mirror of
https://github.com/triqs/dft_tools
synced 2025-01-02 17:45:47 +01:00
Merge simple_point_dens_mat and density_gf into a single function density_matrix
density_matrix takes as argument method == using_gf or using_point_integration
This commit is contained in:
parent
4cb0d67e02
commit
5eaa27a946
@ -58,3 +58,4 @@ setattr(self,it,mpi.bcast(getattr(self,it))
|
||||
* replaced long archive saves in converters by setattr construction
|
||||
* removed G_upfolded_id -- looked redundant
|
||||
* write corr_to_inequiv, inequiv_to_corr, n_inequiv_shells (shellmap, invshellmap, n_inequiv_corr_shells) in converter
|
||||
* merge simple_point_dens_mat and density_gf into a single function density_matrix
|
||||
|
@ -295,27 +295,38 @@ class SumkLDA:
|
||||
return self.G_upfold
|
||||
|
||||
|
||||
def simple_point_dens_mat(self):
|
||||
|
||||
ntoi = self.spin_names_to_ind[self.SO]
|
||||
bln = self.spin_block_names[self.SO]
|
||||
|
||||
MMat = [numpy.zeros( [self.n_orbitals[0,ntoi[bl]],self.n_orbitals[0,ntoi[bl]]], numpy.complex_) for bl in bln]
|
||||
|
||||
def density_matrix(self, method = 'using_gf', beta=40.0):
|
||||
"""Calculate density matrices in one of two ways:
|
||||
if 'using_gf': First get upfolded gf (g_loc is not set up), then density matrix.
|
||||
It is useful for Hubbard I, and very quick.
|
||||
No assumption on the hopping structure is made (ie diagonal or not).
|
||||
if 'using_point_integration': Only works for diagonal hopping matrix (true in wien2k).
|
||||
"""
|
||||
dens_mat = [ {} for icrsh in range(self.n_corr_shells)]
|
||||
for icrsh in range(self.n_corr_shells):
|
||||
for bl in self.spin_block_names[self.corr_shells[icrsh][4]]:
|
||||
dens_mat[icrsh][bl] = numpy.zeros([self.corr_shells[icrsh][3],self.corr_shells[icrsh][3]], numpy.complex_)
|
||||
|
||||
ikarray = numpy.array(range(self.n_k))
|
||||
|
||||
for ik in mpi.slice_array(ikarray):
|
||||
|
||||
unchangedsize = all( [ self.n_orbitals[ik,ntoi[bln[ibl]]] == len(MMat[ibl])
|
||||
for ibl in range(self.n_spin_blocks[self.SO]) ] )
|
||||
if method == "using_gf":
|
||||
|
||||
if not unchangedsize:
|
||||
MMat = [numpy.zeros( [self.n_orbitals[ik,ntoi[bl]],self.n_orbitals[ik,ntoi[bl]]], numpy.complex_) for bl in bln]
|
||||
G_upfold = self.lattice_gf_matsubara(ik=ik, beta=beta, mu=self.chemical_potential)
|
||||
G_upfold *= self.bz_weights[ik]
|
||||
dm = G_upfold.density()
|
||||
MMat = [dm[bl] for bl in self.spin_block_names[self.SO]]
|
||||
|
||||
elif method == "using_point_integration":
|
||||
|
||||
ntoi = self.spin_names_to_ind[self.SO]
|
||||
bln = self.spin_block_names[self.SO]
|
||||
unchangedsize = all( [self.n_orbitals[ik,ntoi[bl]] == self.n_orbitals[0,ntoi[bl]] for bl in bln] )
|
||||
if unchangedsize:
|
||||
dim = self.n_orbitals[0,ntoi[bl]]
|
||||
else:
|
||||
dim = self.n_orbitals[ik,ntoi[bl]]
|
||||
MMat = [numpy.zeros( [dim,dim], numpy.complex_) for bl in bln]
|
||||
|
||||
for ibl, bl in enumerate(bln):
|
||||
ind = ntoi[bl]
|
||||
@ -331,6 +342,10 @@ class SumkLDA:
|
||||
dim = self.corr_shells[icrsh][3]
|
||||
n_orb = self.n_orbitals[ik,isp]
|
||||
projmat = self.proj_mat[ik,isp,icrsh,0:dim,0:n_orb]
|
||||
if method == "using_gf":
|
||||
dens_mat[icrsh][bn] += numpy.dot( numpy.dot(projmat,MMat[ibl]),
|
||||
projmat.transpose().conjugate() )
|
||||
elif method == "using_point_integration":
|
||||
dens_mat[icrsh][bn] += self.bz_weights[ik] * numpy.dot( numpy.dot(projmat,MMat[ibl]) ,
|
||||
projmat.transpose().conjugate() )
|
||||
|
||||
@ -352,52 +367,6 @@ class SumkLDA:
|
||||
|
||||
return dens_mat
|
||||
|
||||
# Calculate upfolded gf, then density matrix. No assumption on the structure made here (ie diagonal or not).
|
||||
def density_gf(self,beta):
|
||||
"""Calculates the density without setting up Gloc. It is useful for Hubbard I, and very quick."""
|
||||
|
||||
dens_mat = [ {} for icrsh in range(self.n_corr_shells)]
|
||||
for icrsh in range(self.n_corr_shells):
|
||||
for bl in self.spin_block_names[self.corr_shells[icrsh][4]]:
|
||||
dens_mat[icrsh][bl] = numpy.zeros([self.corr_shells[icrsh][3],self.corr_shells[icrsh][3]], numpy.complex_)
|
||||
|
||||
ikarray = numpy.array(range(self.n_k))
|
||||
|
||||
for ik in mpi.slice_array(ikarray):
|
||||
|
||||
G_upfold = self.lattice_gf_matsubara(ik=ik, beta=beta, mu=self.chemical_potential)
|
||||
G_upfold *= self.bz_weights[ik]
|
||||
dm = G_upfold.density()
|
||||
MMat = [dm[bl] for bl in self.spin_block_names[self.SO]]
|
||||
|
||||
for icrsh in range(self.n_corr_shells):
|
||||
for ibl, bn in enumerate(self.spin_block_names[self.corr_shells[icrsh][4]]):
|
||||
isp = self.spin_names_to_ind[self.corr_shells[icrsh][4]][bn]
|
||||
dim = self.corr_shells[icrsh][3]
|
||||
n_orb = self.n_orbitals[ik,isp]
|
||||
projmat = self.proj_mat[ik,isp,icrsh,0:dim,0:n_orb]
|
||||
dens_mat[icrsh][bn] += numpy.dot( numpy.dot(projmat,MMat[ibl]),
|
||||
projmat.transpose().conjugate() )
|
||||
|
||||
# get data from nodes:
|
||||
for icrsh in range(self.n_corr_shells):
|
||||
for bname in dens_mat[icrsh]:
|
||||
dens_mat[icrsh][bname] = mpi.all_reduce(mpi.world, dens_mat[icrsh][bname], lambda x,y : x+y)
|
||||
mpi.barrier()
|
||||
|
||||
if self.symm_op != 0: dens_mat = self.symmcorr.symmetrize(dens_mat)
|
||||
|
||||
# Rotate to local coordinate system:
|
||||
if self.use_rotations:
|
||||
for icrsh in range(self.n_corr_shells):
|
||||
for bn in dens_mat[icrsh]:
|
||||
if self.rot_mat_time_inv[icrsh] == 1: dens_mat[icrsh][bn] = dens_mat[icrsh][bn].conjugate()
|
||||
dens_mat[icrsh][bn] = numpy.dot( numpy.dot(self.rot_mat[icrsh].conjugate().transpose(),dens_mat[icrsh][bn]) ,
|
||||
self.rot_mat[icrsh] )
|
||||
|
||||
return dens_mat
|
||||
|
||||
|
||||
|
||||
def analyse_block_structure(self, threshold = 0.00001, include_shells = None, dm = None):
|
||||
""" Determines the Green function block structure from simple point integration."""
|
||||
@ -407,7 +376,7 @@ class SumkLDA:
|
||||
self.solver_to_sumk = [ {} for ish in range(self.n_inequiv_shells) ]
|
||||
self.solver_to_sumk_block = [ {} for ish in range(self.n_inequiv_shells) ]
|
||||
|
||||
if dm is None: dm = self.simple_point_dens_mat()
|
||||
if dm is None: dm = self.density_matrix(method = 'using_point_integration')
|
||||
dens_mat = [ dm[self.inequiv_to_corr[ish]] for ish in range(self.n_inequiv_shells) ]
|
||||
|
||||
if include_shells is None: include_shells = range(self.n_inequiv_shells)
|
||||
@ -499,7 +468,7 @@ class SumkLDA:
|
||||
for bl in degsh: ss += gf_to_symm[bl] / (1.0*Ndeg)
|
||||
for bl in degsh: gf_to_symm[bl] << ss
|
||||
|
||||
# for simple dft input, get crystal field splittings.
|
||||
# For simple dft input, get crystal field splittings.
|
||||
def eff_atomic_levels(self):
|
||||
"""Calculates the effective atomic levels needed as input for the Hubbard I Solver."""
|
||||
|
||||
|
@ -37,7 +37,7 @@ class TransBasis:
|
||||
if prop_to_be_diagonal == 'eal':
|
||||
prop = self.SK.eff_atomic_levels()[0]
|
||||
elif prop_to_be_diagonal == 'dm':
|
||||
prop = self.SK.simple_point_dens_mat()[0]
|
||||
prop = self.SK.density_matrix(method = 'using_point_integration')[0]
|
||||
else:
|
||||
mpi.report("trans_basis: not a valid quantitiy to be diagonal. Choices are 'eal' or 'dm'.")
|
||||
return 0
|
||||
|
@ -26,7 +26,7 @@ from pytriqs.applications.dft.sumk_lda_tools import SumkLDATools
|
||||
|
||||
SK = SumkLDATools(hdf_file = 'SrVO3.h5')
|
||||
|
||||
dm = SK.density_gf(40)
|
||||
dm = SK.density_matrix(method = 'using_gf', beta = 40)
|
||||
dm_pc = SK.partial_charges(40)
|
||||
|
||||
ar = HDFArchive('sumklda_basic.output.h5','w')
|
||||
|
Loading…
Reference in New Issue
Block a user