3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-13 14:29:01 +01:00

arrays: clean inverse

- does not use view
- determinant not lazy any more
This commit is contained in:
Olivier Parcollet 2013-10-01 20:18:59 +02:00 committed by Michel Ferrero
parent 800aea4c5e
commit 588dd6e50a
6 changed files with 138 additions and 136 deletions

View File

@ -76,7 +76,7 @@ int main(int argc, char **argv) {
assert ( (abs(A(i,j) - Wkeep(i,j))) <1.e-10 ); assert ( (abs(A(i,j) - Wkeep(i,j))) <1.e-10 );
double det = determinant(W); double det = determinant(W);
std::cout<<"determinant "<<determinant(W)<< " = "<< det<< std::endl<<std::endl; std::cout<<"determinant"<< " = "<< det<< std::endl<<std::endl;
// //
matrix_view<double> V(W(range(0,3,2), range(0,3,2))); matrix_view<double> V(W(range(0,3,2), range(0,3,2)));

View File

@ -34,10 +34,7 @@ inverse(
[0.25641,-0.512821,0.25641] [0.25641,-0.512821,0.25641]
[-0.628205,0.25641,-0.128205]] [-0.628205,0.25641,-0.128205]]
determinant determinant( determinant = -0.128205
[[-0.702564,1.20513,-0.102564]
[0.25641,-0.512821,0.25641]
[-0.628205,0.25641,-0.128205]]) = -0.128205
view = view =
[[-0.702564,-0.102564] [[-0.702564,-0.102564]

View File

@ -54,7 +54,7 @@ struct test {
D.inverse_matrix() << D.matrix() << triqs::arrays::matrix<std::complex<double>>(inverse(D.matrix()))<< std::endl; D.inverse_matrix() << D.matrix() << triqs::arrays::matrix<std::complex<double>>(inverse(D.matrix()))<< std::endl;
std::cerr << "det_old = " << det_old << "detratio = "<< detratio<< " determin "<< D.determinant() <<std::endl; std::cerr << "det_old = " << det_old << "detratio = "<< detratio<< " determin "<< D.determinant() <<std::endl;
#endif #endif
assert_close(D.determinant() , long(1)/determinant(D.inverse_matrix())(), PRECISION); assert_close(D.determinant() , long(1)/determinant(D.inverse_matrix()), PRECISION);
triqs::arrays::assert_all_close( inverse(D.matrix()) , D.inverse_matrix(), PRECISION, true); triqs::arrays::assert_all_close( inverse(D.matrix()) , D.inverse_matrix(), PRECISION, true);
assert_close( det_old * detratio , D.determinant(), PRECISION); assert_close( det_old * detratio , D.determinant(), PRECISION);
} }

View File

@ -55,7 +55,7 @@ struct test {
D.inverse_matrix() << D.matrix() << triqs::arrays::matrix<std::complex<double>>(inverse(D.matrix()))<< std::endl; D.inverse_matrix() << D.matrix() << triqs::arrays::matrix<std::complex<double>>(inverse(D.matrix()))<< std::endl;
std::cerr << "det_old = " << det_old << "detratio = "<< detratio<< " determin "<< D.determinant() <<std::endl; std::cerr << "det_old = " << det_old << "detratio = "<< detratio<< " determin "<< D.determinant() <<std::endl;
#endif #endif
assert_close(D.determinant() , long(1)/determinant(D.inverse_matrix())(), PRECISION); assert_close(D.determinant() , long(1)/determinant(D.inverse_matrix()), PRECISION);
triqs::arrays::assert_all_close( inverse(D.matrix()) , D.inverse_matrix(), PRECISION, true); triqs::arrays::assert_all_close( inverse(D.matrix()) , D.inverse_matrix(), PRECISION, true);
assert_close( det_old * detratio , D.determinant(), PRECISION); assert_close( det_old * detratio , D.determinant(), PRECISION);
} }

View File

@ -72,8 +72,7 @@ int main() {
TEST( tql::eval(Gv(om_), om_=0) ) ; TEST( tql::eval(Gv(om_), om_=0) ) ;
// tail // tail
BOOST_AUTO( t, G(inf)); auto t = G(inf);
//local::gf<meshes::tail> t2 = t + 2.4;
TEST(t.order_min()); TEST(t.order_min());
TEST( t( 2) ) ; TEST( t( 2) ) ;

View File

@ -20,16 +20,13 @@
******************************************************************************/ ******************************************************************************/
#ifndef TRIQS_ARRAYS_LINALG_DET_INV_H #ifndef TRIQS_ARRAYS_LINALG_DET_INV_H
#define TRIQS_ARRAYS_LINALG_DET_INV_H #define TRIQS_ARRAYS_LINALG_DET_INV_H
#include <boost/type_traits/is_same.hpp>
#include <boost/typeof/typeof.hpp>
#include <boost/utility/enable_if.hpp>
#include "../impl/common.hpp" #include "../impl/common.hpp"
#include "../matrix.hpp" #include "../matrix.hpp"
#include "../blas_lapack/getrf.hpp" #include "../blas_lapack/getrf.hpp"
#include "../blas_lapack/getri.hpp" #include "../blas_lapack/getri.hpp"
namespace triqs { namespace arrays { namespace triqs {
namespace arrays {
/// Error which occurs during the matrix inversion /// Error which occurs during the matrix inversion
class matrix_inverse_exception : public triqs::runtime_error {}; class matrix_inverse_exception : public triqs::runtime_error {};
@ -42,46 +39,59 @@ namespace triqs { namespace arrays {
* It can be copied at no cost * It can be copied at no cost
* It keeps view of the object A if it a matrix, a copy if it is a formal expression. * It keeps view of the object A if it a matrix, a copy if it is a formal expression.
*/ */
template<typename A, class Enable = void> struct inverse_lazy; template <typename A> struct inverse_lazy;
template<typename A> struct inverse_lazy_impl;//debug ony
/// template <class A> inverse_lazy<typename utility::remove_rvalue_ref<A>::type> inverse(A &&a) {
template<typename A> struct determinant_lazy; return {std::forward<A>(a)};
}
/// Lazy inversion
template<class A> inverse_lazy<typename utility::remove_rvalue_ref<A>::type> inverse (A && a) { return {std::forward<A>(a)}; }
/// Lazy computation of det
template<typename A> determinant_lazy<A> determinant (A const & a) { return determinant_lazy<A>(a); }
// ----------------- implementation ----------------------------------------- // ----------------- implementation -----------------------------------------
// worker takes a contiguous view and compute the det and inverse in two steps. // worker takes a contiguous view and compute the det and inverse in two steps.
// it is separated in case of multiple use (no reallocation of ipvi, etc...) // it is separated in case of multiple use (no reallocation of ipvi, etc...)
//NB a view does not resize, only its elements can be changed // A can be a matrix, a matrix_view
template<typename ViewType> class det_and_inverse_worker { template <typename A> class det_and_inverse_worker {
static_assert ( (is_matrix_view<ViewType>::value),"class must have be a view"); typedef typename A::value_type value_type;
typedef typename ViewType::value_type VT; typedef matrix_view<value_type> V_type;
typedef matrix_view<VT> V_type; A a;
ViewType V; int dim;
const size_t dim;
triqs::arrays::vector<int> ipiv; triqs::arrays::vector<int> ipiv;
short step; int step, info;
value_type _det;
public: public:
det_and_inverse_worker (ViewType const & a): V(a), dim(first_dim(a)), ipiv(dim), step(0) { det_and_inverse_worker(A a_) : a(std::move(a_)), dim(first_dim(a)), ipiv(dim), step(0) {
if (first_dim(a) != second_dim(a)) if (first_dim(a) != second_dim(a))
TRIQS_RUNTIME_ERROR<<"Inverse/Det error : non-square matrix. Dimensions are : ("<<first_dim(a)<<","<<second_dim(a)<<")"<<"\n "; TRIQS_RUNTIME_ERROR << "Inverse/Det error:non-square matrix. Dimensions are :(" << first_dim(a) << "," << second_dim(a)
<< ")\n ";
if (!(has_contiguous_data(a))) TRIQS_RUNTIME_ERROR << "det_and_inverse_worker only takes a contiguous view"; if (!(has_contiguous_data(a))) TRIQS_RUNTIME_ERROR << "det_and_inverse_worker only takes a contiguous view";
} }
VT det() { V_type W = fortran_view(V); _step1(W); _compute_det(W); return _det;}
ViewType const & inverse() { if (step<2) { V_type W = fortran_view(V); _step1(W); _step2(W);} return V;} value_type det() {
V_type W = fortran_view(a);
_step1(W);
_compute_det(W);
return _det;
}
A const &inverse() {
if (step < 2) {
V_type W = fortran_view(a);
_step1(W);
_step2(W);
}
return a;
}
private: private:
int info; VT _det;
// no need of special traversal // no need of special traversal
template<typename MT> V_type fortran_view (MT const &x) { return (x.indexmap().memory_layout_is_c() ? x.transpose() : x);} template <typename MT> V_type fortran_view(MT const &x) {
if (x.indexmap().memory_layout_is_c())
return x.transpose();
else
return x;
}
void _step1(V_type &W) { void _step1(V_type &W) {
if (step > 0) return; if (step > 0) return;
@ -95,7 +105,9 @@ namespace triqs { namespace arrays {
_det = 1; _det = 1;
for (size_t i = 0; i < dim; i++) _det *= W(i, i); for (size_t i = 0; i < dim; i++) _det *= W(i, i);
bool flip = false; // compute the sign of the permutation bool flip = false; // compute the sign of the permutation
for (size_t i=0; i<dim; i++) {if (ipiv(i)!=int(i)+1) flip = !(flip);} for (size_t i = 0; i < dim; i++) {
if (ipiv(i) != int(i) + 1) flip = !(flip);
}
_det = (flip ? -_det : _det); _det = (flip ? -_det : _det);
} }
@ -110,86 +122,80 @@ namespace triqs { namespace arrays {
//----------------------------------------------------------- //-----------------------------------------------------------
// an implementation class to gather the common part to matrix and expression.... template <typename A> struct inverse_lazy : TRIQS_CONCEPT_TAG_NAME(ImmutableMatrix) {
template<typename A> struct inverse_lazy_impl : TRIQS_CONCEPT_TAG_NAME(ImmutableMatrix) {
public:
typedef typename std::remove_reference<A>::type A_t; typedef typename std::remove_reference<A>::type A_t;
typedef typename std::remove_const<typename A_t::value_type>::type value_type; typedef typename std::remove_const<typename A_t::value_type>::type value_type;
typedef typename A_t::domain_type domain_type; typedef typename A_t::domain_type domain_type;
A a;
template<typename AA> inverse_lazy_impl(AA && a_):a (std::forward<AA>(a_)) {
if (first_dim(a) != second_dim(a)) TRIQS_RUNTIME_ERROR<< "Inverse : matrix is not square but of size "<< first_dim(a)<<" x "<< second_dim(a);
}
domain_type domain() const { return a.domain(); }
template<typename K0, typename K1> value_type operator() (K0 const & k0, K1 const & k1) const { activate(); return _id->M(k0,k1); }
friend std::ostream & operator<<(std::ostream & out,inverse_lazy_impl const&x){return out<<"inverse("<<x.a<<")";}
protected:
struct internal_data { // implementing the pattern LazyPreCompute
typedef matrix<value_type> M_type; typedef matrix<value_type> M_type;
typedef matrix_view<value_type> M_view_type; typedef matrix_view<value_type> M_view_type;
M_type M;
internal_data(inverse_lazy_impl const & P):M(P.a){ template <typename AA> inverse_lazy(AA &&a_) : a(std::forward<AA>(a_)), M{}, computed{false} {
det_and_inverse_worker<M_view_type> worker(M); if (first_dim(a) != second_dim(a))
TRIQS_RUNTIME_ERROR << "Inverse : matrix is not square but of size " << first_dim(a) << " x " << second_dim(a);
}
domain_type domain() const { return a.domain(); }
A const & input() const { return a;}
template <typename K0, typename K1> value_type const &operator()(K0 const &k0, K1 const &k1) const {
activate();
return M(k0, k1);
}
M_type const &operator()() const {
activate();
return M;
}
friend std::ostream &operator<<(std::ostream &out, inverse_lazy const &x) { return out << "inverse(" << x.a << ")"; }
private:
A a;
mutable M_type M;
mutable bool computed;
void activate() const {
if (computed) return;
M = a;
auto worker = det_and_inverse_worker<M_view_type> {M};
worker.inverse(); worker.inverse();
computed = true;
} }
}; };
friend struct internal_data;
mutable std::shared_ptr<internal_data> _id;
void activate() const { if (!_id) _id= std::make_shared<internal_data>(*this);}
};
// The general case // Optimized implementation of =
template<typename A> // if M = inverse(M) with the SAME object, then we do not need to copy the data
struct inverse_lazy<A, DISABLE_IF(is_matrix_or_view<typename std::remove_reference<A>::type>) > : inverse_lazy_impl<A> { template <typename A, typename MT>
template<typename AA> inverse_lazy(AA && a_):inverse_lazy_impl<A>(std::forward<AA>(a_)) {} ENABLE_IF(is_matrix_or_view<typename std::remove_reference<A>::type>)
}; triqs_arrays_assign_delegation(MT &lhs, inverse_lazy<A> const &rhs) {
static_assert(is_matrix_or_view<MT>::value, "Can only assign an inverse matrix to a matrix or a matrix_view");
// for matrix and matrix_views, we have more optimisation possible .... bool M_eq_inverse_M = ((lhs.indexmap().memory_indices_layout() == rhs.input().indexmap().memory_indices_layout()) &&
template<typename A> (lhs.data_start() == rhs.input().data_start()) && (has_contiguous_data(lhs)));
struct inverse_lazy<A, ENABLE_IF(is_matrix_or_view<typename std::remove_reference<A>::type>) >:inverse_lazy_impl<A>{ if (!M_eq_inverse_M) {
template<typename AA> inverse_lazy(AA && a_):inverse_lazy_impl<A>(std::forward<AA>(a_)) {} lhs = rhs();
} else {
template<typename MT> // Optimized implementation of = blas_lapack_tools::reflexive_qcache<MT> C(lhs);
friend void triqs_arrays_assign_delegation (MT & lhs, inverse_lazy const & rhs) { // a reflexive cache will use a temporary "regrouping" copy if and only if needed
//std::cerr << " DELEGATING1"<< lhs <<std::endl;
std::cerr << " DELEGATING2"<< rhs << rhs.a<<std::endl;
static_assert(is_matrix_or_view<MT>::value, "Internal error");
//std::cerr << " DELEGATING"<< lhs << std::endl;
if ((lhs.indexmap().memory_indices_layout() !=rhs.a.indexmap().memory_indices_layout())||
(lhs.data_start() != rhs.a.data_start()) || !(has_contiguous_data(lhs))) { rhs.activate(); lhs = rhs._id->M;}
else {// if M = inverse(M) with the SAME object, then we do not need to copy the data
//std::cerr << " DELEGATING"<< lhs << std::endl;
blas_lapack_tools::reflexive_qcache<MT> C(lhs);// a reflexive cache will use a temporary "regrouping" copy if and only if needed
det_and_inverse_worker<typename MT::view_type> W(C()); // the worker to make the inversion of the lhs... det_and_inverse_worker<typename MT::view_type> W(C()); // the worker to make the inversion of the lhs...
W.inverse(); // worker is working ... W.inverse(); // worker is working ...
//std::cerr << " DELEGATING"<< lhs << std::endl;
} }
//std::cerr << " okok "<< lhs << std::endl;
} }
friend std::ostream & operator<<(std::ostream & out,inverse_lazy const&x){return out<<"inverse("<<x.a<<")";}
};
//------------------- det ---------------------------------------- //------------------- det ----------------------------------------
template<typename A> struct determinant_lazy { template <typename A> typename std::remove_reference<A>::type::value_type determinant(A &&a) {
typedef typename A::value_type value_type; // makes a temporary copy of A if A is a const &
typedef typename const_view_type_if_exists_else_type<A>::type A_type; // If a is a matrix &&, it is moved into the worker.
A_type a; auto worker = det_and_inverse_worker<matrix<typename std::remove_reference<A>::type::value_type>>(std::forward<A>(a));
determinant_lazy(A const & a_):a(a_){} return worker.det();
operator value_type() { activate(); return _id->det; } }
value_type const & operator()() { activate(); return _id->det; } }
friend std::ostream & operator<<(std::ostream & out, determinant_lazy const & x){ return out<<"determinant("<<x.a<<")";}
protected:
struct internal_data {
typedef typename A_type::regular_type M_type;
M_type M; typename A::value_type det;
internal_data(determinant_lazy const & P):M(P.a){det_and_inverse_worker<A_type> worker(M); det = worker.det();}
};
friend struct internal_data;
mutable std::shared_ptr<internal_data> _id;
void activate() const { if (!_id) _id= std::make_shared<internal_data>(*this);}
};
}} // namespace triqs::arrays #ifndef TRIQS_COMPILER_OBSOLETE_GCC
namespace clef {
TRIQS_CLEF_MAKE_FNT_LAZY(determinant);
}
#endif
} // namespace triqs::arrays
#endif #endif