0, Args...)> // what is the result type of call >::type // end of add_Const
>::type // end of lazy_disable_if operator()(Args &&... args) const {
>::type // end of add_Const return _evaluator(this, std::forward<Args>(args)...);
operator() (Arg0&& arg0, Args&&... args) const { return _evaluator(this,std::forward<Arg0>( arg0), std::forward<Args>(args)...); } }
template<typename Arg0, typename ...Args> template <typename... Args>
typename clef::_result_of::make_expr_call<gf_impl &,Arg0, Args...>::type typename clef::_result_of::make_expr_call<gf_impl &, Args...>::type operator()(Args &&... args) & {
operator()(Arg0 &&arg0, Args&&... args) & { return clef::make_expr_call(*this, std::forward<Args>(args)...);
return clef::make_expr_call(*this,std::forward<Arg0>(arg0), std::forward<Args>(args)...); }
}
template<typename Arg0, typename ...Args> template <typename... Args>
typename clef::_result_of::make_expr_call<gf_impl const &,Arg0, Args...>::type typename clef::_result_of::make_expr_call<gf_impl const &, Args...>::type operator()(Args &&... args) const &{
operator()(Arg0 &&arg0, Args&&... args) const & { return clef::make_expr_call(*this, std::forward<Args>(args)...);
return clef::make_expr_call(*this,std::forward<Arg0>(arg0), std::forward<Args>(args)...); }
}
template<typename Arg0, typename ...Args> template <typename... Args> typename clef::_result_of::make_expr_call<gf_impl, Args...>::type operator()(Args &&... args) && {
typename clef::_result_of::make_expr_call<gf_impl,Arg0, Args...>::type return clef::make_expr_call(std::move(*this), std::forward<Args>(args)...);
operator()(Arg0 &&arg0, Args&&... args) && { }
return clef::make_expr_call(std::move(*this),std::forward<Arg0>(arg0), std::forward<Args>(args)...);
}
//// [] and access to the grid point // ------------- All the [] operators -----------------------------
typedef typename std::result_of<data_proxy_t(data_t &,size_t)>::type r_type; // [] and access to the grid point
typedef typename std::result_of<data_proxy_t(data_t const &,size_t)>::type cr_type; typedef typename std::result_of<data_proxy_t(data_t &, size_t)>::type r_type;
typedef typename std::result_of<data_proxy_t(data_t const &, size_t)>::type cr_type;
r_type operator[] (mesh_index_t const & arg) { return _data_proxy(_data,_mesh.index_to_linear(arg));} r_type operator[] (mesh_index_t const & arg) { return _data_proxy(_data,_mesh.index_to_linear(arg));}
cr_type operator[] (mesh_index_t const & arg) const { return _data_proxy(_data,_mesh.index_to_linear(arg));} cr_type operator[] (mesh_index_t const & arg) const { return _data_proxy(_data,_mesh.index_to_linear(arg));}
@ -305,25 +257,31 @@ namespace triqs { namespace gfs {
typename clef::_result_of::make_expr_subscript<gf_impl,Arg>::type typename clef::_result_of::make_expr_subscript<gf_impl,Arg>::type
operator[](Arg && arg) && { return clef::make_expr_subscript(std::move(*this),std::forward<Arg>(arg));} operator[](Arg && arg) && { return clef::make_expr_subscript(std::move(*this),std::forward<Arg>(arg));}
/// A direct access to the grid point /// --------------------- A direct access to the grid point --------------------------
template<typename... Args> template<typename... Args>
r_type on_mesh (Args&&... args) { return _data_proxy(_data,_mesh.index_to_linear(mesh_index_t(std::forward<Args>(args)...)));} r_type on_mesh (Args&&... args) { return _data_proxy(_data,_mesh.index_to_linear(mesh_index_t(std::forward<Args>(args)...)));}
template<typename... Args> template<typename... Args>
cr_type on_mesh (Args&&... args) const { return _data_proxy(_data,_mesh.index_to_linear(mesh_index_t(std::forward<Args>(args)...)));} cr_type on_mesh (Args&&... args) const { return _data_proxy(_data,_mesh.index_to_linear(mesh_index_t(std::forward<Args>(args)...)));}
private: // The on_mesh little adaptor ....
private:
struct _on_mesh_wrapper_const { struct _on_mesh_wrapper_const {
gf_impl const & f; _on_mesh_wrapper_const (gf_impl const & _f) : f(_f) {} gf_impl const &f;
template <typename... Args> cr_type operator ()(Args && ... args) const { return f.on_mesh(std::forward<Args>(args)...);} template <typename... Args> cr_type operator()(Args &&... args) const { return f.on_mesh(std::forward<Args>(args)...); }
}; };
struct _on_mesh_wrapper { struct _on_mesh_wrapper {
gf_impl & f; _on_mesh_wrapper (gf_impl & _f) : f(_f) {} gf_impl &f;
template <typename... Args> r_type operator ()(Args && ... args) const { return f.on_mesh(std::forward<Args>(args)...);} template <typename... Args> r_type operator()(Args &&... args) const { return f.on_mesh(std::forward<Args>(args)...); }
}; };
_on_mesh_wrapper_const friend on_mesh(gf_impl const & f) { return f;}
_on_mesh_wrapper friend on_mesh(gf_impl & f) { return f;} public:
public: _on_mesh_wrapper_const friend on_mesh(gf_impl const &f) {
return {f};
}
_on_mesh_wrapper friend on_mesh(gf_impl &f) {
return {f};
}
//----------------------------- HDF5 ----------------------------- //----------------------------- HDF5 -----------------------------
@ -388,28 +346,26 @@ namespace triqs { namespace gfs {
} }
}; };
// --------------------------------------------------------------------------------- // -------------------------The regular class of GF --------------------------------------------------------
///The regular class of GF
template<typename Variable, typename Target, typename Opt> class gf : public gf_impl<Variable,Target,Opt,false, false> { template<typename Variable, typename Target, typename Opt> class gf : public gf_impl<Variable,Target,Opt,false, false> {
typedef gf_impl<Variable,Target,Opt,false,false> B; typedef gf_impl<Variable,Target,Opt,false,false> B;
typedef gfs_implementation::factories<Variable,Target,Opt> factory; typedef gfs_implementation::factories<Variable,Target,Opt> factory;
public : public :
gf() : B() {}
gf(gf const &g) : B(g) {}
gf(gf &&g) noexcept : B(std::move(g)) {}
gf(gf_view<Variable, Target, Opt> const &g) : B(g, bool{}) {}
gf(gf_const_view<Variable, Target, Opt> const &g) : B(g, bool{}) {}
gf():B() {} template <typename GfType>
gf(gf const & g): B(g){} gf(GfType const &x, typename std::enable_if<ImmutableGreenFunction<GfType>::value>::type *dummy = 0)
gf(gf && g) noexcept : B(std::move(g)){} : B() {
gf(gf_view<Variable,Target,Opt> const & g): B(g, bool() ){} *this = x;
gf(gf_const_view<Variable,Target,Opt> const & g): B(g, bool() ){} }
template<typename GfType> gf(GfType const & x,typename std::enable_if<ImmutableGreenFunction<GfType>::value>::type *dummy =0 ): B() { *this = x;} gf(typename B::mesh_t m, typename B::data_t dat, typename B::singularity_view_t const &si, typename B::symmetry_t const &s)
: B(std::move(m), std::move(dat), si, s, typename B::evaluator_t{}) {}
gf(typename B::mesh_t m,
typename B::data_t dat,
typename B::singularity_view_t const & si,
typename B::symmetry_t const & s ,
typename B::evaluator_t const & eval = typename B::evaluator_t ()
) :
B(std::move(m),std::move(dat), si,s,eval) {}
typedef typename factory::target_shape_t target_shape_t; typedef typename factory::target_shape_t target_shape_t;
@ -433,72 +389,74 @@ namespace triqs { namespace gfs {
}; };
// --------------------------------------------------------------------------------- // --------------------------The const View class of GF -------------------------------------------------------
///The const View class of GF
template<typename Variable, typename Target, typename Opt> class gf_view<Variable,Target,Opt,true> : public gf_impl<Variable,Target,Opt,true,true> { template<typename Variable, typename Target, typename Opt> class gf_view<Variable,Target,Opt,true> : public gf_impl<Variable,Target,Opt,true,true> {
typedef gf_impl<Variable,Target,Opt,true,true> B; typedef gf_impl<Variable,Target,Opt,true,true> B;
public : public :
gf_view() = delete; gf_view() = delete;
gf_view(gf_view const & g): B(g){} gf_view(gf_view const &g) : B(g) {}
gf_view(gf_view && g) noexcept : B(std::move(g)){} gf_view(gf_view &&g) noexcept : B(std::move(g)) {}
gf_view(gf_impl<Variable,Target,Opt,true,true> const & g) : B(g, bool()){} // from a const_view gf_view(gf_impl<Variable, Target, Opt, true, true> const &g) : B(g, bool{}) {} // from a const_view
gf_view(gf_impl<Variable,Target,Opt,true,false> const & g): B(g, bool()){} // from a view gf_view(gf_impl<Variable, Target, Opt, true, false> const &g) : B(g, bool{}) {} // from a view
gf_view(gf_impl<Variable,Target,Opt,false,false> const & g): B(g, bool()){} // from a const gf gf_view(gf_impl<Variable, Target, Opt, false, false> const &g) : B(g, bool{}) {} // from a const gf
gf_view(gf_impl<Variable,Target,Opt,false,false> & g): B(g, bool()){} // from a gf & gf_view(gf_impl<Variable, Target, Opt, false, false> &g) : B(g, bool{}) {} // from a gf &
gf_view(gf_impl<Variable,Target,Opt,false,false> && g) noexcept: B(std::move(g), bool()){} // from a gf && gf_view(gf_impl<Variable, Target, Opt, false, false> &&g) noexcept : B(std::move(g), bool{}) {} // from a gf &&
template<typename D> template <typename D>
gf_view (typename B::mesh_t const & m, gf_view(typename B::mesh_t const &m, D const &dat, typename B::singularity_view_t const &t, typename B::symmetry_t const &s)
D const & dat,typename B::singularity_view_t const & t,typename B::symmetry_t const & s, : B(m, factory<typename B::data_t>(dat), t, s, typename B::evaluator_t{}) {}
typename B::evaluator_t const &e = typename B::evaluator_t () ) :
B(m,factory<typename B::data_t>(dat),t,s,e) {}
void rebind (gf_view const &X) noexcept { void rebind(gf_view const &X) noexcept {
this->_mesh = X._mesh; this->_symmetry = X._symmetry; this->_mesh = X._mesh; this->_symmetry = X._symmetry;
this->_data_proxy.rebind(this->_data,X); this->_data_proxy.rebind(this->_data,X);
this->_singularity.rebind(X._singularity); this->_singularity.rebind(X._singularity);
} }
void rebind (gf_view<Variable,Target,Opt,false> const &X) noexcept { rebind (gf_view{X});} void rebind(gf_view<Variable, Target, Opt, false> const &X) noexcept {
rebind(gf_view{X});
}
gf_view & operator = (gf_view const & ) = delete; gf_view & operator = (gf_view const & ) = delete;
}; // class gf_const_view }; // class gf_const_view
// --------------------------------------------------------------------------------- // ------------------------- The View class of GF -------------------------------------------------------
///The View class of GF
template<typename Variable, typename Target, typename Opt> class gf_view<Variable,Target,Opt,false> : public gf_impl<Variable,Target,Opt,true,false> { template<typename Variable, typename Target, typename Opt> class gf_view<Variable,Target,Opt,false> : public gf_impl<Variable,Target,Opt,true,false> {
typedef gf_impl<Variable,Target,Opt,true,false> B; typedef gf_impl<Variable,Target,Opt,true,false> B;
public : public :
gf_view() = delete; gf_view() = delete;
gf_view(gf_view const & g): B(g){} gf_view(gf_view const &g) : B(g) {}
gf_view(gf_view && g) noexcept : B(std::move(g)){} gf_view(gf_view &&g) noexcept : B(std::move(g)) {}
gf_view(gf_impl<Variable,Target,Opt,true,true> const & g) = delete; // from a const view : impossible gf_view(gf_impl<Variable, Target, Opt, true, true> const &g) = delete; // from a const view : impossible
gf_view(gf_impl<Variable,Target,Opt,true,false> const & g): B(g, bool()){} // from a view gf_view(gf_impl<Variable, Target, Opt, true, false> const &g) : B(g, bool{}) {} // from a view
gf_view(gf_impl<Variable,Target,Opt,false,false> const & g) = delete; // from a const gf : impossible gf_view(gf_impl<Variable, Target, Opt, false, false> const &g) = delete; // from a const gf : impossible
//gf_view(gf_impl<Variable,Target,Opt,false,false> const & g): B(g, bool()){} // from a gf & gf_view(gf_impl<Variable, Target, Opt, false, false> &g) : B(g, bool{}) {} // from a gf &
gf_view(gf_impl<Variable,Target,Opt,false,false> & g): B(g, bool()){} // from a gf & gf_view(gf_impl<Variable, Target, Opt, false, false> &&g) noexcept : B(std::move(g), bool{}) {} // from a gf &&
gf_view(gf_impl<Variable,Target,Opt,false,false> && g) noexcept: B(std::move(g), bool()){} // from a gf &&
template<typename D> template <typename D>
gf_view (typename B::mesh_t const & m, gf_view(typename B::mesh_t const &m, D const &dat, typename B::singularity_view_t const &t, typename B::symmetry_t const &s)
D const & dat,typename B::singularity_view_t const & t,typename B::symmetry_t const & s, : B(m, factory<typename B::data_t>(dat), t, s, typename B::evaluator_t{}) {}
typename B::evaluator_t const &e = typename B::evaluator_t () ) :
B(m,factory<typename B::data_t>(dat),t,s,e) {}
friend void swap (gf_view & a, gf_view & b) noexcept { a.swap_impl (b);} friend void swap (gf_view & a, gf_view & b) noexcept { a.swap_impl (b);}
void rebind (gf_view const &X) noexcept { void rebind(gf_view const &X) noexcept {
this->_mesh = X._mesh; this->_symmetry = X._symmetry; this->_mesh = X._mesh; this->_symmetry = X._symmetry;
this->_data_proxy.rebind(this->_data,X); this->_data_proxy.rebind(this->_data,X);
this->_singularity.rebind(X._singularity); this->_singularity.rebind(X._singularity);
} }
gf_view & operator = (gf_view const & rhs) { triqs_gf_view_assign_delegation(*this,rhs); return *this;} gf_view &operator=(gf_view const &rhs) {
triqs_gf_view_assign_delegation(*this, rhs);
return *this;
}
template<typename RHS> gf_view & operator = (RHS const & rhs) { triqs_gf_view_assign_delegation(*this,rhs); return *this;} template <typename RHS> gf_view &operator=(RHS const &rhs) {
triqs_gf_view_assign_delegation(*this, rhs);
return *this;
}
}; // class gf_view }; // class gf_view
// delegate = so that I can overload it for specific RHS... // delegate = so that I can overload it for specific RHS...
@ -522,60 +480,62 @@ namespace triqs { namespace gfs {
// ---------------------------------- slicing ------------------------------------ // ---------------------------------- slicing ------------------------------------
// slice // slice
template <typename Variable, typename Target, typename Opt, bool IsConst, typename... Args> template <typename Variable, typename Target, typename Opt, bool IsConst, typename... Args>
gf_view<Variable, matrix_valued, Opt,IsConst> slice_target(gf_view<Variable, Target, Opt, IsConst> g, Args &&... args) { gf_view<Variable, matrix_valued, Opt, IsConst> slice_target(gf_view<Variable, Target, Opt, IsConst> g, Args &&... args) {
static_assert(std::is_same<Target, matrix_valued>::value, "slice_target only for matrix_valued GF's"); static_assert(std::is_same<Target, matrix_valued>::value, "slice_target only for matrix_valued GF's");
using arrays::range; using arrays::range;
return {g.mesh(), g.data()(range(), std::forward<Args>(args)...), return {g.mesh(), g.data()(range(), std::forward<Args>(args)...),
slice_target(g.singularity(), std::forward<Args>(args)...), g.symmetry()}; slice_target(g.singularity(), std::forward<Args>(args)...), g.symmetry()};
} }
template <typename Variable, typename Target, typename Opt, typename... Args> template <typename Variable, typename Target, typename Opt, typename... Args>
gf_view<Variable, matrix_valued, Opt> slice_target(gf<Variable, Target, Opt> & g, Args &&... args) { gf_view<Variable, matrix_valued, Opt> slice_target(gf<Variable, Target, Opt> &g, Args &&... args) {
return slice_target(g(), std::forward<Args>(args)...); return slice_target(g(), std::forward<Args>(args)...);
} }
template <typename Variable, typename Target, typename Opt, typename... Args> template <typename Variable, typename Target, typename Opt, typename... Args>
gf_const_view<Variable, matrix_valued, Opt> slice_target(gf<Variable, Target, Opt> const &g, Args &&... args) { gf_const_view<Variable, matrix_valued, Opt> slice_target(gf<Variable, Target, Opt> const &g, Args &&... args) {
return slice_target(g(), std::forward<Args>(args)...); return slice_target(g(), std::forward<Args>(args)...);
} }
// slice to scalar // slice to scalar
template <typename Variable, typename Target, typename Opt, bool IsConst, typename... Args> template <typename Variable, typename Target, typename Opt, bool IsConst, typename... Args>
gf_view<Variable, scalar_valued, Opt, IsConst> slice_target_to_scalar(gf_view<Variable, Target, Opt, IsConst> g, gf_view<Variable, scalar_valued, Opt, IsConst> slice_target_to_scalar(gf_view<Variable, Target, Opt, IsConst> g,
Args &&... args) { Args &&... args) {
static_assert(std::is_same<Target, matrix_valued>::value, "slice_target only for matrix_valued GF's"); static_assert(std::is_same<Target, matrix_valued>::value, "slice_target only for matrix_valued GF's");
using arrays::range; using arrays::range;
return {g.mesh(), g.data()(range(), std::forward<Args>(args)...), return {g.mesh(), g.data()(range(), std::forward<Args>(args)...),
slice_target(g.singularity(), range(args, args + 1)...), g.symmetry()}; slice_target(g.singularity(), range(args, args + 1)...), g.symmetry()};
} }
template <typename Variable, typename Target, typename Opt, typename... Args> template <typename Variable, typename Target, typename Opt, typename... Args>
gf_view<Variable, scalar_valued, Opt> slice_target_to_scalar(gf<Variable, Target, Opt> & g, Args &&... args) { gf_view<Variable, scalar_valued, Opt> slice_target_to_scalar(gf<Variable, Target, Opt> &g, Args &&... args) {
return slice_target_to_scalar(g(), std::forward<Args>(args)...); return slice_target_to_scalar(g(), std::forward<Args>(args)...);
} }
template <typename Variable, typename Target, typename Opt, typename... Args> template <typename Variable, typename Target, typename Opt, typename... Args>
gf_const_view<Variable, scalar_valued, Opt> slice_target_to_scalar(gf<Variable, Target, Opt> const &g, Args &&... args) { gf_const_view<Variable, scalar_valued, Opt> slice_target_to_scalar(gf<Variable, Target, Opt> const &g, Args &&... args) {
return slice_target_to_scalar(g(), std::forward<Args>(args)...); return slice_target_to_scalar(g(), std::forward<Args>(args)...);
} }
// a scalar_valued gf can be viewed as a 1x1 matrix // a scalar_valued gf can be viewed as a 1x1 matrix
template<typename Variable, typename Opt, bool IsConst, typename... Args> template <typename Variable, typename Opt, bool IsConst, typename... Args>
gf_view<Variable,matrix_valued,Opt,IsConst> reinterpret_scalar_valued_gf_as_matrix_valued (gf_view<Variable,scalar_valued,Opt,IsConst> g) { gf_view<Variable, matrix_valued, Opt, IsConst>
typedef typename gf_view<Variable,matrix_valued,Opt,IsConst>::data_view_t a_t; reinterpret_scalar_valued_gf_as_matrix_valued(gf_view<Variable, scalar_valued, Opt, IsConst> g) {
auto a = a_t {typename a_t::indexmap_type (join(g.data().shape(),make_shape(1,1))), g.data().storage()}; typedef typename gf_view<Variable, matrix_valued, Opt, IsConst>::data_view_t a_t;
auto a = a_t{typename a_t::indexmap_type(join(g.data().shape(), make_shape(1, 1))), g.data().storage()};
return {g.mesh(), a, g.singularity(), g.symmetry()}; return {g.mesh(), a, g.singularity(), g.symmetry()};
} }
template<typename Variable, typename Opt, typename... Args> template <typename Variable, typename Opt, typename... Args>
gf_view<Variable,matrix_valued,Opt> reinterpret_scalar_valued_gf_as_matrix_valued (gf<Variable,scalar_valued,Opt> & g) { gf_view<Variable, matrix_valued, Opt> reinterpret_scalar_valued_gf_as_matrix_valued(gf<Variable, scalar_valued, Opt> &g) {
return reinterpret_scalar_valued_gf_as_matrix_valued(g()); return reinterpret_scalar_valued_gf_as_matrix_valued(g());
} }
template<typename Variable, typename Opt, typename... Args> template <typename Variable, typename Opt, typename... Args>
gf_const_view<Variable,matrix_valued,Opt> reinterpret_scalar_valued_gf_as_matrix_valued (gf<Variable,scalar_valued,Opt> const & g) { gf_const_view<Variable, matrix_valued, Opt>
reinterpret_scalar_valued_gf_as_matrix_valued(gf<Variable, scalar_valued, Opt> const &g) {
return reinterpret_scalar_valued_gf_as_matrix_valued(g()); return reinterpret_scalar_valued_gf_as_matrix_valued(g());
} }
@ -585,12 +545,87 @@ namespace triqs { namespace gfs {
return gf_view<Variable2,Target,Opt>(g.mesh().slice(args...), g.data()(g.mesh().slice_get_range(args...),arrays::ellipsis()), g.singularity(), g.symmetry()); return gf_view<Variable2,Target,Opt>(g.mesh().slice(args...), g.data()(g.mesh().slice_get_range(args...),arrays::ellipsis()), g.singularity(), g.symmetry());
}*/ }*/
namespace gfs_implementation { // implement some default traits
// ------------------------- default factories ---------------------
template <int R, typename Var, typename Opt> struct factories<Var, tensor_valued<R>, Opt> {
typedef gf<Var, tensor_valued<R>, Opt> gf_t;
typedef tqa::mini_vector<size_t, R> target_shape_t;
typedef typename gf_t::mesh_t mesh_t;
static typename gf_t::data_t make_data(mesh_t const &m, target_shape_t shape) {
typename gf_t::data_t A(shape.front_append(m.size()));
A() = 0;
return A;
}
static typename gf_t::singularity_t make_singularity(mesh_t const &m, target_shape_t shape) {
return typename gf_t::singularity_t(shape);
}
};
template <typename Var, typename Opt> struct factories<Var, matrix_valued, Opt> {
typedef gf<Var, matrix_valued, Opt> gf_t;
typedef tqa::mini_vector<size_t, 2> target_shape_t;
typedef typename gf_t::mesh_t mesh_t;
static typename gf_t::data_t make_data(mesh_t const &m, target_shape_t shape) {
typename gf_t::data_t A(shape.front_append(m.size()));
A() = 0;
return A;
}
static typename gf_t::singularity_t make_singularity(mesh_t const &m, target_shape_t shape) {
return typename gf_t::singularity_t(shape);
}
};
template <typename Var, typename Opt> struct factories<Var, scalar_valued, Opt> {
typedef gf<Var, scalar_valued, Opt> gf_t;
struct target_shape_t {};
typedef typename gf_t::mesh_t mesh_t;
static typename gf_t::data_t make_data(mesh_t const &m, target_shape_t shape) {
typename gf_t::data_t A(m.size());
A() = 0;
return A;
}
static typename gf_t::singularity_t make_singularity(mesh_t const &m, target_shape_t shape) {
return typename gf_t::singularity_t{1, 1};
}
};
// --------------------- hdf5 ---------------------------------------
// scalar function : just add a _s
template <typename Variable, typename Opt> struct h5_name<Variable, scalar_valued, Opt> {
static std::string invoke() { return h5_name<Variable, matrix_valued, Opt>::invoke() + "_s"; }
};
// the h5 write and read of gf members, so that we can specialize it e.g. for block gf
template <typename Variable, typename Target, typename Opt> struct h5_rw {
static void write(h5::group gr, gf_const_view<Variable, Target, Opt> g) {
h5_write(gr, "data", g._data);
h5_write(gr, "singularity", g._singularity);
h5_write(gr, "mesh", g._mesh);
h5_write(gr, "symmetry", g._symmetry);
}
template <bool B> static void read(h5::group gr, gf_impl<Variable, Target, Opt, B, false> &g) {
h5_read(gr, "data", g._data);
h5_read(gr, "singularity", g._singularity);
h5_read(gr, "mesh", g._mesh);
h5_read(gr, "symmetry", g._symmetry);
}
};
} // gfs_implementation
}} }}
// same as for arrays : views can not be swapped by the std::swap. Delete it // same as for arrays : views can not be swapped by the std::swap. Delete it
namespace std { namespace std {
template <typename Variable, typename Target, typename Opt, bool C1, bool C2> template <typename Variable, typename Target, typename Opt, bool C1, bool C2>
void swap(triqs::gfs::gf_view<Variable, Target, Opt, C1> &a, triqs::gfs::gf_view<Variable, Target, Opt, C2> &b) = delete; void swap(triqs::gfs::gf_view<Variable, Target, Opt, C1> &a, triqs::gfs::gf_view<Variable, Target, Opt, C2> &b) = delete;
} }
#include "./gf_expr.hpp" #include "./gf_expr.hpp"
#endif #endif

View File

@ -32,11 +32,11 @@ namespace triqs { namespace gfs {
struct imtime {}; struct imtime {};
// gf_mesh type and its factories // gf_mesh type and its factories
template<typename Opt> struct gf_mesh<imtime,Opt> : linear_mesh<matsubara_domain<false>> { template <typename Opt> struct gf_mesh<imtime, Opt> : linear_mesh<matsubara_domain<false>> {
typedef linear_mesh<matsubara_domain<false>> B; typedef linear_mesh<matsubara_domain<false>> B;
gf_mesh() = default; gf_mesh() = default;
gf_mesh(typename B::domain_t d, int n_time_slices, mesh_kind mk = half_bins) : B(d, 0, d.beta, n_time_slices, mk) {} gf_mesh(typename B::domain_t d, int n_time_slices, mesh_kind mk = half_bins) : B(d, 0, d.beta, n_time_slices, mk) {}
gf_mesh (double beta, statistic_enum S, int n_time_slices, mesh_kind mk=half_bins): gf_mesh( {beta,S}, n_time_slices, mk){} gf_mesh(double beta, statistic_enum S, int n_time_slices, mesh_kind mk = half_bins) : gf_mesh({beta, S}, n_time_slices, mk) {}
}; };
namespace gfs_implementation { namespace gfs_implementation {