3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-03 10:05:49 +01:00

start with Sr2RuO4 guide

This commit is contained in:
Gernot J. Kraberger 2018-09-04 19:02:10 +02:00 committed by Hermann Schnait
parent 31cb7a0ea4
commit 5fd74f73b7
5 changed files with 169 additions and 0 deletions

View File

@ -26,6 +26,7 @@ User guide
guide/dftdmft_singleshot guide/dftdmft_singleshot
guide/SrVO3 guide/SrVO3
guide/dftdmft_selfcons guide/dftdmft_selfcons
guide/Sr2RuO4
guide/analysis guide/analysis
guide/full_tutorial guide/full_tutorial
guide/transport guide/transport

40
doc/guide/Sr2RuO4.rst Normal file
View File

@ -0,0 +1,40 @@
.. _Sr2RuO4:
Spin-orbit coupled calculations (single-shot)
=============================================
There are two main ways of including the spin-orbit coupling (SO) term into
DFT+DMFT calculations:
- by performing a DFT calculation including SO and then doing a DMFT calculation on top, or
- by performing a DFT calculation without SO and then adding the SO term on the model level.
Treatment of SO in DFT
----------------------
For now, TRIQS/DFTTools does only work with Wien2k when performing calculations with SO.
Of course, the general Hk framework is also possible.
But the way VASP treats SO is fundamentally different to the way Wien2k treats it and the interface does not handle that at the moment.
Therefore, this guide assumes that Wien2k is being used.
First, a Wien2k calculation including SO has to be performed.
For details, we refer the reader to the documentation of Wien2k.
The interface to Wien2k only works when the DFT calculation is done both spin-polarized and with SO (that means that you have to initialize the Wien2k calculation accordingly and then run with ``runsp -sp``).
Performing the projection
~~~~~~~~~~~~~~~~~~~~~~~~~
Note that the final ``x lapw2 -almd -so -up`` and ``x lapw2 -almd -so -dn`` have to be run *on a single core*, which implies that, before, ``x lapw1 -up``, ``x lapw2 -dn``, and ``x lapwso -up`` have to be run in single-core mode (once).
In the ``case.indmftpr`` file, the spin-orbit flag has to be set to ``1`` for the correlated atoms.
For example, for the compound Sr\ :sub:`2`\ RuO\ :sub:`4`, with the struct file :download:`Sr2RuO4.struct <Sr2RuO4/Sr2RuO4.struct>`, we would e.g. use the ``indmftpr`` file :download:`found here <Sr2RuO4/Sr2RuO4.indmftpr>`.
Then, ``dmftproj -sp -so`` has to be called.
As usual, it is important to check for warnings (e.g., about eigenvalues of the overlap matrix) in the output of ``dmftproj`` and adapt the window until these warnings disappear.
Note that in presence of SO, it is not possible to project only onto the :math:`t_{2g}` subshell because it is not an irreducible representation.
A redesign of the orthonormalization procedure might happen in the long term, which might allow that.
We strongly suggest using the :py:meth:`.dos_wannier_basis` functionality of the :py:class:`.SumkDFTTools` class (see :download:`calculate_dos_wannier_basis.py <Sr2RuO4/calculate_dos_wannier_basis.py>`) and compare the Wannier-projected orbitals to the original DFT DOS (they should be more or less equal).
Note that, with SO, there are usually off-diagonal elements of the spectral function, which can also be imaginary.
The imaginary part can be found in the third column of the files ``DOS_wann_...``.

View File

@ -0,0 +1,17 @@
4 ! Nsort
2 1 2 2 ! Multiplicities
3 ! lmax
complex ! Sr
0 0 0 0
0 0 0 0
cubic ! Ru
0 0 2 0 ! include d-shell as correlated
0 0 0 0 ! there are no irreps with SO
1 ! SO-flag
complex ! O1
0 0 0 0
0 0 0 0
complex ! O2
0 0 0 0
0 0 0 0
-0.7 1.4 ! energy window (Ry)

View File

@ -0,0 +1,96 @@
Sr2RuO4 s-o calc. M|| 0.00 0.00 1.00
B 4 39_I
RELA
7.300012 7.300012 24.044875 90.000000 90.000000 90.000000
ATOM -1: X=0.00000000 Y=0.00000000 Z=0.35240000
MULT= 2 ISPLIT=-2
-1: X=0.00000000 Y=0.00000000 Z=0.64760000
Sr2+ NPT= 781 R0=.000010000 RMT= 2.26000 Z: 38.00000
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -2: X=0.00000000 Y=0.00000000 Z=0.00000000
MULT= 1 ISPLIT=-2
Ru4+ NPT= 781 R0=.000010000 RMT= 1.95000 Z: 44.00000
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -3: X=0.50000000 Y=0.00000000 Z=0.00000000
MULT= 2 ISPLIT= 8
-3: X=0.00000000 Y=0.50000000 Z=0.00000000
O 2- NPT= 781 R0=.000100000 RMT= 1.68000 Z: 8.00000
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -4: X=0.00000000 Y=0.00000000 Z=0.16350000
MULT= 2 ISPLIT=-2
-4: X=0.00000000 Y=0.00000000 Z=0.83650000
O 2- NPT= 781 R0=.000100000 RMT= 1.68000 Z: 8.00000
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
16 NUMBER OF SYMMETRY OPERATIONS
0-1 0 0.00000000
1 0 0 0.00000000
0 0-1 0.00000000
1 A 2 so. oper. type orig. index
-1 0 0 0.00000000
0-1 0 0.00000000
0 0-1 0.00000000
2 A 3
1 0 0 0.00000000
0 1 0 0.00000000
0 0-1 0.00000000
3 A 6
0-1 0 0.00000000
1 0 0 0.00000000
0 0 1 0.00000000
4 A 8
0 1 0 0.00000000
-1 0 0 0.00000000
0 0-1 0.00000000
5 A 9
-1 0 0 0.00000000
0-1 0 0.00000000
0 0 1 0.00000000
6 A 11
1 0 0 0.00000000
0 1 0 0.00000000
0 0 1 0.00000000
7 A 14
0 1 0 0.00000000
-1 0 0 0.00000000
0 0 1 0.00000000
8 A 15
1 0 0 0.00000000
0-1 0 0.00000000
0 0-1 0.00000000
9 B 1
0 1 0 0.00000000
1 0 0 0.00000000
0 0-1 0.00000000
10 B 4
0-1 0 0.00000000
-1 0 0 0.00000000
0 0-1 0.00000000
11 B 5
1 0 0 0.00000000
0-1 0 0.00000000
0 0 1 0.00000000
12 B 7
-1 0 0 0.00000000
0 1 0 0.00000000
0 0-1 0.00000000
13 B 10
0 1 0 0.00000000
1 0 0 0.00000000
0 0 1 0.00000000
14 B 12
0-1 0 0.00000000
-1 0 0 0.00000000
0 0 1 0.00000000
15 B 13
-1 0 0 0.00000000
0 1 0 0.00000000
0 0 1 0.00000000
16 B 16

View File

@ -0,0 +1,15 @@
from triqs_dft_tools.converters.wien2k_converter import Wien2kConverter
from triqs_dft_tools import SumkDFTTools
filename = 'Sr2RuO4'
conv = Wien2kConverter(filename = filename,hdf_filename=filename+'.h5')
conv.convert_dft_input()
SK = SumkDFTTools(filename+'.h5')
mesh = (-10.0,10.0,500)
SK.dos_wannier_basis(broadening=(mesh[1]-mesh[0])/float(mesh[2]),
mesh=mesh,
save_to_file=True,
with_Sigma=False,
with_dc=False)