mirror of
https://github.com/triqs/dft_tools
synced 2025-01-03 01:55:56 +01:00
Add a new converter from FLEUR
This will be the converter for the FLEUR DFT code.
This commit is contained in:
parent
ec414f40ff
commit
5ab1b5b802
@ -21,8 +21,9 @@
|
||||
################################################################################
|
||||
|
||||
from wien2k_converter import Wien2kConverter
|
||||
from fleur_converter import FleurConverter
|
||||
from hk_converter import HkConverter
|
||||
|
||||
__all__ =['Wien2kConverter','HkConverter']
|
||||
__all__ =['Wien2kConverter','FleurConverter','HkConverter']
|
||||
|
||||
|
||||
|
426
python/converters/fleur_converter.py
Normal file
426
python/converters/fleur_converter.py
Normal file
@ -0,0 +1,426 @@
|
||||
|
||||
################################################################################
|
||||
#
|
||||
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||||
#
|
||||
# Copyright (C) 2014 by M. Betzinger, P. Seth
|
||||
#
|
||||
# TRIQS is free software: you can redistribute it and/or modify it under the
|
||||
# terms of the GNU General Public License as published by the Free Software
|
||||
# Foundation, either version 3 of the License, or (at your option) any later
|
||||
# version.
|
||||
#
|
||||
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
# details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along with
|
||||
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||||
#
|
||||
################################################################################
|
||||
|
||||
from types import *
|
||||
import numpy
|
||||
from pytriqs.archive import *
|
||||
from converter_tools import *
|
||||
|
||||
class FleurConverter(ConverterTools):
|
||||
"""
|
||||
Conversion from Fleur output to an hdf5 file that can be used as input for the SumkDFT class.
|
||||
"""
|
||||
|
||||
def __init__(self, filename, hdf_filename = None,
|
||||
dft_subgrp = 'dft_input', symmcorr_subgrp = 'dft_symmcorr_input',
|
||||
parproj_subgrp='dft_parproj_input', symmpar_subgrp='dft_symmpar_input',
|
||||
bands_subgrp = 'dft_bands_input', repacking = False):
|
||||
"""
|
||||
Init of the class. Variable filename gives the root of all filenames, e.g. case.ctqmcout, case.h5, and so on.
|
||||
"""
|
||||
|
||||
assert type(filename)==StringType, "Please provide the DFT files' base name as a string."
|
||||
if hdf_filename is None: hdf_filename = filename
|
||||
self.hdf_file = hdf_filename+'.h5'
|
||||
self.dft_file = filename+'.ctqmcout'
|
||||
self.symmcorr_file = filename+'.symqmc'
|
||||
self.parproj_file = filename+'.parproj'
|
||||
self.symmpar_file = filename+'.sympar'
|
||||
self.band_file = filename+'.outband'
|
||||
self.dft_subgrp = dft_subgrp
|
||||
self.symmcorr_subgrp = symmcorr_subgrp
|
||||
self.parproj_subgrp = parproj_subgrp
|
||||
self.symmpar_subgrp = symmpar_subgrp
|
||||
self.bands_subgrp = bands_subgrp
|
||||
self.fortran_to_replace = {'D':'E'}
|
||||
|
||||
# Checks if h5 file is there and repacks it if wanted:
|
||||
import os.path
|
||||
if (os.path.exists(self.hdf_file) and repacking):
|
||||
ConverterTools.repack(self)
|
||||
|
||||
|
||||
def convert_dmft_input(self):
|
||||
"""
|
||||
Reads the input files, and stores the data in the HDFfile
|
||||
"""
|
||||
|
||||
# Read and write only on the master node
|
||||
if not (mpi.is_master_node()): return
|
||||
mpi.report("Reading input from %s..."%self.dft_file)
|
||||
|
||||
# R is a generator : each R.Next() will return the next number in the file
|
||||
R = ConverterTools.read_fortran_file(self,self.dft_file,self.fortran_to_replace)
|
||||
try:
|
||||
energy_unit = R.next() # read the energy convertion factor
|
||||
n_k = int(R.next()) # read the number of k points
|
||||
k_dep_projection = 1
|
||||
SP = int(R.next()) # flag for spin-polarised calculation
|
||||
SO = int(R.next()) # flag for spin-orbit calculation
|
||||
charge_below = R.next() # total charge below energy window
|
||||
density_required = R.next() # total density required, for setting the chemical potential
|
||||
symm_op = 1 # Use symmetry groups for the k-sum
|
||||
|
||||
# the information on the non-correlated shells is not important here, maybe skip:
|
||||
n_shells = int(R.next()) # number of shells (e.g. Fe d, As p, O p) in the unit cell,
|
||||
# corresponds to index R in formulas
|
||||
# now read the information about the shells (atom, sort, l, dim):
|
||||
shell_entries = ['atom', 'sort', 'l', 'dim']
|
||||
shells = [ {name: int(val) for name, val in zip(shell_entries, R)} for ish in range(n_shells) ]
|
||||
|
||||
n_corr_shells = int(R.next()) # number of corr. shells (e.g. Fe d, Ce f) in the unit cell,
|
||||
# corresponds to index R in formulas
|
||||
# now read the information about the shells (atom, sort, l, dim, SO flag, irep):
|
||||
corr_shell_entries = ['atom', 'sort', 'l', 'dim', 'SO', 'irep']
|
||||
corr_shells = [ {name: int(val) for name, val in zip(corr_shell_entries, R)} for icrsh in range(n_corr_shells) ]
|
||||
|
||||
# determine the number of inequivalent correlated shells and maps, needed for further reading
|
||||
n_inequiv_shells, corr_to_inequiv, inequiv_to_corr = ConverterTools.det_shell_equivalence(self,corr_shells)
|
||||
|
||||
use_rotations = 1
|
||||
rot_mat = [numpy.identity(corr_shells[icrsh]['dim'],numpy.complex_) for icrsh in range(n_corr_shells)]
|
||||
|
||||
# read the matrices
|
||||
rot_mat_time_inv = [0 for i in range(n_corr_shells)]
|
||||
|
||||
for icrsh in range(n_corr_shells):
|
||||
for i in range(corr_shells[icrsh]['dim']): # read real part:
|
||||
for j in range(corr_shells[icrsh]['dim']):
|
||||
rot_mat[icrsh][i,j] = R.next()
|
||||
for i in range(corr_shells[icrsh]['dim']): # read imaginary part:
|
||||
for j in range(corr_shells[icrsh]['dim']):
|
||||
rot_mat[icrsh][i,j] += 1j * R.next()
|
||||
|
||||
if (SP==1): # read time inversion flag:
|
||||
rot_mat_time_inv[icrsh] = int(R.next())
|
||||
|
||||
# Read here the info for the transformation of the basis:
|
||||
n_reps = [1 for i in range(n_inequiv_shells)]
|
||||
dim_reps = [0 for i in range(n_inequiv_shells)]
|
||||
T = []
|
||||
for ish in range(n_inequiv_shells):
|
||||
n_reps[ish] = int(R.next()) # number of representatives ("subsets"), e.g. t2g and eg
|
||||
dim_reps[ish] = [int(R.next()) for i in range(n_reps[ish])] # dimensions of the subsets
|
||||
|
||||
# The transformation matrix:
|
||||
# is of dimension 2l+1 without SO, and 2*(2l+1) with SO!
|
||||
ll = 2*corr_shells[inequiv_to_corr[ish]]['l']+1
|
||||
lmax = ll * (corr_shells[inequiv_to_corr[ish]]['SO'] + 1)
|
||||
T.append(numpy.zeros([lmax,lmax],numpy.complex_))
|
||||
|
||||
# now read it from file:
|
||||
for i in range(lmax):
|
||||
for j in range(lmax):
|
||||
T[ish][i,j] = R.next()
|
||||
for i in range(lmax):
|
||||
for j in range(lmax):
|
||||
T[ish][i,j] += 1j * R.next()
|
||||
|
||||
# Spin blocks to be read:
|
||||
n_spin_blocs = SP + 1 - SO
|
||||
|
||||
# read the list of n_orbitals for all k points
|
||||
n_orbitals = numpy.zeros([n_k,n_spin_blocs],numpy.int)
|
||||
for isp in range(n_spin_blocs):
|
||||
for ik in range(n_k):
|
||||
n_orbitals[ik,isp] = int(R.next())
|
||||
|
||||
# Initialise the projectors:
|
||||
proj_mat = numpy.zeros([n_k,n_spin_blocs,n_corr_shells,max([crsh['dim'] for crsh in corr_shells]),max(n_orbitals)],numpy.complex_)
|
||||
|
||||
# Read the projectors from the file:
|
||||
for ik in range(n_k):
|
||||
for icrsh in range(n_corr_shells):
|
||||
n_orb = corr_shells[icrsh]['dim']
|
||||
# first Real part for BOTH spins, due to conventions in dmftproj:
|
||||
for isp in range(n_spin_blocs):
|
||||
for i in range(n_orb):
|
||||
for j in range(n_orbitals[ik][isp]):
|
||||
proj_mat[ik,isp,icrsh,i,j] = R.next()
|
||||
# now Imag part:
|
||||
for isp in range(n_spin_blocs):
|
||||
for i in range(n_orb):
|
||||
for j in range(n_orbitals[ik][isp]):
|
||||
proj_mat[ik,isp,icrsh,i,j] += 1j * R.next()
|
||||
|
||||
# now define the arrays for weights and hopping ...
|
||||
bz_weights = numpy.ones([n_k],numpy.float_)/ float(n_k) # w(k_index), default normalisation
|
||||
hopping = numpy.zeros([n_k,n_spin_blocs,max(n_orbitals),max(n_orbitals)],numpy.complex_)
|
||||
|
||||
# weights in the file
|
||||
for ik in range(n_k) : bz_weights[ik] = R.next()
|
||||
|
||||
# if the sum over spins is in the weights, take it out again!!
|
||||
sm = sum(bz_weights)
|
||||
bz_weights[:] /= sm
|
||||
|
||||
# Grab the H
|
||||
# we use now the convention of a DIAGONAL Hamiltonian -- convention for Fleur
|
||||
for isp in range(n_spin_blocs):
|
||||
for ik in range(n_k) :
|
||||
n_orb = n_orbitals[ik,isp]
|
||||
for i in range(n_orb):
|
||||
hopping[ik,isp,i,i] = R.next() * energy_unit
|
||||
|
||||
# keep some things that we need for reading parproj:
|
||||
things_to_set = ['n_shells','shells','n_corr_shells','corr_shells','n_spin_blocs','n_orbitals','n_k','SO','SP','energy_unit']
|
||||
for it in things_to_set: setattr(self,it,locals()[it])
|
||||
except StopIteration : # a more explicit error if the file is corrupted.
|
||||
raise "Fleur_converter : reading file %s failed!"%filename
|
||||
|
||||
R.close()
|
||||
# Reading done!
|
||||
|
||||
# Save it to the HDF:
|
||||
ar = HDFArchive(self.hdf_file,'a')
|
||||
if not (self.dft_subgrp in ar): ar.create_group(self.dft_subgrp)
|
||||
# The subgroup containing the data. If it does not exist, it is created. If it exists, the data is overwritten!
|
||||
things_to_save = ['energy_unit','n_k','k_dep_projection','SP','SO','charge_below','density_required',
|
||||
'symm_op','n_shells','shells','n_corr_shells','corr_shells','use_rotations','rot_mat',
|
||||
'rot_mat_time_inv','n_reps','dim_reps','T','n_orbitals','proj_mat','bz_weights','hopping',
|
||||
'n_inequiv_shells', 'corr_to_inequiv', 'inequiv_to_corr']
|
||||
for it in things_to_save: ar[self.dft_subgrp][it] = locals()[it]
|
||||
del ar
|
||||
|
||||
# Symmetries are used, so now convert symmetry information for *correlated* orbitals:
|
||||
self.convert_symmetry_input(orbits=corr_shells,symm_file=self.symmcorr_file,symm_subgrp=self.symmcorr_subgrp,SO=self.SO,SP=self.SP)
|
||||
|
||||
|
||||
def convert_parproj_input(self):
|
||||
"""
|
||||
Reads the input for the partial charges projectors from case.parproj, and stores it in the symmpar_subgrp
|
||||
group in the HDF5.
|
||||
"""
|
||||
|
||||
if not (mpi.is_master_node()): return
|
||||
mpi.report("Reading parproj input from %s..."%self.parproj_file)
|
||||
|
||||
dens_mat_below = [ [numpy.zeros([self.shells[ish]['dim'],self.shells[ish]['dim']],numpy.complex_) for ish in range(self.n_shells)]
|
||||
for isp in range(self.n_spin_blocs) ]
|
||||
|
||||
R = ConverterTools.read_fortran_file(self,self.parproj_file,self.fortran_to_replace)
|
||||
|
||||
n_parproj = [int(R.next()) for i in range(self.n_shells)]
|
||||
n_parproj = numpy.array(n_parproj)
|
||||
|
||||
# Initialise P, here a double list of matrices:
|
||||
proj_mat_pc = numpy.zeros([self.n_k,self.n_spin_blocs,self.n_shells,max(n_parproj),max([sh['dim'] for sh in self.shells]),max(self.n_orbitals)],numpy.complex_)
|
||||
|
||||
rot_mat_all = [numpy.identity(self.shells[ish]['dim'],numpy.complex_) for ish in range(self.n_shells)]
|
||||
rot_mat_all_time_inv = [0 for i in range(self.n_shells)]
|
||||
|
||||
for ish in range(self.n_shells):
|
||||
# read first the projectors for this orbital:
|
||||
for ik in range(self.n_k):
|
||||
for ir in range(n_parproj[ish]):
|
||||
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for i in range(self.shells[ish]['dim']): # read real part:
|
||||
for j in range(self.n_orbitals[ik][isp]):
|
||||
proj_mat_pc[ik,isp,ish,ir,i,j] = R.next()
|
||||
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for i in range(self.shells[ish]['dim']): # read imaginary part:
|
||||
for j in range(self.n_orbitals[ik][isp]):
|
||||
proj_mat_pc[ik,isp,ish,ir,i,j] += 1j * R.next()
|
||||
|
||||
|
||||
# now read the Density Matrix for this orbital below the energy window:
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for i in range(self.shells[ish]['dim']): # read real part:
|
||||
for j in range(self.shells[ish]['dim']):
|
||||
dens_mat_below[isp][ish][i,j] = R.next()
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for i in range(self.shells[ish]['dim']): # read imaginary part:
|
||||
for j in range(self.shells[ish]['dim']):
|
||||
dens_mat_below[isp][ish][i,j] += 1j * R.next()
|
||||
if (self.SP==0): dens_mat_below[isp][ish] /= 2.0
|
||||
|
||||
# Global -> local rotation matrix for this shell:
|
||||
for i in range(self.shells[ish]['dim']): # read real part:
|
||||
for j in range(self.shells[ish]['dim']):
|
||||
rot_mat_all[ish][i,j] = R.next()
|
||||
for i in range(self.shells[ish]['dim']): # read imaginary part:
|
||||
for j in range(self.shells[ish]['dim']):
|
||||
rot_mat_all[ish][i,j] += 1j * R.next()
|
||||
|
||||
if (self.SP):
|
||||
rot_mat_all_time_inv[ish] = int(R.next())
|
||||
|
||||
R.close()
|
||||
# Reading done!
|
||||
|
||||
# Save it to the HDF:
|
||||
ar = HDFArchive(self.hdf_file,'a')
|
||||
if not (self.parproj_subgrp in ar): ar.create_group(self.parproj_subgrp)
|
||||
# The subgroup containing the data. If it does not exist, it is created. If it exists, the data is overwritten!
|
||||
things_to_save = ['dens_mat_below','n_parproj','proj_mat_pc','rot_mat_all','rot_mat_all_time_inv']
|
||||
for it in things_to_save: ar[self.parproj_subgrp][it] = locals()[it]
|
||||
del ar
|
||||
|
||||
# Symmetries are used, so now convert symmetry information for *all* orbitals:
|
||||
self.convert_symmetry_input(orbits=self.shells,symm_file=self.symmpar_file,symm_subgrp=self.symmpar_subgrp,SO=self.SO,SP=self.SP)
|
||||
|
||||
|
||||
def convert_bands_input(self):
|
||||
"""
|
||||
Converts the input for momentum resolved spectral functions, and stores it in bands_subgrp in the
|
||||
HDF5.
|
||||
"""
|
||||
|
||||
if not (mpi.is_master_node()): return
|
||||
mpi.report("Reading bands input from %s..."%self.band_file)
|
||||
|
||||
R = ConverterTools.read_fortran_file(self,self.band_file,self.fortran_to_replace)
|
||||
try:
|
||||
n_k = int(R.next())
|
||||
|
||||
# read the list of n_orbitals for all k points
|
||||
n_orbitals = numpy.zeros([n_k,self.n_spin_blocs],numpy.int)
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for ik in range(n_k):
|
||||
n_orbitals[ik,isp] = int(R.next())
|
||||
|
||||
# Initialise the projectors:
|
||||
proj_mat = numpy.zeros([n_k,self.n_spin_blocs,self.n_corr_shells,max([crsh['dim'] for crsh in corr_shells]),max(n_orbitals)],numpy.complex_)
|
||||
|
||||
# Read the projectors from the file:
|
||||
for ik in range(n_k):
|
||||
for icrsh in range(self.n_corr_shells):
|
||||
n_orb = self.corr_shells[icrsh]['dim']
|
||||
# first Real part for BOTH spins, due to conventions in dmftproj:
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for i in range(n_orb):
|
||||
for j in range(n_orbitals[ik,isp]):
|
||||
proj_mat[ik,isp,icrsh,i,j] = R.next()
|
||||
# now Imag part:
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for i in range(n_orb):
|
||||
for j in range(n_orbitals[ik,isp]):
|
||||
proj_mat[ik,isp,icrsh,i,j] += 1j * R.next()
|
||||
|
||||
hopping = numpy.zeros([n_k,self.n_spin_blocs,max(n_orbitals),max(n_orbitals)],numpy.complex_)
|
||||
|
||||
# Grab the H
|
||||
# we use now the convention of a DIAGONAL Hamiltonian!!!!
|
||||
for isp in range(self.n_spin_blocs):
|
||||
for ik in range(n_k) :
|
||||
n_orb = n_orbitals[ik,isp]
|
||||
for i in range(n_orb):
|
||||
hopping[ik,isp,i,i] = R.next() * self.energy_unit
|
||||
|
||||
# now read the partial projectors:
|
||||
n_parproj = [int(R.next()) for i in range(self.n_shells)]
|
||||
n_parproj = numpy.array(n_parproj)
|
||||
|
||||
# Initialise P, here a double list of matrices:
|
||||
proj_mat_pc = numpy.zeros([n_k,self.n_spin_blocs,self.n_shells,max(n_parproj),max([sh['dim'] for sh in self.shells]),max(n_orbitals)],numpy.complex_)
|
||||
|
||||
for ish in range(self.n_shells):
|
||||
for ik in range(n_k):
|
||||
for ir in range(n_parproj[ish]):
|
||||
for isp in range(self.n_spin_blocs):
|
||||
|
||||
for i in range(self.shells[ish]['dim']): # read real part:
|
||||
for j in range(n_orbitals[ik,isp]):
|
||||
proj_mat_pc[ik,isp,ish,ir,i,j] = R.next()
|
||||
|
||||
for i in range(self.shells[ish]['dim']): # read imaginary part:
|
||||
for j in range(n_orbitals[ik,isp]):
|
||||
proj_mat_pc[ik,isp,ish,ir,i,j] += 1j * R.next()
|
||||
|
||||
except StopIteration : # a more explicit error if the file is corrupted.
|
||||
raise "Fleur_converter : reading file band_file failed!"
|
||||
|
||||
R.close()
|
||||
# Reading done!
|
||||
|
||||
# Save it to the HDF:
|
||||
ar = HDFArchive(self.hdf_file,'a')
|
||||
if not (self.bands_subgrp in ar): ar.create_group(self.bands_subgrp)
|
||||
# The subgroup containing the data. If it does not exist, it is created. If it exists, the data is overwritten!
|
||||
things_to_save = ['n_k','n_orbitals','proj_mat','hopping','n_parproj','proj_mat_pc']
|
||||
for it in things_to_save: ar[self.bands_subgrp][it] = locals()[it]
|
||||
del ar
|
||||
|
||||
|
||||
def convert_symmetry_input(self, orbits, symm_file, symm_subgrp, SO, SP):
|
||||
"""
|
||||
Reads input for the symmetrisations from symm_file, which is case.sympar or case.symqmc.
|
||||
"""
|
||||
|
||||
if not (mpi.is_master_node()): return
|
||||
mpi.report("Reading symmetry input from %s..."%symm_file)
|
||||
|
||||
n_orbits = len(orbits)
|
||||
|
||||
R = ConverterTools.read_fortran_file(self,symm_file,self.fortran_to_replace)
|
||||
|
||||
try:
|
||||
n_symm = int(R.next()) # Number of symmetry operations
|
||||
n_atoms = int(R.next()) # number of atoms involved
|
||||
perm = [ [int(R.next()) for i in range(n_atoms)] for j in range(n_symm) ] # list of permutations of the atoms
|
||||
if SP:
|
||||
time_inv = [ int(R.next()) for j in range(n_symm) ] # time inversion for SO coupling
|
||||
else:
|
||||
time_inv = [ 0 for j in range(n_symm) ]
|
||||
|
||||
# Now read matrices:
|
||||
mat = []
|
||||
for i_symm in range(n_symm):
|
||||
|
||||
mat.append( [ numpy.zeros([orbits[orb]['dim'], orbits[orb]['dim']],numpy.complex_) for orb in range(n_orbits) ] )
|
||||
for orb in range(n_orbits):
|
||||
for i in range(orbits[orb]['dim']):
|
||||
for j in range(orbits[orb]['dim']):
|
||||
mat[i_symm][orb][i,j] = R.next() # real part
|
||||
for i in range(orbits[orb]['dim']):
|
||||
for j in range(orbits[orb]['dim']):
|
||||
mat[i_symm][orb][i,j] += 1j * R.next() # imaginary part
|
||||
|
||||
mat_tinv = [numpy.identity(orbits[orb]['dim'],numpy.complex_)
|
||||
for orb in range(n_orbits)]
|
||||
|
||||
if ((SO==0) and (SP==0)):
|
||||
# here we need an additional time inversion operation, so read it:
|
||||
for orb in range(n_orbits):
|
||||
for i in range(orbits[orb]['dim']):
|
||||
for j in range(orbits[orb]['dim']):
|
||||
mat_tinv[orb][i,j] = R.next() # real part
|
||||
for i in range(orbits[orb]['dim']):
|
||||
for j in range(orbits[orb]['dim']):
|
||||
mat_tinv[orb][i,j] += 1j * R.next() # imaginary part
|
||||
|
||||
|
||||
|
||||
except StopIteration : # a more explicit error if the file is corrupted.
|
||||
raise "Fleur_converter : reading file symm_file failed!"
|
||||
|
||||
R.close()
|
||||
# Reading done!
|
||||
|
||||
# Save it to the HDF:
|
||||
ar=HDFArchive(self.hdf_file,'a')
|
||||
if not (symm_subgrp in ar): ar.create_group(symm_subgrp)
|
||||
things_to_save = ['n_symm','n_atoms','perm','orbits','SO','SP','time_inv','mat','mat_tinv']
|
||||
for it in things_to_save: ar[symm_subgrp][it] = locals()[it]
|
||||
del ar
|
Loading…
Reference in New Issue
Block a user